
Tree-Pattern Queries on a Lightweight XML Processor ∗

Mirella M. Moro, Zografoula Vagena, Vassilis J. Tsotras

Department of Computer Science & Engineering
University of California

Riverside, CA 92521, USA
{mirella, foula, tsotras}@cs.ucr.edu

Abstract

Popular XML languages, like XPath, use “tree-
pattern” queries to select nodes based on their
structural characteristics. While many process-
ing methods have already been proposed for such
queries, none of them has found its way to any of
the existing “lightweight” XML engines (i.e. en-
gines without optimization modules). The main
reason is the lack of a systematic comparison of
query methods under a common storage model. In
this work, we aim to fill this gap and answer two
important questions: what the relative similarities
and important differences among the tree-pattern
query methods are, and if there is a prominent
method among them in terms of effectiveness and
robustness that an XML processor should support.
For the first question, we propose a novel classifi-
cation of the methods according to their match-
ing process. We then describe a common stor-
age model and demonstrate that the access pattern
of each class conforms or can be adapted to con-
form to this model. Finally, we perform an experi-
mental evaluation to compare their relative perfor-
mance. Based on the evaluation results, we con-
clude that the family of holistic processing meth-
ods, which provides performance guarantees, is
the most robust alternative for such an environ-
ment.

1 Introduction

The widespread employment of XML requires the devel-
opment of efficient methods for manipulating XML data.

∗∗Research partially supported NSF grant IIS 0339032, UC Micro,
and Lotus Interworks; Mirella Moro was supported by Capes (Brazil).

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Query languages, such as XQuery [4] and XPath [3], take
into consideration the inherent structure of the data and en-
able querying both on its structure and on simple values.
The most general structural constraints have the form of
“tree-patterns”. For example, consider the query:

//article[/author[@last=“DeWitt”]]//proceedings[@conf=“VLDB”]

that requests all proceedings of articles that have an author
with last name “DeWitt” and have appeared in a “VLDB”
conference. The query consists of two types of conditions:

• @last=“DeWitt”, @conf=“VLDB”: are value-based since they
select elements according to their values.

• //article[/author]//proceedings: defines structural constraints
as it imposes restrictions on the structure of the re-
trieved elements (e.g. a proceedings element must exist
under an article with at least one author element as child).

While value-based conditions can be efficiently evaluated
with traditional indexing schemes, supporting the structural
query part is a unique and challenging task. Recent work
[2] has shown that specialized, set-based algorithms are
advantageous over straightforward approaches (e.g. doc-
ument navigation) or adaptations of relational techniques.
Moreover, holistic processing techniques (in which a tree-
pattern is handled as a single physical operator [5]), have
outperformed more conventional solutions (i.e., approaches
where the query is first decomposed using binary oper-
ators, and then some optimization is applied to produce
an efficient plan [29]). As a result, numerous proposals
attempt to handle tree-pattern queries with holistic tech-
niques [5, 11, 28, 25, 32]. Additionaly, index structures
have also been introduced [14, 23, 10, 7, 5, 17, 18, 8] to
further improve performance.

A common characteristic for all holistic approaches is
that some preprocessing is required, either on the data [5],
or on the data and the query [28, 25, 32]. This requires
the existence of a “dedicated” (native or relational) XML
storage manager where all data resides and can be prepro-
cessed. Note that this storage assumption is not restrictive
since it is orthogonal to the way data is published (using
DOM or SAX APIs). It should also be noted that the term

205



“holistic” is overloaded in the literature. In [5], it implies
global query matching, while in [28, 25, 32] the query is
preprocessed as a whole (but the matching is incremental).

Despite the variety of holistic solutions with promis-
ing performance results for tree-pattern queries, none of
them has found its way to today’s XML engines. This in-
cludes both fully-fledged XML database systems as well
as “lightweight” XML engines. For a fully-fledged XML
DBMS, one could simply implement all tree-pattern ap-
proaches and then combine them under a cost-based op-
timization framework so as to choose the best approach.
However, there are many data processing applications that
use “lightweight” XML engines [12, 13] which do not
contain a cost-based optimization module. When an op-
timizer is not present, an effective and robust processing
method is necessary. Nonetheless, a survey among existing
lightweight engines reveals that most of them employ bi-
nary operators (e.g. indexed nested loops joins [13], or the
more specialized structural joins [12]) which are then com-
bined with statically defined execution plans. Given the
potential of holistic approaches, it is surprising that none of
these lightweight processors has implemented any of them.

The main reason for this situation is the lack of evalua-
tion of these methods under a common storage model. Al-
though empirical results have already been published, com-
paring small subsets of the methods with typically few and
small datasets, no complete comparison exists. More im-
portantly, there is no reported work on the integration of
all methods under the same storage model. Without such
common integration, it is impossible to quantify the rela-
tive advantages and disadvantages of each approach.

In this paper, we attempt to fill this gap by integrat-
ing all existing tree-pattern query processing methods over
stored XML data in a unified environment. We assume
tree-pattern queries with XPath semantics, and we target
environments where XML data are physically stored within
data management systems and can be indexed at will. We
also propose a method categorization based on two main
features that differentiate the techniques: the data access
patterns, and the matching process. In particular, our main
contributions are summarized as:

• We introduce a clear categorization of methods for
tree-pattern queries processing. We describe tech-
niques proposed so far, discuss their characteristics,
place them within our classification.

• We set up a unified environment under a common stor-
age model and describe the integration of all methods
within it. We employ a storage model that is simple
but versatile enough to capture the access character-
istics of each method, and permit clustering of data
with the aid of off-the-shelf access methods (e.g. B+-
trees).

• We propose novel variations of methods that can use
existing index structures to their advantage, when such
structures exist. We also show how to adapt methods

not directly applicable to tree-pattern query process-
ing in order to handle tree-pattern queries as well.

• We perform an extensive comparative study with syn-
thetic, benchmark and real datasets. To our knowl-
edge, this is the first complete performance study. Our
results identify the behavior of each method under
varying circumstances. Furthermore, they allow us to
make generalizations and decisions in the applicabil-
ity, robustness and efficiency of each method.

