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Abstract

Text classification is a major data mining task.
An advanced text classification technique is
known as partially supervised text classifica-
tion, which can build a text classifier using a
small set of positive examples only. This leads
to our curiosity whether it is possible to find
a set of features that can be used to describe
the positive examples. Therefore, users do not
even need to specify a set of positive exam-
ples. As the first step, in this paper, we for-
malize it as a new problem, called hot bursty
events detection, to detect bursty events from
a text stream which is a sequence of chrono-
logically ordered documents. Here, a bursty
event is a set of bursty features, and is con-
sidered as a potential category to build a text
classifier. It is important to know that the hot
bursty events detection problem, we study in
this paper, is different from TDT (topic de-
tection and tracking) which attempts to clus-
ter documents as events using clustering tech-
niques. In other words, our focus is on de-
tecting a set of bursty features for a bursty
event. In this paper, we propose a new novel
parameter free probabilistic approach, called
feature-pivot clustering. Our main technique
is to fully utilize the time information to de-
termine a set of bursty features which may
occur in different time windows. We detect
bursty events based on the feature distribu-
tions. There is no need to tune or estimate
any parameters. We conduct experiments us-
ing real life data, a major English newspaper

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and motice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

181

in Hong Kong, and show that the parameter
free feature-pivot clustering approach can de-
tect the bursty events with a high success rate.

1

In this paper, we study a new problem, called hot
bursty events detection in a text stream, where a text
stream is a sequence of chronologically ordered doc-
uments, and a hot bursty event is a minimal set of
bursty features that occur together in certain time win-
dows with strong support of documents in the text
stream. For example, SARS (Special Severe Acute
Respiratory Syndrome) is a bursty event that con-
sists of a set of bursty features such as sars, outbreak,
atypic, respire, pneumonia, inflect, etc. This bursty
event was reported in four hot periods, in a major Eng-
lish newspaper, South China Morning Post, in Hong
Kong: (1) from 3rd April 2003 to 26th June 2003, (2)
on 20th July 2003, (3) on 2nd October 2003; and (4)
on 11th January 2004. The first hot period was the
period when it was identified as a dangerous new dis-
ease. The second hot period was the time that the
director of Health of Hong Kong announced that she
would resign her position and take up a senior posi-
tion at the World Heath Organization. The third hot
period was the period when an independent investi-
gation report against SARS was disclosed. The fourth
hot period was when there were some suspicious SARS
cases identified in Guangdong province of China. The
determination of such minimal set of bursty features,
to specify a burst event, assists text classification, as
one major step ahead of current research activities on
text classification. It is because that the set of bursty
features can be used as a set of features for positive
examples, and therefore helps partially supervised text
classification [10, 6], which is a text classification tech-
nique using positive examples only. In other words,
with our techniques, users do not even need to spec-
ify a set of positive examples to build a text classifier.
However, the focus of this paper is on the determina-
tion of bursty events, and is not on partially supervised
text classification with a set of positive features.

The bursty events detection problem is given below.

Introduction



Consider a text stream D = {d;,ds, -} where d; is a
document, and the length of D is [D|. A document d;
consists of a set of features, fi,, fi,,- - -, and is reported
at time ¢;. In the text stream D, t; < t; if ¢ < j.
Dividing the text stream, D, into L non-overlapping
time windows, W; of the same length, say per day. The
problem of hot bursty events detection is a problem
to find a set of bursty events, where a bursty event
consists of a minimal set of bursty features, in time
windows W;, W, - - - that together identifies the event
with the largest number of documents that contain the
bursty features.

Our problem is different from the existing event de-
tection problems such as TDT (Topic Detection and
Tracing) [2, 3, 14, 26, 21, 27, 25]. TDT is an unsu-
pervised learning task (clustering) that finds clusters
of documents matching the real events (sets of docu-
ments identified by human) by reducing the number of
missing documents in the clusters found and reducing
the possibility of false alarms. The key issue of our
hot bursty events detection is to find the minimal sets
of bursty features automatically. In other words, the
emphasis of our problem is to identify sets of bursty
features, whereas the emphasis of TDT is to find clus-
ters of documents.

