Using Association Rules for Fraud Detection in Web
Advertising Networks *

Ahmed Metwally

Divyakant Agrawal

Amr El Abbadi

Department of Computer Science
University of California, Santa Barbara
Santa Barbara CA 93106
{metwally, agrawal, amr}@cs.ucsb.edu

Abstract

Discovering associations between elements oc-
curring in a stream is applicable in numerous
applications, including predictive caching and
fraud detection. These applications require a
new model of association between pairs of el-
ements in streams. We develop an algorithm,
Streaming-Rules, to report association rules
with tight guarantees on errors, using limited
processing per element, and minimal space.
The modular design of Streaming-Rules allows
for integration with current stream manage-
ment systems, since it employs existing tech-
niques for finding frequent elements. The pre-
sentation emphasizes the applicability of the
algorithm to fraud detection in advertising
networks. Such fraud instances have not been
successfully detected by current techniques.
Our experiments on synthetic data demon-
strate scalability and efficiency. On real data,
potential fraud was discovered.

1

Recently, online monitoring of data streams has
emerged as an important data management problem.
This research topic has its foundations and appli-
cations in many domains, including databases, data
mining, algorithms, networking, theory, and statistics.
However, new challenges have emerged. Due to their
vast sizes, some stream types should be mined fast
before being deleted forever. In general, the alpha-

Introduction

*

This work was supported in part by NSF under grants
EIA 00-80134, NSF 02-09112, and CNF 04-23336.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

169

bet is too large to keep exact information for all ele-
ments. Conventional database, and mining techniques
are deemed impractical in this setting.

In this paper, we develop the notion of association
rules in streams of elements. To the best of our knowl-
edge, this problem has not been addressed before. The
data model in recent dependency detection research,
[4, 20, 22], is that of the classical dependency detec-
tion mining [1, 2], with the exception that the tech-
niques are applied to data streams, rather than stored
data. That is, the data model is that of a stream of
customers’ transactions with a large number of cus-
tomers and a limited number of items per transaction.
A pattern is determined based on the occurrence of its
subsets within one or more transactions of the same
customer. The significance of a pattern still follows
the classical notion, which is the percentage of the cus-
tomers or transactions conforming to this pattern.

We develop a new data model in which we consider
finding associations between pairs of elements. The
proposed model and problem are directly applicable
to a range of applications including predictive caching;
and detecting the previously undetectable hit inflation
attack [3] in advertising networks. The attack in [3],
which our proposal detects, has been an open problem
since it was proposed by Anupam et al.. We are not
aware of any work that succeeded in detecting it. The
Streaming-Rules algorithm is developed to report as-
sociation rules with tight guarantees on errors, using
minimal space, and limited processing per element.

The classical transaction-based model is not appli-
cable for the aforementioned applications. In such ap-
plications, it is very difficult to know the number of
customers available in the system at any given point
of time. For instance, in a hierarchical network set-
ting, like the Internet, a Network Address Translation
(NAT) box normally hides hundreds to thousands of
computers under the same IP address, and those com-
puters cannot be tracked individually from the outer-
hierarchy. In other predictive caching applications,
the transaction concept is not applicable in the first
place, since the servers do not keep track of the oper-
ations performed by individual customers. Therefore,

the classical notion of counting the frequency of a pat-
tern as the percentage of the customers’ transactions
following this pattern, is no more applicable. A new
notion of patterns, along with methods for their iden-
tification in data streams, needs to be developed.

The rest of the paper is organized as follows. The
related work is reviewed in Section 2, followed by the
motivating applications in Section 3. In Section 4, we
formalize the problem of mining associations between
elements in data streams. The building blocks of our
proposed Streaming-Rules algorithm are explained in
Section 5, and the algorithm is discussed and analyzed
in Section 6. We report the results of our experimental
evaluation in Section 7, and conclude in Section 8.

2 Related Work

Our work touches on two main domains, dependency
detection in databases and specifically in streams.

2.1 Dependency Detection

There has been substantial work done on dependency
detection. The seminal work of [1] laid the foundation
for association rules. The motivating application in [1]
is finding associations between sets of items in market
basket. An association rule of the form X — Y has
a support of s, if s% of the transactions contain the
items in X UY', and is frequent if s > ¢, where ¢ is a
user specified threshold. The rule has a confidence of
¢, if ¢% of the transactions that contain the items in
X also contain the items in Y, given that the item-sets
X, the antecedent, and Y, the consequent, are disjoint.