The rest of the paper is organized as follows. Section
2 presents background information and describes the em-
ployed storage model. Section 3 details the method catego-
rization and, for each category, it presents our contributions
(in terms of method integration, new method proposals or
both). Section 4 presents an extensive experimental study
and discusses our findings. Section 5 summarizes related
work, and Section 6 concludes the paper.

2 Background
An XML database is usually modeled as a forest of un-
ranked, node-labeled trees, one tree per document. A node
corresponds to an element, attribute or value, and the edges
represent immediate element-subelement or element-value
relationships [3]. Figure 1(a) shows the tree representation
of an XML database containing bibliographic entries. In
this work, we consider the unordered model, i.e. the or-
der in which the elements appear in the document is not
relevant, conforming to the semantics of XPath [3]. More-
over, we concentrate on tree-pattern queries with descen-
dant edges. Queries with child edges are generally an-
swered using the same methods augmented with a post-
processing step, which filters out results that are not in ac-
cordance with the child constraints.

2.1 Document Encoding

A numbering scheme [9, 2, 7, 5, 28, 15] is usually embed-
ded in the tree representation of each document node to ef-
ficiently capture the structural relationships among nodes.
Common numbering schemes are range-based, and a range
(left , right) is assigned to each node in the document tree.
Given a node pair (a, d), node d is a descendant of node a,
if and only if, a.left < d.left < d.right < a.right . When
queries with child constraints are involved, the level of the
node within the tree is also used to capture parent-child re-
lationships.

2.2 Storage Model

We regard the input (i.e. XML documents) as sequences
(lists) of elements. There is one sequence per document
tag, called element list from now on. The numbering
scheme (described in Section 2.1) creates the mapping be-
tween the document tree structure and the element lists.
Suitable indexes on the element lists define the necessary
node clusterings and/or orderings. We chose to represent
the input as (possibly indexed) element lists because (a)

206



Figure 1: Storage Model: an XML document, its element lists stored in B+-tree, and structural indexes

each method under consideration expects (or can be triv-
ially adapted to expect) its input in that way; and (b) the
model is versatile enough to permit effective node clus-
tering through the use of common index structures. For
example, Figure 1(b) shows the element lists indexed by
(tag ,left) in a B+-tree. In Figure 1(c), a structural index
partitions the data based on bisimilarity (as it will be ex-
plained in Section 3.4). If different clusterings are desired
(e.g. clustering children of each node together, as in [28]),
other indexing techniques can be easily applied.

3 Method Categorization
While examining the methods for tree-pattern match-
ing, we discovered that they differ in two main fea-
tures, namely: data access patterns, and matching algo-
rithm. Considering these features, we define four cate-
gories whose characteristics are summarized in Table 1.

Table 1: Summary of categories features

Specifically, Section 3.1 presents Category 1, which
comprises holistic set-based techniques [5, 21, 6]. Their
input consists of element lists sorted on left and possibly
indexed to improve performance. In addition, various in-
dexing approaches have been proposed for set-based tech-
niques [5, 7, 17] and are discussed in Section 3.1.1.

Category 2 consists of query driven methods, in which
the query defines the way the input is probed, and is pre-
sented in Section 3.2. The main approaches in this cate-
gory are VIST [28] and PRIX [25]. These methods convert
the XML document into a sequence, and the query evalua-
tion is reduced to subsequence matching. This subsequence
matching can be treated as a specific static plan for evalu-
ating an index nested loops join. However, a static plan
cannot always give a good probe ordering. Based on this
observation, we consider a dynamic approach which would

be clearly advantageous. In order to be more general, we
implemented an index nested loops join (INLJ) that consid-
ers all left-deep plans, as detailed in Section 3.2.1. We also
show how a B+-tree may be employed for skipping both
descendants and ancestors. Furthermore, our experiments
show that the performance of techniques in this category
depends heavily on the data and queries.

Category 3, presented in Section 3.3, consists of the in-
put driven methods in which, at each point in time, the flow
of computation is guided by the input. This category is
inspired by navigational approaches that identify the an-
swer by directly navigating the tree structure of the input
[32]. We further enhance their performance by adapting
ideas from streaming environments [11] and employing Fi-
nite State Machines to keep partial matches. Hence, we
propose a new method (called SINGLEDFA) as a represen-
tative of this category in Section 3.3.1. Furthermore, we
show how this method can be adapted when an index is
present (called IDXDFA) taking advantage of our environ-
ment (where data is stored and can be easily indexed).

Finally, Category 4 (graph summary evaluation) con-
tains all methods that use a structural summary of the
data. In Section 3.4, we show how these techniques can
be adapted to work on our storage model, by combining a
structural summary with a set-based solution.

3.1 Category 1: Set-based Techniques

The major representative is a stack-assisted XML pattern
matching algorithm, called TWIGSTACK [5]. Each node
q in a tree-pattern query is associated with an element list
Tq that has all document nodes with tag q sorted by left
position (i.e. the left value of the region-based code). Also,
each node q is associated with a stack Sq, which stores pairs
(node positional representation in Tq , pointer to a node in
Sparentq

). This stack system enables the compact encoding
of (a possible larger number) intermediate partial results,
which is its main advantage.

Using the range-based numbering scheme, the structural
constraints are converted to θ-joins. Then a holistic, merge-
based method is utilized to process the tree-pattern query
(by first sorting the element lists on the left position of each
element). Any backtracking is eliminated by buffering ele-
ments that are bound to be used again in the future.

Figure 2 shows an example of the stacks usage. Figure

207



Figure 2: Compact encoding of results using stacks

2(a) has a section of an XML document (a1 and a2 corre-
spond to nodes of tag a, etc) and a query for all nodes c
that are descendant of b which are descendant of a. Fig-
ure 2(b) illustrates the content of the stacks in two different
moments: when c1 is read and when c2 is read. While c1

has b2 as parent (with a2 as its parent), c2 has b1 as parent
(with a1 as its parent). Figure 2(c) shows the query results.