The hot bursty events detection can be possibly
handled by clustering of documents followed by a step
of selecting features from the clusters found. We call it
a document-pivot clustering approach, because it first
clusters similar documents into clusters, and then se-
lects features as bursty events from the clusters. The
related works include TDT [2, 3, 14, 18, 21, 26, 27|,
text mining [9, 13, 14, 17, 19, 20, 22|, and visualiza-
tion [7, 11, 24]. However, the main drawback of adapt-
ing these techniques for the new hot bursty events de-
tection problem is that they require many parameters
and it is very difficult to find an effective way to tune
these parameters.  For example, [26, 27] propose a
divide-and-conquer version of the group-average clus-
tering approach [23] for event detection using six pa-
rameters, bucket size, clustering threshold, reducing
factor, number of iterations between re-clustering, fea-
tures per vector, and feature weighting schema. These
parameters are interrelated. Changing one parameter
may have great impacts on the selection of other pa-
rameters. [19] proposes a x? approach for extracting
significant time varying features from text, where ex-
tracting different kinds of features requires different
thresholds. It needs two y2-thresholds for extracting
name entities and noun phrases in a text stream. [20]
proposes a x? based strategy for visualizing the major
events in a text stream. Similar to [19], [20] needs dif-
ferent thresholds for different kinds of features includ-
ing two additional parameters, namely, the grouping
threshold and the stopping criteria, in order to identify
different events. Without any prior knowledge about
the events in the text stream, it would be rather diffi-
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cult to estimate these parameters. None of the previ-
ous reported studies discussed in details how to esti-
mate and tune the parameters, to our best knowledge.
The task of tuning parameters is time-consuming and
is difficult, because these parameters are sensitive and
critical for event detection.

In this paper, we propose a new novel feature-pivot
clustering approach for hot bursty events detection.
By feature-pivot clustering, as a term to distinguish it
from document-pivot clustering, we mean that we do
not need to cluster documents in order to find bursty
events. The uniqueness of our approach is as follows.
First, as the first attempt, we identify hot bursty fea-
tures by feature distribution, as a time-series in time
windows. Second, we group bursty features into bursty
events. Third, we identify the hot periods of burst
events. The main advantage of our approach is pa-
rameter free. There are no parameters that need to
be tuned, and there is no need to use any weighting
schema as we do not need to weight the features. It is
also important to note that our approach can in turn
help TDT to select features for the existing event de-
tection problem [2, 3, 14, 26, 21, 27, 25].

The rest of the paper is organized as follows. Sec-
tion 2 discusses the document-pivot clustering and its
problems. Section 3 presents our novel parameter free
feature-pivot clustering approach. Section 4 shows
that the parameter free feature-pivot clustering ap-
proach can detect the bursty events with a high success
rate. The related works are discussed in Section 5. We
conclude this work in Section 6.

2 Document-Pivot Clustering and Its
Problems

In this section, we address the issues behind the
document-pivot clustering approach which makes hot
bursty events detection difficult. For detecting hot
bursty events, the document-pivot clustering approach
first assigns weights to the features based on the most
widely-used tf-idf schema [15]. Second, it performs
clustering to group similar documents into clusters.
Third, it selects features, as bursty features, from the
clusters of documents based on some feature selection
approaches [16]. The first two steps are the main steps
used in TDT [2, 3, 14, 26, 21, 27, 25]. The limitations
of adopting this approach are given below.

e The task of hot bursty event detection is to find a
minimal set of features that can represent a bursty
event. However, in the document-pivot clustering
approach, features as a whole need to be consid-
ered to measure the similarity between two docu-
ments. The similarity of documents can be biased
to the noisy features. Our early study reported
that the most similar documents often belong
to different categories [6]. Therefore, with the
document-pivot clustering approach, most simi-
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Figure 1: Document Clustering

lar documents do not necessarily report the same
event.

In the document-pivot clustering approach, the
tf- idf schema [15] is used for feature weightings.
However, the tf- idf schema is originally designed
for information retrieval, not for clustering, even
though it performs well in most text clustering
problems. There are many tf-idf schema varia-
tions, but the basic idea is the same such as fea-
tures that appear in a few documents are use-
ful, and should be assigned higher weights. The
tf- idf schema does not suit for our purposes for
hot bursty events detection, because we need to
find the features that appear in a large number of
documents in certain hot periods, so as to distin-
guish the set of documents that contain the burst
features from the other documents.

The document-pivot clustering approach is not
effective in handling the cases where the same
events occurs as bursts several times in a long
time period [20, 27]. The reason is that such an
event will be broken into parts when some spe-
cific features do not occur frequently enough in
consecutive time windows. Figure 1 illustrates an
example. Suppose there are eight consecutive doc-
uments, from A to H, where the documents A,
D, E, G and H support the same event X. Dur-
ing document clustering, suppose that the docu-
ments A, D and G are initially grouped together
in a cluster, Gi, and the documents E and H
are initially grouped together in another cluster,
G32. Recall a threshold (stopping criterion) is used
to maintain high intra-similarity within a cluster,
which prohibits further documents, that are not
related to the cluster, being assigned to it. As a
result, G; and G5 may not be able to merge to
form a single cluster. In other words, a long run-
ning event may be broken down into several sep-
arated events (several different clusters). It may
result in many small clusters, and can make it
difficult to find the major events which lasts long.

e Assume that the document-pivot clustering ap-
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proach can cluster documents well as events. It
is still difficult to determine bursty events, be-
cause it requires a ranking function to rank events.
However, without any prior knowledge, it is diffi-
cult to formulate a good ranking function. In ad-
dition, it is difficult to determine its hot periods.
Another threshold may need to be introduced to
determine the hot periods, such that a hot period
is defined as the number of documents that be-
long to the bursty event in a specific time period
is larger than the predefined threshold. However,
there does not exist a single threshold for all dif-
ferent events.

Bursty Event Detection: A Feature-
Pivot Clustering Approach

All the above give us the motivation for considering
the feature distributions directly rather than on docu-
ment distributions during clustering, i.e. feature-pivot
clustering.

Our framework is outlined in Figure 2. There are
three major steps: (1) Bursty features identification,
(2) Bursty features grouping, and (3) Hot periods of
the bursty events determination. Note that no weight-
ing schema is necessary in our framework. Details are
given in the following sections.

3.1 Bursty Features Identification

Assume the number of documents that contain the fea-
ture f; in a window W;, denoted as n; ;, follows a gen-
erative probabilistic model, which is a model based on
an unknown probability distribution. With the gener-
ative probabilistic model, we can compute the prob-
ability of the number of documents that contain the
feature f; in the time window W;, denoted as Py(n; ;).

Py(n; ;) can be modeled using a hyper-geometric
distribution. Recall the definition of hyper-geometric
distribution [12]: A sample of size n’ objects is se-
lected, at random (without replacement), from the N’
objects, such that K’ objects in n’ are classified as suc-
cess and N’ — K’ objects are classified as failure, then
the random variable X’ that denotes the number of
successes in the sample has a hyper-geometric distrib-
ution. In our problem, N’ is the number of documents
in the text stream, n’ is the number of documents in
a window, K’ is the number of documents that con-
tain the specific feature in the particular window, and
n'— K’ is the number of documents that do not contain
the specific feature in the particular time window. As
a result, the probability that the feature f; in the time
window W; can be modeled by a hyper-geometric dis-
tribution. Note: hyper-geometric distribution is com-
putational expensive such that its computational time
growth quadratically with n; ;. We model the hyper-
geometric distribution using the binomzial distribution,
since the computation of binomial distribution is far
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Figure 2: The Overview of Feature-Pivot Clustering Approach

more efficient. Furthermore, both distributions will
eventually be the same when the database is large [12].
Hence, Py(n; ;) is modeled by a binomial distribution,
and is computed as follows.

)

We explain N and p; below.

N is the number of documents in a time window.
It is worth noting that, although the number of doc-
uments, N;, in each time window can be different,
we can re-scale it in all time windows, such that all
N; become the same. We do it by adjusting the fre-
quencies of features in all time windows. For example,
suppose that there is a feature, f;, in two time win-
dows, W7 and Ws. In W7y, the number of documents is
Ny = 78, and the number of documents that contain
f; is n1; = 24; and in W3, the number of documents
is No = 82, and the number of documents that contain
f; is na; = 35. We can re-scale IV; and IV; to 100 by
rescaling nq,; = 31 and no; = 43 accordingly. Note
that setting N does not affect the quality of bursty
events detection, because the overall feature distribu-
tions are unaffected. As a result, N is not considered
as a parameter in our scheme.

In Eq (1), p; is the expected probability of the doc-
uments that contain the feature f; in a random time
window, and is therefore the average of the observed
probability of f; in all time windows containing f;:

N

N, j

i, j

P.qw-,j):( PN (1)

L/
1
Pi =7 3 Polniy) (2)
=0
Ny,
Polnig) = =7 3)

where L’ is the number of time windows containing f;.
Note that P,(n; ;) becomes maximum if n; ; /N = p,.

Figure 3 shows a typical binomial distribution,
P,(n;,;), for the feature f; in a time window W;. Note:
binomial distribution is asymmetric except when p;
0.5. The shape of the binomial distribution depends
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Figure 3: A typical binomial distribution

on p; only. A larger p; would shift the burst to the
right hand side. It is worth noting that if the frequency
of a feature that appears in every window is very high,
e.g. a stopword, then L’ and P,(n; ), in Eq.(2) and
Eq. (3), would both be large, which result in a large
p;. In this case, the binomial distribution in a time
window is similar to the one shown in Figure 4. The
main difference between Figure 3 and Figure 4 is given
below. In Figure 3, there are three regions along the x-
axis (the number of documents): R4, Rp and Rc. Ra
is from 0 to the x value where P,(z) is the maximum,
Rp is from the z value where P,(z) is the maximum
to the z value where P,(z) becomes zero again, and
R¢ is the region followed by Rp. In Figure 4, the
right hand side of the distribution can never reach 0.
Therefore, a feature f; will be taken as a stopword if
its binomial distribution becomes the one as shown in
Figure 4.