The TWIGSTACK algorithm works in two phases: (a)
some solutions to individual root-to-leaf paths are com-
puted and stored on the stacks, and (b) these partial solu-
tions are merge-joined to compute the results for the tree-
pattern query. Hence, the output is produced in root-to-
leaf sorted order. It is important to note that before a node
is considered for further processing, the algorithm ensures
that (a) the node has a descendant on each of the lists cor-
responding to its child nodes in the query, and (b) each of
those descendant nodes recursively satisfies this property.
Thus, the algorithm can guarantee worst-case performance
linear to the query input and the size of the result. This is
an important property and it contributes for the robustness
of the techniques belonging in this category in comparison
with other categories, as it will be illustrated in the experi-
mental section.

3.1.1 TwigStack with Indexes

In order to skip elements that do not participate in the re-
sults, indexes may be used.

B+-tree. A B+-tree built on the left attribute for im-
proving structural join processing is proposed in [7]. When
an ancestor node is accessed, the B+-tree of the descen-
dant list can be probed to resume search on the first node
with left position larger than the position of the ancestor
node. The same technique can be used in the TWIGSTACK

algorithm in order to skip nodes that belong to descendant
lists and reside before the current node. Ancestor skipping
is not that effective since the index can skip only up to the
first element following the given one.

XR-Tree. The XR-TREE [17] indexes element nodes
on their region-based codes, the (left, right) pairs, and it
is basically a B+-tree with complex index key entries and
stab lists associated to internal nodes. Given a key k and an
element E with region (left, right), k stabs E if left ≤ k ≤
right. The stab list of key k stores the elements that are
stabbed by k, and there is no other key in ancestor nodes
of the tree that stabs them. The main weakness of this ap-

proach is its inability to handle recursive ancestor elements
efficiently (when a node happens to be ancestor of two or
more other nodes, it will be searched for and retrieved as
many times as the number of its descendant nodes).

XB-Tree. A variant of TWIGSTACK algorithm, the
XBTWIGSTACK, uses XB-Trees to speed up processing.
The nodes in the leaf pages are sorted by their left val-
ues. The difference between XB-Tree and a B+-tree is in
the data stored on internal pages: each node has a bound-
ing segment (left, right) and a pointer to its child page,
whose nodes have bounding segments completely included
in (left, right). This structure provides more efficient search
for ancestor elements than XR-tree, as it enables identifica-
tion of nodes starting at any node in the tree, not only the
root one. Searching for descendants proceeds the same way
as in B+-tree.

Discussion. A study presented in [19] compares the
performances of these indexes when evaluating structural
joins, i.e. the base query that returns pairs of ances-
tor/descendant or parent/child elements. In summary, when
skipping ancestors is necessary, XBTWIGSTACK performs
better than XRTWIGSTACK since the size of the XB-
Tree is smaller than that of XR-Trees (because of the
stab lists that the latter maintains). Moreover, searching
within stab lists in the XR-tree is less efficient than any in-
dex searching. Hence, XBTWIGSTACK also outperforms
XRTWIGSTACK when there are recursive levels of ances-
tors. A plain B+-tree with TWIGSTACK skips descendants
as effectively as XBTWIGSTACK but is not as efficient in
skipping ancestors. We performed an evaluation of these
indexes for general tree-pattern queries and achieved sim-
ilar observations (results not presented for lack of space).
Since the XB-tree provides better performance while skip-
ping both descendants and ancestors, we implemented it as
our choice of index on TWIGSTACK when comparing set-
based methods with the other three categories.

3.2 Category 2: Query Driven Techniques

This category is inspired by methods where the form (tree
structure, node labels) of the query guides the matching
process. Two methods fall into this category, namely VIST
[28] and PRIX [25]. Although the specific details differ sig-
nificantly, both methods use the same strategy. Each XML
document is converted into a sequence. The sequencing
process (preorder traversal for VIST and prüfer construc-
tion for PRIX) guarantees that a unique sequence is created
for each XML tree. Next, each query is also converted into
a sequence using the same sequencing process. Therefore,
answering a query is mapped to subsequence matching, i.e.
to the identification of the (non-contiguous) instances of
the query sequence within the document sequence. A post-
processing step, which can be performed on the fly ([25]),
is necessary to filter out results that do not correspond to
witnesses of the original query. Figure 3 illustrates the al-
gorithms.

The heart of those methods is the subsequence matching
module. The straightforward solution, which recursively

208



Figure 3: Tree-pattern matching by subsequence matching

identifies matches for each node within the query sequence
in order, requires quadratic time in the document size and
therefore becomes not competitive. Because there is no ad-
ditional information, every input node yet to be visited has
to be considered as candidate for matching, at each step of
the matching process. Methods in this category attempt to
optimize the naive algorithm by considering the special tree
structure of the document and the query from which the
sequences are derived. In particular, (a) they identify the
candidate nodes for each matching step, and (b) they use
index structures to cluster those candidates together. For
instance, in Figure 3, when VIST has identified a match
for the portion of the query subsequence ending at node
(B,A), which corresponds to query node B, the structure
of the query implies that only children nodes with label C
have to be accessed. To optimize such access, it employs a
B+-tree which clusters document nodes first on label and
then on the root-to-node paths. That way, each matching
step (for a child query node) involves a B+-tree probe and
range search. Similar functionality is provided by PRIX.

Discussion. The previous description reveals that the
subsequence matching process can be regarded as a plan
consisting of indexed nested loop joins among relations,
each of which groups document nodes with the same label.
For a given query, the sequence of the joins is statically
defined by the sequencing of the query. A natural ques-
tion involves the efficiency of these techniques in compari-
son with a pure indexed-nested loops join plan whose order
is achieved, for example, in a cost-based fashion. A rele-
vant issue is raised in [27] where the authors consider XML
schema or data distributions while defining the sequencing
order for a query. Taking these issues into consideration,
we decided to identify all left-deep plans for each query
and report their performance in an attempt to draw general
conclusions on the behavior of this category in comparison
with other categories. Next, we describe the method we
employed (INLJ) in detail. Clearly, the INLJ plans are a
superset of the static plans that PRIX and VIST use.