We discuss how likely an important feature f; will
be wrongly taken as a stopword below. Suppose that
f; is a bursty feature in a bursty event Ej, such that
f; only appears with high frequency in the hot peri-
ods of Ej. It implies n; ; is large in the time window
W; where E} is a bursty event. If it occurs, all the
observed probability in every sliding window, P,(n; ;)
(Eq. (3)) will be large, whereas the number of time
windows that contain f; will be small, i.e. L' in Eq. (2)
will be small. Hence, p; will be large as well as shown
in Figure 4. Therefore, it is possible in theory that f;



Figure 4: The binomial distribution of a stopword

will be wrongly taken as a stopword. However, it is
most unlikely that f; will be wrongly taken as a stop-
word for the following reasons. Feature distributions
are sparse in nature. Even though f; may be only re-
lated to Ej as its bursty feature, it is most likely that
f; will appear in other time windows where Fj, is not
a bursty window. In other words, for the same fea-
ture f;, the number of documents that contain it, n; ;,
will be large in some time windows and small in some
other windows. On average, the observed probabil-
ity, Py(n;,;), for such a feature f;, will not be large as
the one for a stopword, which is confirmed by our ex-
tensive experimental studies. We will further conduct
analytical studies on this issue as our future work.

We decide the probability that a feature is bursty
based on the binomial distributions, Py(n; ), in Fig-
ure 3. Let P, (4, f;) be the probability that the feature
f; is burst in the time window W;. We consider three
cases below.

e When n; ; is in Ry, it implies that P,(n; ;) < pj.
It suggests that the probability of the feature f;
in W; is less than or equal to the probability that
f; is drawn randomly. We consider f; as a non-
bursty feature in W;, and let Py(i, f;) = 0.

When n;; is in R, it implies that P,(n; ;) is
noticeably higher than the prior probability of the
feature f; (p;). It suggests that f; exhibits an
abnormal behavior in W;. We consider f; as a
bursty feature in W, and let Py(i, f;) = 1.

When n; ; is in Rp, there are further three cases.
When n; ; approaches the boundary of Rp and
Rc, the corresponding feature f; will be a bursty
feature; when n; ; approaches the boundary of Rp
and R4, f; will be a non-bursty feature; and when
n; ; is on the mid-point of region Rp (the point ¢
in Figure 3), f; can either be bursty or not bursty.

Based on the case analysis, we use a sigmoid func-
tion to determine whether f; is bursty or not when
n; ; is in the region Rp.

. 1
P fi) = e

z = Py(nij;)-0—q

(4)
()
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where ¢ is the mid-point in the region Rp of Fig-
ure 3, and 6 is the slope of the sigmoid function
(Figure 5) which can be readily computed by re-
ferring to the range of Rp.

3.2 From Bursty Features To Bursty Events
Let the bursty features identified be B =
{bo,b1,...,b;p}. A bursty event is an event that con-

sists of bursty features. The selection of minimal num-
ber of features to form a bursty event is formulated
as follows. Let a bursty event Ej = {eg,e1,...,€5}
where e; = {0,1}. It suggests the following. When
e; = 0, the i-th bursty feature b; does not contribute
to the bursty event Ej; when e; = 1, the i-th fea-
ture b; is selected as the key feature for the bursty
event Ej. For example, suppose B = {database,
food, management, music}. Ej, = {1,0,1,0} implies
that the bursty event Ej contains two bursty fea-
tures, database and management. Here, the problem
of determining the minimal set of bursty features of
a bursty event can be solved as finding the optimal
E} such that the probability of the bursty features
grouped together is maximum for the text stream D.
Let D = {Dy, D1,...,D|p|} be a set of sets of docu-
ments where D; contains documents that contain the
bursty feature b;. Mathematically,

P(D|Ey)P(Ey)

max P(Ey|D) = PD)

(6)

Taking logarithm in Eq. (6), maximizing Eq. (6) is
equivalent to minimize:

min — In P(E;|D) = — In P(D|Ey) — In P(Ey)

+1In P(D) @

Note: In P(D) is independent of Ej. Thus, minimiz-
ing Eq. (7) is equivalent to minimize the following cost
function:

min ¢(Eg|D) = —In P(D|Ey) —In P(Ex)  (8)

We show how to compute P(D|E}) and P(E}) below.



e Computing P(E}): Let the total number of time
windows be L. We consider that a bursty fea-
ture b; is a time-series of length L, such that
the i-th value in the time-series is the bursty
probability Py(i,b;) in the time window W;. We
solve the problem of computing the probability of
bursty features to be grouped together (P(F%)) as
to compute the probability of the corresponding
time-series to be grouped together. This can be
achieved by computing the similarity among a set
of time-series given Ej, [8, 5, 1]. In this paper, we
take a simple yet efficient and effective approach
to compute P(E}), that is, by computing the over-
lapping areas among different time-series.

m\BI
7=0 e;=1 a;

| B
U] =0 6]71

where a; is the area covered by the feature b; in
the time-series.