3.2.1 Index Nested Loop Joins, INLJ

In order to be able to employ INLJ on the relations that
group document nodes with the same label, we need
to index the relations such that retrieving elements that
satisfy a particular structural constraint (parent-child or
ancestor-descendant) is efficient. We focus on the ancestor-
descendant constraints and summarize the differences to
support the parent-child ones.

Document nodes are first grouped by node label (i.e. all
nodes with the same label belong to the same set) and the
numbering scheme in Section 2 is applied. Subsequently,
any of the indexes presented in Section 3.1 that supports
identification of both ancestors and descendants (e.g. XR-
Tree) can be utilized to index each of the sets. With those
structures, the evaluation of a tree-pattern query resembles
the evaluation of a relational plan consisting only of index
nested loops joins among the element sets. As in the rela-
tional case, the problem is how to decide the order in which
the joins are performed. In our experiments we report the
left-deep plan that gives the best performance.

Another issue is the presence of a more robust index
within a lightweight processor. In the absence of such an
index and assuming that only B+-tree structures exist, we
propose a simple but efficient technique to identify ances-
tor nodes (retrieval of descendant nodes is very efficient, as
it entails a simple range query [7]). Starting from a node
x with label b. In order to identify its ancestors of label
a, probe the B+-tree to determine the first node in the a
relation with the smallest left position which is larger than
the left position of x. The B+-tree clustering ensures that
any ancestor node resides at previous positions within the
leaves of the index. As a result, a backwards range search
identifies all of them. In order to know how far back to
search, we also keep in each node record, the left position
of the topmost ancestor (within the XML document) with
the same label as the node. For instance, node b2 in Figure
2 keeps the right position of b1. So, when c1 requires its
ancestors, the search starts in b2 and ends at b1, i.e. any
other previous node is not evaluated.

As described, our technique presents important advan-
tages over the proposed sequencing methods, namely inde-
pendence of the ordered XML model and the total avoid-
ance of false positives. Precisely, in the case of the un-
ordered model, both VIST and PRIX need to invoke a po-
tentially large number of sequence matching queries and
then union the results. The same can happen if the query
contains siblings with the same label. All these problems
are avoided with our technique.

In the case of parent-child constrains, index structures
like the one employed in VIST can be easily incorporated
to identify candidate nodes. Nevertheless, the processing
method remains unchanged.

3.3 Category 3: Input Driven Techniques

While the matching was driven by the query in the previ-
ous category, we considered having a method that is in-
put driven. Typically, this appears in navigational meth-

209



ods [1, 32]. The first navigational methods (as presented
in Lorel [1]) followed the edges of document tree in or-
der to process the query, without keeping any intermediate
state. This access pattern may be efficient for parent-child
queries, but when there are ancestor-descendant edges, it
starts to lose performance and there is no way to keep par-
tial results. A similar problem, where keeping partial re-
sults was needed, appeared when filtering streaming docu-
ments over a collection of tree-pattern queries (e.g. [11]).
In the filtering problem, the query is decomposed into its
constituent paths and each path is processed through a
FSM. The FSM stores partial results as the document is
parsed sequentially (in document order). At each point,
partial or total pattern matching is performed, depending on
the existing partial matches and the current node. We have
thus decided to combine navigational probing with FSMs
and present a new method (SINGLEDFA) for this category.

The main advantage of this category is its simplicity, as
well as its sequential access pattern. Moreover, a node is
processed exactly once. On the other hand, with sequen-
tial access there is little ability to avoid visiting nodes that
do not participate in the result. This might have a negative
impact, if the tree-pattern query is very selective. Since
in our environment data is already stored and can be eas-
ily indexed, we also present an improved FSM approach
(IDXDFA), that utilizes an index and avoids visiting nodes
that do not participate in the result.

3.3.1 A new FSM method

In our technique, the state of partial matches is encoded
with the FSM that corresponds to the query. Documents
are parsed one tag at a time. The start labels (reading
<element>) trigger the events in the FSM, which chooses
the next state according to the element read. When an end
label is found (reading </element>), the execution back-
tracks to the state it was in when the corresponding start
was processed. A run-time stack keeps the states reached
and allows such a state backtracking.

Tree-Pattern Matching. In order to print matches and
present the results in root-to-leaf order, we extended the
mechanism proposed by [5]. The tree-pattern is processed
whenever a pattern query root is to be popped from the el-
ement stacks (i.e. after processing all its descendants).

This implementation, called SINGLEDFA, keeps the ad-
vantage of the [5], i.e. intermediate results are compacted
in the stacks. We use a DFA (Deterministic State Machine)
as FSM, and the advantages are twofold: it speeds up the
computation, and it ensures that only structure matched el-
ements are stored in the stacks. Regarding the automaton
unnesting, i.e. conversion of NFA to DFA, we considered
the ideas from [20, 15] so that it has a superior performance
since the DFA avoids the backtracking that the NFA com-
putation entails.

Speeding Up the Navigation. Our experiments show
that simply reading the whole input and processing it
through a FSM does not give a competitive performance.
This happens because all possible result candidates need to

Figure 4: General algorithm for IDXDFA

be kept in the stacks even though they may not participate
in any partial matching. Hence, we propose an improve-
ment, called IDXDFA, in order to speed up processing by
using the input stored in an index structure. Instead of read-
ing the whole input sequentially, we use indexes in order to
skip some descendants that do not participate in any result.
Figure 4 details the general algorithm.

The variable currentNodes has one entry per query el-
ement and stores the next nodes to be read from each el-
ement list. This variable is initialized with the function
searchDesc, which probes all lists starting from the query
root element list (the only list to be sequentially read).
Then, m points to the node with minimum left position,
which is the next to be processed. After m is processed
through the FSM, its element list M is advanced, and cur-
rentNodes updated with the element after m in M. The
stack mentioned in line 6 is based on the ones presented
in TwigStack. When the query root stack (or any of its
children stack) is empty, it is time to update all its descen-
dants in order to skip those that do not belong to any par-
tial match, since they will not have a valid ancestor. Fi-
nally, functions verifyNode and update work together with
searchDesc to check when descendants of internal nodes
(not query root) may be skipped.

IDXDFA keeps the features of compact intermediate re-
sults and in-order traversal of the documents. However,
when there are some specific opportunities, it skips descen-
dants. For instance, consider the example tree illustrated in
Figure 5 as input for the query a//b[//c]//d. The trian-
gles in the figure represent subtrees that do not have any
element with tag a (query root). All elements in the grey
regions are not processed by the FSM in IDXDFA, due to

210



Figure 5: Example of skipping descendants in IDXDFA

the new functions added to the regular FSM processing.
Specifically, line 1 skips all nodes before the first in-

stance of the query root (i.e. nodes prior to a3). Start-
ing from a3, searchDesc gets b8, and from that, it probes
for c and d (skipping nodes c4, c5, d6, d7). When d11 is
processed through the DFA, all stacks are cleaned. Then,
lines 6 and 7 provide that all nodes between d11 and a12

be skipped. Likewise, after processing c16, verifyNode is
called from b21, skipping nodes from d17 to d20. Finally,
this situation happens again when processing c22.

3.4 Category 4: Structural Summaries

The methods in this category utilize a structural summary
of the data. The structural summary is a graph-structured
index (usually smaller than the original document) that
maintains all the structural characteristics of the data. Each
index node represents a group of nodes in the original doc-
ument. In order to keep the size of the index small enough
to reside in main memory, an approximate index is con-
structed by relaxing some of the structural constraints. As
a result, it may have false positives.

The tree-pattern matching proceeds in two phases. In
the first phase, the structural summary of the data is utilized
to identify the index nodes that satisfy the query. Those
nodes may represent a superset of the original document
nodes which participate in the query. Thus, a post pro-
cessing step is necessary to filter out the false positives and
identify the actual result nodes.

As of today, only navigation-based techniques have
been reported to perform the matching on the index graph
[18]. The structural index access pattern is hard to analyze
and model, as little can be speculated about the clustering
of the nodes. However, considering the fact that the index
structure fits in main memory, we regard this cost as an in-
dex parameter and we investigate the cost of the second,
disk-based phase, for different levels of structural relax-
ation. For the purposes of the comparison, we employed
the family of techniques based on bisimilarity [23, 10, 18].

3.4.1 Query Evaluation using Structural Summaries

Recently proposed structural summaries [23, 10, 18] are
based on the concept of bisimilarity. They partition the data
nodes into groups, called extents. These groups are repre-
sented by index nodes such that only bisimilar nodes are

represented by the same index node. The notion of bisimi-
larity is defined as:

Definition 1 Let G = (V,E) be a directed graph. A sym-
metric, binary relation on V is called (backward) bisimu-
lation if, for any two data nodes u ∈ V and v ∈ V with
u ≈ v, we have: (a) u and v have the same label and (b) if
u′ is a parent of u, then there is a parent v′ of v such that
u′ ≈ v′ and vice versa.

The above definition creates an index graph which is
both safe and precise, i.e. it produces the exact results for
a particular structural query. However, in several cases, the
size of such graph can be large and sometimes comparable
to the size of the original document, resulting in decreasing
performance. As a solution, Kaushik et al. [18] proposed
to encode paths up to a certain point, instead of all possi-
ble paths. That way, the index is still safe, as it does not
miss any results of a structural index. However, for paths
larger than the predefined size, it is no longer precise, and
it returns a superset of the query output.

Tree-pattern query evaluation using those relaxed
graphs proceeds as follows. The (memory resident) index
structure is probed to identify the index nodes that repre-
sent the candidate document nodes. Then, the correspond-
ing data extents are retrieved, and one of the previous query
matching techniques is employed to perform the final filter-
ing. In our experiments, we use TwigStack algorithm (from
Section 3.1) to perform the matching. This choice is justi-
fied by its superiority identified while comparing all previ-
ous methods. To be able to use TwigStack, we maintain the
extents of the index nodes as partitions of the element lists,
sorted on the left value of the numbering scheme (Section
2.1). We call the new method that combines TwigStack
over a structural index STRIDX.

4 Experimental Evaluation

In order to verify the relative performance and robustness
of the tree-pattern query processing algorithms, we ran a
wide range of experiments with all algorithms considered
in this work. Specifically, we implemented algorithms:
XBTWIGSTACK [5], our SINGLEDFA and IDXDFA, our
INLJ with ancestor information, and STRIDX. We also
implemented VIST [28] and PRIX [25], but as discussed
in Section 3.2 and empirically shown in Section 4.4, their
behavior can at most match the best plan of INLJ.

First, we present experiments with real datasets in or-
der to get some estimates about the time required by each
algorithm to compute the queries. Later, we add synthetic
datasets to further analyze each algorithm. In such sce-
nario, we are able to characterize the algorithms according
to specific features available in each custom dataset. Fi-
nally, we have more sets of experiments in order to closely
verify the performance of XBTWIGSTACK versus INLJ.

The performance measure is the total (system and user)
time required by each algorithm to compute the query. We
also measured the total number of input nodes accessed by

211



Figure 6: Results for XMark and Protein datasets

each algorithm, as well as the number of page I/Os. We do
not include all graphs for these last two measures for lack
of space; however, the observations made (based on them)
helped us explain the different results we report, and we
refer to them when needed.

The system setup was as follows. All the experiments
were conducted on an Intel Pentium 4 2.6GHz processor
machine, with 1GB of main memory. Every algorithm was
implemented in C++ and compiled with gcc version 3.3,
optimized with the -O2 flag. All techniques were imple-
mented on BerkeleyDB. The techniques that need indexes
were implemented using the BerkeleyDB B+-tree access
method. Finally, Berkeley DB was setup to use 100 buffers,
with page size of 8KB (therefore, the amount of memory
used is uniform and limited for all algorithms).

4.1 Experiments on Benchmark and Real Data

We start with queries on data generated by the XMark XML
benchmark [30], which models data from an Internet auc-
tion, and the Protein Sequence Database [31]. For the
XMark, in particular, we used the database generated with
a scale factor of 100, creating a dataset with 1.4GB of raw
data (almost 17 million text nodes). As the Protein dataset
requires no particular pre-processing, we used the original
dataset presented in [31]. In both datasets, the numbering
scheme was added by parsing the XML file with an event-
based XML parser that conforms to the SAX [26] interface
which we implemented in Java. Figure 7 illustrates the tree
structures of a representative set of the queries we consid-
ered (other query structures produced similar results).