Computing P(D|E;): We assume the fea-
ture distribution is independent, and formulate
P(D|E})) as follows. The idea behind it will be

explained after introducing the formulation.

P(Ey) = 9)

‘B| e l—e;
Ty (127 (Dl
P<D'E’“)‘}_1J(|M|) (1 |M|) (10)
|B|
M= | D (11)

Here, M (Eq.(11)) is a set of documents that
contain the bursty event Ej. In Eq.(10), the
first component computes the probability of the
documents that contain the bursty feature b; in
M, whereas the second component computes the
probability of the documents that do not contain
the bursty feature b; in M. In other words, if
e; = 1, it implies that the bursty feature b; be-
longs to the event Fj, and we compute the first
component; if e; = 0, we compute the second
component. Hence, P(D|FE) computes the pro-
duction of the probability of D under M where
M is constructed by the given Fj.

Finally, the cost function (Eq. (8)) can be computed
as follows.

18] 18]
c(Ex|D) = Z In(|D;1) — Z In(|M] —|Djl)
e]_l €]7ﬁ1 (12)
o
+1n(|M]) =1 fmizl

Jj= Oe]:1 a;
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Some observations can be made on Eq. (12). First,
if the cost function ¢ becomes smaller, then it sug-
gests that the selected bursty features (e; = 1) will be
strongly related for the bursty event Ej. Second, if the
bursty features are very similar, the cost function ¢ be-
comes smaller, because the last component of Eq. (12)
becomes smaller, which makes these bursty features to
be grouped together. When the areas of two features
completely overlapped, then the forth component be-
comes 0. Third, if the documents do not share a high
degree of common bursty features, the cost function ¢
becomes larger, because the third component becomes
large. Fourth, if the bursty features are a subset of
another set of bursty features, the cost function ¢ be-
comes large, because the last component becomes large
for the reason that the overlapping area of the two sets
of bursty features becomes small.

We further address two important issues in group-
ing bursty features for a bursty event below.

The first issue is whether two bursty features f; and
fi will be wrongly grouped together in a bursty event
E}, if the two features have the high similarity in their
feature distribution. For example, the bursty feature
Sars and the bursty feature Iraq are similar in the cor-
responding feature distributions (Figure 6 (a) and (g)).
Is it possible that the two features will be grouped
in the same bursty event? Below, we show that it
is unlikely that the irrelevant bursty features will be
grouped together. Consider the cost function (Eq. (8))
which has two components, P(D|Ey) and P(Ey). If
two bursty features have high similarity in their fea-
ture distributions, as time-series data, P(E})) (Eq. (8))
becomes large, because the common area of the two
feature distributions becomes large. In other words,
P(E)) — 1, and therefore In P(E)) — 0. It makes the
cost (Eq. (8)) smaller as in favor of grouping these two
bursty features. However, if the two bursty features
are about two different stories (events), it is unlikely
that they will appear in the same documents. For ex-
ample, it is unlikely that many documents will discuss
both Sars and Iraq together. Recall D; is the set of
documents that contain a bursty feature f;, and D,
is the set of documents that contain a bursty feature
fi- If two bursty features appear in different docu-
ments, P(D|E})) becomes smaller (Eq. (10)), because
M (Eq. (11)) becomes larger, and therefore the cost
becomes larger. Consequently, it is unlikely that the
irrelevant bursty features will be wrongly grouped to-
gether. Detail information will be given in our exper-
imental studies.

The second issue is whether the resulting set of
bursty features for Fj will possibly include noises. The
quality of the set of bursty features grouped together is
guaranteed for the similar reasons we discussed for the
above first issue. Consider P(D|E}) again. If a bursty
event Fj contains many features that appear in differ-
ent sets of documents, P(D|E})) becomes small, which



Algorithm 1 HB-Event(B, D)

Input: A set of bursty features, B, and the set of
documents D that contains bursty features in B;

Output: A list of bursty events, {E1, ..., Fx};
1: k0
2: repeat
32 k—k+1;
4:  compute Fj by minimizing Eq. (12), using B
and D;
5. B« (;
6: for each ¢; € £, do
7 if e; =1 then
8: B’ — B —{b;};
9: end if
10: end for
11: B+« B-DB’;

12: until |B'| =1

13: return {E1, ..., E};

makes it unlikely to group them together. A set of
bursty features are grouped under the condition that
they are contained in the similar documents (Eq. (11)).

Our HB-Event algorithm, for Hot-Bursty-Event de-
tection, is shown in Algorithm 1. The input is the set
of bursty features B and the set of documents D that
contains bursty features in B. The algorithm returns
hot bursty events by repeatedly selecting the bursty
events. Note: in Algorithm 1, a bursty feature only
appears in one bursty event £;. The main idea exhib-
ited here can be extended to the cases where a bursty
feature appears in multiple bursty events.

3.3 Hot Periods of the Bursty Events

The hot periods of a bursty event, Ey, are determined
below. Let Hy, = {hg, h1,...,hy} for h; € {0,1} where
h; = 1 indicates that the bursty event E} is hot in the
time window W;. Because we formalize the bursty fea-
tures as time-series, we compute the probability of the
hot bursty event Ejy in W;, denoted Py, by computing
the expected probability of the bursty event based on
the set of bursty features that belong to the bursty
event Fy:

|B]

Py(i, By,) = |B|Ze] Py(i, f;)

(13)

where |By| is the number of bursty features in Ej. In
this paper, we say a bursty event Ej is hot in W;,
if Py(i, Ex) > B, where (3 is simply set as 2 times of
the standard deviation above the expected value of
Py(i, Ey) for i = 1,2,---. We find that the setting of
(B value is effective in our experimental study using a
real dataset. There is no need to tune g.
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4 Experimental Studies

We have archived two-year news stories from a ma-
jor English news paper in Hong Kong, South China
Morning Post(www.scmp. com.hk), from 2003-01-01 to
2004-12-31. It consists of 66,300 news stories. We only
conducted simple document pre-processing to remove
punctuation, digits, stopwords, web page addresses
and email addresses. All features are stemmed and
converted to lower cases. The number of features after
stemming is 93,807.

We implemented our framework using Java™" and
conducted our testing on Solaris. In the experimen-
tal studies, we concentrated on our novel feature-pivot
clustering approach, and do not show the results us-
ing document-pivot clustering, because there are no
reported studies providing details for us to fine tune
parameters for grouping bursty features. Simply tun-
ing of parameters may result unfair results, and we
are reluctant to include such results in this paper, and
plan to study it more as our future work.

T™M

4.1 Identifying Bursty Features

Among the 93,807 features, we found 373 features as
bursty features in total. 12 bursty features are se-
lected for detail discussions, including Sars, Outbreak,
Disease, Iraq, Military, Saddam, Article, Law,
Rally, Gorge, Bush, and White, as shown in Figure 6.
In all the figures in Figure 6, the x-axis is the i-th date
starting from Jan. 1st, 2003. A time window is a sin-
gle day. There are two figures for each bursty feature,
f;, showing the percentages of news stories in a time
window W; that contain the bursty feature f;, n; j/N,
and its bursty feature probability, Py(7, f;). The 1st,
3rd, 5th, and 7th rows show the percentage of news
stories in a time window that contain the bursty fea-
ture in question, and the 2nd, 4th, 6th and 8th rows
show the bursty feature probabilities.

As shown in Figure 6, there are some noticeable
bursty features such as Sars, Outbreak, Iraqg, and
Military, if we compare (a) vs (d) for Sars, (b) vs
(e) for Outbreak, and (g) vs (j) for Iraq. There are
also some bursty features, like Law ((n) vs (q)), which
appear everyday.

Our novel feature-pivot clustering approach can also
find the hot periods where the bursty features occur.
It is important to notice that no bursty features can be
observed using document-pivot clustering approach, if
they appear continuously like Law in our example. It
shows the strength of the proposed feature-pivot clus-
tering approach. More discussions will be given later
when we discuss bursty events.

4.2 Identifying the Bursty Events and the Hot
Periods

A bursty event contains a set of bursty features. Total
28 bursty events are found using the HB-Event algo-
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Bursty Events

Bursty Features

E; (SARS)

sars, outbreak, atypic, respire, pneumonia, inflect, ...

E5 (Legislation)

article, Yip, law, rally, head

E5 (Bird-Flu) bird, flu

Taiwan, Chen, Shu, Bian

E;5 (Irag-War)

Iraq, war, military, Hussein, Saddam,

(

E, ETai wan Issue)
(
(

Es (Gas)

victim, might, accident, gas

Table 1: 6 Bursty Events
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Figure 7: 6 Bursty Events (Probability for Bursty Events)

rithm (Algorithm 1) from the 373 bursty features. Ta-
ble 1 gives the top 6 bursty features. Recall: with the
HB-Event algorithm, the bursty event F; is first iden-
tified, from the total 373 bursty features. Those bursty
features that appear in E; will be removed, and the
second bursty event Fs will be identified. The process
repeats until all bursty events are identified. The max-
imum, minimum, and average size of bursty events are,
12, 2 and 3.46. Note: the names of the bursty events in
Table 1 are named by human to match the real events.
The 6 bursty events are shown in Figure 7.