Figure 6 illustrates the results for the benchmark
datasets. Queries X1 to X6 were executed on XMark data,
with results presented in Figure 6 (b). Queries P1 to P6
were performed on Protein, with results presented in Fig-
ure 6(c). Furthermore, the queries are presented ordered by
their dataset size, as informed in Figure 6(a).

It is possible to observe that INLJ (only the performance
of its best plan is presented) has a consistent advantage
when processing the smaller datasets of XMark (X1 to X5).
Since most data fit in main memory, it does not need extra

Figure 7: Queries used on XMark and Protein

I/O operations which are expensive due to its random ac-
cess. On the other hand, XBTWIGSTACK incurs the over-
head of checking for node participation in the final result.
Finally, the cost of INLJ random access becomes apparent
in larger datasets, as X6, when STRIDX is more efficient.

Note that there is no steady classification pattern fol-
lowed by all algorithms in the XMark dataset. For example,
X1 has INLJ in first place followed by XBTWIGSTACK,
while X4 and X6 have STRIDX in first, followed by INLJ
and XBTWIGSTACK. A similar situation is observed in the
Protein dataset, when there is no general pattern (involving
all techniques) in the results as well.

Although there is such a variation in the results, the
only fixed position is the last one, granted to SINGLEDFA.
Hence, we exclude its results from our next graphs as it is
always the worst performance, regardless of the query or
the dataset. Additionally, the remaining four algorithms al-
ternate their relative performances depending on the query.

We can also affirm that STRIDX is at least as good as the
algorithm used in its post processing step. Considering the
algorithms presented, any of them can process the query
over the structural index. STRIDX provides a very good
performance when the index selectivity is close to the query
selectivity. Hence, the next sets of experiments focus on the
performances of XBTWIGSTACK, IDXDFA, and INLJ, in
order to achieve a more complete classification.

4.2 Experiments with Custom Data

In this section, we investigate the performance of the al-
gorithms for different structural characteristics of the input
data as well as with varying structural join selectivities (i.e.
join selectivities among the pairwise joins that constitute
the tree-pattern query).

212



Figure 8: Performance when varying structural join selectivity (i.e. selectivity equal to 80% means that 80% of all nodes
in the dataset belong to the result, and so on).

4.2.1 Custom Data Generation

We chose a number of parameters that identify the behav-
ior of the presented techniques considering the features that
we investigate (i.e. data access and matching process). Al-
though existing benchmarks can be used to provide gen-
eral insights for the performance of the algorithms, none
of them managed to effectively isolate the features that we
are interested in. Therefore, we evaluate the algorithms on
custom data, where we explicitly vary the necessary pa-
rameters. Here, we consider the query: //a//b[//c]//d.
The reason for this choice is twofold: (a) this query is sim-
ple enough to permit the detailed investigation of the pro-
cessing that occurs for each of the query nodes, and (b)
it has the required complexity to allow inspecting a large
number of different data access possibilities (varying join
selectivity considering the number of root, internal nodes
and leaves separately), as it becomes apparent in the next
section. In the following paragraphs, we explain how we
varied the selectivity such that this single query is enough
to show the behavior of each algorithm.

We first varied the number of input elements that par-
ticipate in the result. We started with data set D1, where
each input node participates in exactly one query result.
From the 100% participation, we gradually and uniformly
removed elements until we reached 1% participation (we
considered 80%, 50%, 10%, and 1%, i.e. 80% of all nodes
belong to the result and so on). To better understand the be-
havior of the algorithms, we decided to change the stream
of only one query node at a time. Hence, our experiments
are based on the benchmark idea of isolating and evaluating
each feature separately. In particular, we varied the number
of joined elements in the stream corresponding to the query
node d (datasets D2 to D5), a (datasets D6 to D9) and b
(datasets D10 to D13). The structural characteristics of
these datasets had no repetition or recursion among the in-
put data. Each input stream has around 1 million elements,
i.e. the total input size is around 4 million nodes.

We proceed with varying the structural characteristics
of the data by adding recursive nodes. The depth of the

recursion was controlled from 2 to 10 elements. We gen-
erated datasets with either a or d as the recursive element.
The choice of those elements was coupled with varying the
selectivity of other elements, in order to investigate the ef-
fect of indexed access on recursive elements. Dataset D14
contains recursive d elements and 100% participation of all
elements in the join result, while datasets D15 and D16
contain a varied degree of b elements (50% and 1% are the
variations of elements in these sets of experiments), and
datasets D17 and D18 contain a varied degree of a ele-
ments. Datasets D19-D23 have a as the recursive element.
D19 has 100% partitipation of all elements, D20 and D21
vary the participation of b, and D22-D23 vary the partici-
pation of d in the result.

4.2.2 Experimental results from Custom Data

In this section, we report the results of the experiments
when we vary the join selectivity and the structural char-
acteristics of the input data.

Varying the number of joined root, leaves and in-
ternal nodes. The results for these experiments are pre-
sented in Figure 8, where (a) shows the results when vary-
ing the query leaf, (b) when varying the query root, and
(c) when varying the query internal node. When varying
each element list at a time, the experiments show a pat-
tern depending on the query selectivity. The pattern is
XBTWIGSTACK followed by INLJ and IDXDFA when se-
lectivity is bigger than 50%. XBTWIGSTACK is faster be-
cause its sequential processing outperforms the random I/O
performed by INLJ. Moreover, although IDXDFA is able
to skip some descendants, it still stores unnecessary nodes
as partial matches, which is better than the previous SIN-
GLEDFA but not as good as XBTWIGSTACK. Finally, as
the number of elements in the results decreases, INLJ starts
to improve performance, becoming the first place when less
than 10% of nodes belong to the result. In these cases, its
optimal probe order compensates for its random I/O.