As shown in Figure 6, Sars, Outbreak and Iraq
have rather high similarity in their feature distribu-
tions (Figure 6 (d), (e) and (j)). However, Sars and
Outbreak should be grouped together as bursty fea-
tures for the bursty event SARS, and Sars and Iraq
should not be grouped together for any bursty event.
We explain why our feature-pivot clustering approach
can correctly group Sars and Outbreak together, but
not Sars and Iraq.

e Grouping bursty features Sars and Iraq: The to-
tal numbers of documents that contain the bursty
feature Sars and Iraq during the bursty period
are |Dgqrs| = 3,240 and |Drrqeq| = 2,404, respec-
tively. In total, there are 153 documents reporting
both events at the same time, such as [Dggrs N
Diraql = 153, and there are 5,491 documents
that contain either Sars or Iraq such as |[M| =
|Dsars U Drraql = 5,491 (Eq. (11)). Consider

whether Sars and Iraq shall be grouped. If they
are grouped together, with Eq. (10), P(D|Ey) =
(3240/5491) x (2404/5491) = 0.258. The cost ¢
becomes 0.190 + 0.588 = 0.778 where P(Ej) =
0.646. If they are not grouped, then with Eq. (10),
P(D|E;) = (3240/5491) x (1 — 2404/5491) =
0.332. The cost ¢ becomes 04-0.479 = 0.479 where
P(E);) = 1. Therefore, the two bursty features
should not be grouped together.

e Grouping Sars and Outbreak: The total num-
bers of documents that contain the bursty fea-
ture Sars and Outbreak during the bursty period
are |Dgars| = 3,240 and |Doytprear| = 2,254, re-
spectively. In total, there are 1,854 documents
reporting both events at the same time, such as
|Dsars N Doutbreak| = 1,854, and there are 3,640
documents that contain either Sars or Outbreak
such as |M| = |Dgars U Doutbrear| = 3,640
(Eq. (11). If Sars and Outbreak are grouped to-
gether, P(D|Ex) = (3240/3640) x (2254/3640) =
0.551. The cost ¢ becomes 0.043 + 0.259 = 0.302
where P(Ey) = 0.906. If Sars and Outbreak are
not grouped together, P(D|Ey) = (3240/3640) x
(1 — 2254/3640) = 0.338. The cost ¢ becomes
0+ 0.471 = 0.471 where P(E)) = 1. As a result,
we should group Sars and Outbreak together.

Figure 8 shows the hot periods of the same bursty
events (Figure 7). We highlight some observations in
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Table1 and Figure8 in details as case studies, refer-
ring to Figure 6. The bursty event E; (SARS) includes
the bursty features Sars (Figure 6 (d)), Outbreak (Fig-
ure6 (e)) and Disease (Figure6 (f)), because all have
similar feature distribution. In a similar fashion,
the bursty event E5 (Irag-War) includes the bursty
features such as Iraq (Figure6 (j)), Military (Fig-
ure6 (k)) and Saddam (Figure6 (1)) for having the high
similarity among their feature distributions.

The bursty event Eo (Legislation) includes the
bursty features such as Article (Figure6 (p)) and
Law (Figure6(q)) in a less obvious way. Consider
the cost function (Eq. (8)) which has two components,
P(D|E)) and P(E})). For Es, although P(E},) is small,
0.3, as the overlapping area between these features
is small), P(D|Ey) is large. Most documents con-
tain all these features during the period when the fea-
tures are bursty. Some details are given below for
FE>. There was a massive demonstration against the
Hong Kong Basic Law Article 23 legislation on 1st
July 2003. In the aftermath of the demonstration, on
6th July 2003, the Hong Kong government announced
that the second reading of the law was to be post-
poned, and the head of security (Mrs. Yip) resigned
position on 16th July 2003 that political commenta-
tors attributed the resignation to the protests over the
Basic Law Article 23 legislation. Therefore, Article
and Law co-occurred together during the corresponding
bursty periods. Apart from the aforementioned peri-
ods, there are two major bursts for E5. One is on 5th
September 2003 and the other is on 23rd November
2003. On 5th September 2003, the Chief Executive
of Hong Kong announced that Article 23 legislation
would be withdrawn and there was no timetable for its
re-introduction. On 23rd, November 2003, it is the dis-
trict council election. It offered the first opportunity
for voters to express their opinions since July 1st. The
bursty feature Rally shows the similarity to the bursty
feature Article, because demonstration was usually
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associated with rally. The major difference between
the feature distribution of Rally and Article is that
Rally has a different burst period on 2nd July 2004,
because on 1st July 2004, there was another massive
demonstration, which included over 300,000 people. In
short, all the bursty features are strongly interrelated
to each others. The similar observations can be ob-
served for Es (Bird-Flu), Es (Taiwan-Issue), and Eg
(Gas).