Varying the input structure. In this group of exper-
iments, we added recursion to input data and then per-

213



Figure 9: Performance when adding recursion

formed similar measures. Figure 9 presents the results.
The conclusions we make are similar to the correspond-
ing previous experiments with no recursion. We would ex-
pect that recursion hampers INLJ performance because of
probing for the same nodes many times (e.g. multiple an-
cestors with same descendants and probing for descendant
elements) as well as its random access. However, the op-
timal probe ordering that we chose compensates this fact
by accessing only the nodes that participate in final results.
On the other hand, XBTWIGSTACK incurs the overhead
of visiting a large number of nodes that do not belong to
any result (although it does not take them in consideration
afterward). IDXDFA is always the slowest among these
three algorithms, hence we discard its results from the next
set of experiments and concentrate on the comparison of
XBTWIGSTACK and INLJ.

Number of nodes. In order to have a quantitative
idea about how many nodes the algorithms skip, Table 2
presents the number of nodes (in percentage) processed by
each approach. Note that these values do not reflect the
number of nodes stored as partial matches.

4.3 XBTWIGSTACK versus INLJ

In this section we present some interesting comparisons be-
tween XBTWIGSTACK and INLJ over random datasets.
The query is still the same //a//b[//c]//d.

Running on large dataset. In this group of experi-
ments, we evaluate the performance of both algorithms in
a worst case scenario where the number of results in the
query is very small, while the number of results for any sub-
query is large. This is the case where conventional query
optimization techniques (which would try to identify the

Table 2: Percentage of nodes processed in custom datasets

best execution plan by decomposing it into subplans) would
fail. The reason for this is because the number of necessary
intermediate results that has to be produced is large, and a
technique that depends on such type of processing would
have to produce all of them.

Figure 10(a) illustrates the results of XBTWIGSTACK

(horizontal line) and all left-deep plans of INLJ (columns)
performed in one single dataset with 40 million nodes (al-
most 1GB stored in B+-trees). The selectivity of the query
is around 1% (practically 400 thousand nodes in the result).
As the results show, XBTWIGSTACK outperforms all INLJ
plans. Hence, even if an optimizer module existed to pro-
vide the best order for probing the joins, its results would
be meaningless since XBTWIGSTACK outperforms INLJ
in all the possible left-deep query order. Furthermore, note
that there is a difference of about 40 seconds (around 30%)
from XBTWIGSTACK and INLJ best plan.

Running on random datasets. Figure 10(b) illustrates
the results of XBTWIGSTACK and all left-deep plans of
INLJ performed in ten random datasets whose sizes varies
from 9 million to 25 million nodes. XBTWIGSTACK is
uniformly better than all INLJ plans, with the exception of
datasets R4 and R7 in which only the best INLJ plan has
better or equal performance to XBTWIGSTACK. In each
dataset, the difference between the best and worst plans
vary in a range from 4 seconds (R3) to 236 seconds (R10).
Furthermore, there is no single plan that has the best or one
of the three best times over all datasets.

The results from this random datasets reinforce the ro-
bustness of XBTWIGSTACK. Most of the time (8 out of
10), XBTWITSTACK clearly outperforms the best plan of
INLJ. This fact leads us to conclude that XBTWIGSTACK

should be seriously considered as the algorithm for evalu-
ating tree-pattern queries on lightweight processors.

4.4 VIST and PRIX versus INLJ

For completeness, Table 3 reports a representative set of
results comparing INLJ, VIST, and PRIX for various of
the custom datasets. This table depicts the percentage of
nodes processed by each method. For datasets where the
leaf elements are more selective (D2:80 and D5:01) PRIX
is faster than VIST. The opposite holds when root elements
are more selective (D6:80 and D9:01), while both methods

214



Figure 10: Random datasets comparing XBTWIGSTACK and INLJ

Table 3: Percentage of nodes processed by VIST, PRIX,
and INLJ

have similar performances when the internal nodes are se-
lective (D10:80 and D13:01). Nevertheless, the best plan
from INLJ has always similar or better performance than
the best between VIST and PRIX.

4.5 Discussion

In conclusion, we have identified the following choices
while evaluating different algorithms for tree-pattern
queries on lightweight processors:

1. When a structural index is available for the query such
that it covers only nodes in the result, STRIDX is gen-
erally faster than the other approaches. This happens
because the structural index size is much smaller than
the actual data size and, consequently, the number of
nodes to access is also smaller. Moreover, the con-
trolled data access does not entail random I/Os as
those performed by INLJ.

2. In the absence of such an index, XBTWIGSTACK is
the most robust and predictable solution. Although
INLJ may present better result when the selectivity
is small, there is no guarantee that the chosen plan is
the best without having an optimizer module to calcu-
late that. As an optimizer is usually not available in
lightweight processors, then XBTWIGSTACK should

be the preferred choice, as reinforced by our experi-
ments with random datasets.

3. The experiments also showed that the DFA-based so-
lutions usually have the worst performance. Even
though we improved their general performance by
adding index access to the DFA in IDXDFA, it is not
enough to outperform XBTWIGSTACK.

5 Related Work
Early studies on structural selection over XML data regard
the simpler problem of matching single path patterns con-
sisting of two (structural joins) or more nodes (path joins).
All these methods operate over the sequences of nodes with
the same tag and perform the matching in a merge fashion.
Among them, the stack-based ones proposed in [2] have
been shown to achieve superior performance.

There is an abundance of techniques that employ Finite
State Machines to answer tree-pattern queries over stream-
ing data [16, 24]; however, their main memory require-
ments are large. As a result, they are not scalable to large
databases and, hence, they are excluded from our study.
Instead, as a representative of this category, we extended
and modified the technique in [11] to handle tree-pattern
queries using bounded main memory. Moreover, we pro-
posed a new algorithm that can utilize existing index struc-
tures to further improve the method’s performance. To the
best of our knowledge, this is the first time that a method in-
tegrating FSMs and value based indexes has been reported.

Many structural summaries have already been proposed,
such as the bisimilarity-driven family of indexes [18],
dataguides [14], and suffix tree-like structures [10, 27].
They all group the document nodes according to a struc-
tural property. Those groups create a new structure, smaller
than the original document, which permits the processing
of structural queries directly on it. For the class and seman-
tics of queries that we target, those summaries alone are not

215



enough, and a post-processing matching step is necessary.
Assuming that the index probing cost is a parameter of the
structural summary, we regarded those structures as a par-
titioning of the document nodes and examined the cost of
the post processing matching process, as this is the most
expensive phase of the method.

Cost-based query optimization techniques for XML
[22, 29] are also related to our work. They investigate the
applicability of common query optimization techniques to
answer tree-pattern queries. They are complementary to
our study as they target an environment where a cost-based
optimization module is available.

6 Conclusion

We proposed a classification of tree-pattern query process-
ing algorithms considering important features such as data
access and matching process. We also identified the com-
mon behavior of the algorithms within the categories. Fur-
thermore, we adapted previous and successful XML query
processing techniques for handling tree-pattern queries as
well. Specifically, we adjusted a DFA-based approach, and
we improved its performance by accessing nodes from a
B+-tree instead of purely sequential scan. Such an im-
provement provided better results in comparison to the
plain DFA. We further showed that query-driven methods
can be considered as static plans for index nested loops join
. Hence, we introduced a generalization that examines all
left-deep plans. Finally, we introduced an approach that
combines a structural summary with a set-based matching
algorithm. We then performed the first thorough and ex-
tensive analysis of tree-pattern query processing techniques
using real, benchmark and custom data. In summary, if a
structural summary exists covering the query, it should be
the method of choice (assuming this index is considerably
smaller than the real dataset). The DFA-based solutions
(even with the use of indexing) typically had the worst per-
formance for the stored data environment we used. The
query-driven methods have performance that can vary dras-
tically with the data and query. Since existing methods use
static plans, we experimentally showed that they cannot
provide guarantees for lightweight (non-optimized) XML
engines. Hence, the holistic approach (i.e. the indexed
TWIGSTACK) was the most robust and predictable method,
and it should be definitely implemented on lightweight pro-
cessors.

References
[1] S. Abiteboul et. al. The Lorel Query Language for

Semistructured Data. Intl. Journal on Digital Libraries,
1(1), 1997.

[2] S. Al-Khalifa et.al. Structural Joins: A Primitive for Ef-
ficient XML Query Pattern Matching. In Proc. of ICDE,
2002.

[3] A. Berglund et. al. XML Path Language (XPath) 2.0. W3C
Recommendation. http://www.w3.org/TR/xpath20, Nov
2003.

[4] S. Boag et. al. XQuery 1.0: An XML query language.
In W3C Working Draft. http://www.w3.org/TR/xquery, Nov
2003.

[5] N. Bruno et.al. Holistic Twig Joins: Optimal XML Pattern
Matching. In Proc. of SIGMOD, 2002.

[6] T. Chen, J. Lu, and T. W. Ling. On Boosting Holism
in XML Twig Pattern Matching using Structural Indexing
Techniques. In Proc. of SIGMOD, 2005.

[7] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zan-
iolo. Efficient Structural Joins on Indexed XML Documents.
In Proc. of VLDB, 2002.

[8] C.-W. Chung, J.-K. Min, and K. Shim. APEX: An Adaptive
Path Index for XML Data. In Proc. of SIGMOD, 2002.

[9] M. P. Consens and T. Milo. Optimizing Queries on Files. In
Proc. of SIGMOD, 1994.

[10] B. F. Cooper et. al. A Fast Index for Semistructured Data.
In Proc. of VLDB, 2001.

[11] Y. Diao et. al. Path Sharing and Predicate Evaluation for
High-Performance XML Filtering. ACM TODS, 28(4), Dec
2003.

[12] eXist native XML database. In http://exist.sourceforge.net.
[13] Galax XQuery processor. In http://www.galaxquery.org/.
[14] R. Goldman and J. Widom. DataGuides: Enabling Formula-

tion and Optimization in Semistructured Databases. In Proc.
of VLDB, 1997.

[15] A. Halverson et. al. Mixed Mode XML Query Processing.
In Proc. of VLDB, 2003.

[16] T. J. Green et.al. Processing XML Streams with Determin-
istic Automata. In Proc. of ICDT, 2003.

[17] H. Jiang et.al. Holistic Twig Joins on Indexed XML Docu-
ments. In Proc. of VLDB, 2003.

[18] R. Kaushik et.al. Covering Indexes for Branching Path
Queries. In Proc. of SIGMOD, 2002.

[19] H. Li et.al. An Evaluation of XML Indexes for Structural
Joins. Sigmod Record, 33(3), Sept. 2004.

[20] H. Liefke. Horizontal Query Optimization on Ordered
Semistructured Data. In Proc. of WebDB, 1999.

[21] J. Lu, T. Chen, and T. W. Ling. Efficient Processing of XML
Twig Patterns with Parent Child Edges: A Look-ahead Ap-
proach. In Proc. of CIKM, 2004.

[22] J. McHugh and J. Widom. Query Optimization for XML. In
Proc. of VLDB, 1999.

[23] T. Milo and D. Suciu. Index Structures for Path Expressions.
In Proc. of ICDT, 1999.

[24] F. Peng and S. S. Chawathe. XPath Queries on Streaming
Data. In Proc. of SIGMOD, 2003.

[25] P. R. Rao and B. Moon. PRIX: Indexing and Querying XML
Using Prufer Sequences. In Proc. of ICDE, 2004.

[26] SAX. Simple API for XML. In http://sax.sourceforge.net.
[27] H. Wang and X. Meng. On the Sequencing of Tree Struc-

tures for XML Indexing. In Proc. of ICDE, 2005.
[28] H. Wang et.al. ViST: A Dynamic Index Method for Query-

ing XML Data by Tree Structures. In Proc. of SIGMOD,
2003.

[29] Y. Wu et.al. Structural Join Order Selection for XML Query
Optimization. In Proc. of ICDE, 2003.

[30] XMark. The XML benchmark project. In http://www.xml-
benchmark.org.

[31] XML Data Repository. In
http://www.cs.washington.edu/research/xmldatasets/.

[32] N. Zhang, V. Kacholia, and M. T. Ozsu. A Succinct Physical
Storage Scheme for Efficient Evaluation of Path Queries in
XML. In Proc. of ICDE, 2004.

216