5 Related Work

Topic detection and tracking (TDT) is the major area
that tackles the problem of discovering events from a
stream of news stories [2, 18, 27, 26, 3, 4, 27, 26, 21].
They all use similar techniques for event detection,
that is to cluster similar documents together to form
events. We discussed in Section 2 that this approach
cannot be directly applied to our hot bursty events
detection. In addition to the quality issue whether it
can find bursty events, there is an efficiency issue. The
size of the corpus usually makes the clustering problem
become difficult. The work in [21, 27, 26] attempted to
improve the efficiency of clustering, however, it further
introduces more parameters to be tuned.

[9] shows how to extract bursty features from text
streams based on modeling the text stream using an
infinite-state automaton, where bursts are modeled as
state transitions. Our work is different, because we
do not only attempt to extract bursty features, but
also, as one step further, attempt to group the related
bursty features into bursty events, as well as to deter-
mine the hot periods of bursty events. Note: for the
state transition in [9], it needs to define the probabil-
ity for each state, whereas our feature-pivot clustering
approach is parameter free.

The work in [19, 20, 17, 14] studied bursty events
in a text stream using a similar model formulation.
For each feature, such as name entity and noun phase,
in the corpus, they performed a x? test to identify



days on which the occurrences yield a value above a
predefined threshold, and group the consecutive days
that meet this criteria into events. Our approach is
different. First, we do not need any complex parame-
ter tuning, whereas [19, 20] need to predefine several
thresholds by the user. Second, the authors showed
that it is difficult to construct an event which lasts for
a long period. The reason is that a period may be
broken into parts because the specific feature does not
occur frequently in every consecutive time windows.
We do not need to explicitly define whether a feature
is bursty or not in a time window. We model each of
the bursty features as time-series of probability, and
group the bursty features into bursty events.

[22] proposes methods for mining knowledge from
the query logs of the MSN search engine by build-
ing a time-series for each query term, where the ele-
ments of the time-series are the number of times that
a query is issued on a day. By observing the patterns
of the time-series, [22] attempts to find the periods
where time-series becomes bursty. In transforming the
features into time-series, they adopted the techniques
of moving average, which is sensitive to the length of
time windows. They combined the features with sim-
ilar patterns only in the time-series, but did not pay
attention to the content. We find the bursty events
based on both the time and content information.

The related works also include visualization tech-
niques [7, 24, 11]. Their focus is on the visualization
(how to present the information based on a set of given
events), rather than on the detection side (how to iden-
tify a set of events).

6

In this paper, we studied a new problem, called hot
bursty events detection in a sequence of chronologi-
cally ordered documents, where a bursty event is a set
of bursty features appearing in certain time windows.
Taken a set of bursty features as positive features in a
set of positive examples (labeled by the correspond-
ing bursty event). The new problem is important,
because, as the first attempt, it attempts to find a
complete solution to build text classifiers without any
human assistance, along the line of (1) identifying pos-
itive features, (2) enlargement of positive features, (3)
identification/enlargement of negative examples, and
(4) text classification building. Except for the first
issue, which is the focus of this paper, the other is-
sues have been addressed in the recent papers, and
are known as partially supervised text classification.
We proposed a parameter free probabilistic ap-
proach for effectively and efficiently identifying bursty
events, called feature-pivot clustering approach. Our
algorithm, proposed in this paper, is an off-line al-
gorithm which has its potential to be extended to
an on-line algorithm, because it mainly uses distri-
butions, which can be handled using the up-to-date

Conclusion
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data streaming mining techniques. In the feature-
pivot clustering approach, we utilize both time and
content information in a very effective way. We iden-
tify bursty features by their distributions, and group
strongly interrelated bursty features as bursty events.
Our approach groups the interrelated bursty features
together if they appear in the same documents fre-
quently enough, because our approach also pays atten-
tion to the content. In other words, it is unlikely that
a bursty event contains irrelevant bursty features to-
gether. It is important to know that it can be achieved
without parameter tuning and estimation.

We conduct experimental studies using a two-year
news stories archived from a major English news paper
in Hong Kong, South China Morning Post. The testing
results showed that the parameter free feature-pivot
clustering approach can detect the bursty events with
a high success rate.
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