Several variations of the classical association mining
have been proposed. Mining inter-transaction associa-
tion rules [21] searches for associations between item-
sets that belong to different transactions performed by
the same user in a given time span. The antecedent
of a rule can belong to transactions that happened
after the consequent. In contrast, mining sequential
patterns, [2], considers the relative order of the trans-
actions of one customer. In [2], a frequent sequence
is defined to consist of frequent item-sets taking place
in separate consecutive transactions of the same user.
Mining sequential patterns is widely applied in Web
log Mining. The most recent works are [9, 19], which
exploit the algorithm in [10] for discovering frequent
item-sets in a limited number of scans on the data set.

In between these two extremes, the notion of
episodes was introduced in [12]. The data model from
which episodes are mined is a sequence of elements,
where the inter-element causality happens within a
window of a given size. This is very close to our data
model. An episode is a partially ordered collection
of elements. Given a set of episodes, the problem
is to find which of them is frequent. The frequency
of an episode is the number of windows that contain
the episode. Thus, the same episode instance can be
counted several times in different windows. The big-
ger the window, the more this duplicate counting of
the same episode occurs. The problem is suitable for

170

applications with a limited number of elements, and
with predictable relationships among elements.

2.2 Mining in Data Streams

Recent work has applied mining techniques in streams
context. The work most related to ours is dependency
detection [20, 22].

Teng et al. [20] developed methods for identify-
ing temporal patterns in data streams. The model is
based on the traditional inter-transaction association
rules [21]. The stream is divided into several disjoint
sub-streams [20], each representing the transactions of
one customer. At any time, a sliding window [7] scans
disjoint sub-streams of distinct customers. The algo-
rithm, FTP-DS [20], needs to scan the data only once.
The support of a pattern is the number of customers
conforming to this pattern as a ratio of the total num-
ber of customers in the window. In this model, ex-
pired transactions are not accounted for in the counts.
Counting within a window is exact, and the source of
error is due to the delayed pattern recognition, since
the frequency of a pattern is not counted until all its
subsets are found frequent. The goal is to reduce the
number of generated candidate. This exact counting
technique makes it expensive to handle long windows.

Yu et al. [22] focuses on frequent item-sets in a
stream of transactions of limited size. The stream is
assumed to be static, for the Chernoff bound to ap-
ply through the entire stream. Devised is a proba-
bilistic algorithm, FDPM, which raises support by the
permissible error, to output false negative errors only.
The goal is producing less candidates to count. FDPM
needs to stop at points in the stream for freeing coun-
ters assigned to insignificant elements. To reduce these
expensive bookkeeping stops, the algorithm sacrifices
some accuracy by freeing more counters than needed.

3 DMotivating Applications

In this section, we describe our motivation behind min-
ing association rules in a stream of elements.

3.1 Predictive Caching

A file server can utilize associations discovered between
requests to its stored files for predictive caching. For
instance, if it discovered that a file A is usually re-
quested after a file B, then caching A after a request
for B could reduce the average latency, especially if
this pairing holds in a large percentage of file requests.

Caching can be utilized in another context that is
different from the classical file server situation. A
search engine likes to know which keywords are usu-
ally searched after what keywords. It could be bene-
ficial to know, for example, that the keyword “heavy
hitters” is usually searched after the keyword “data
streams”. The search engine can reduce its response
time by caching indexes, if there is a good probability
that they will be accessed.

3.2 Fraud Detection

The main motivation behind this work is detecting
fraud in the setting of Internet advertising commission-
ers, who represent the middle persons between Inter-
net publishers, and Internet advertisers. In a standard
setting, an advertiser provides the publishers with its
advertisements, and they agree on a commission for
each customer action, e.g., clicking an advertisement,
filling out a form, bidding on an item, or making a
purchase. The publisher, motivated by the commis-
sion paid by the advertiser, displays advertisements,
text links, or product links on its Web site. Whenever
a customer clicks a link on the publisher’s Web page,
the customer is referred to the servers of the advertis-
ing commissioner, who logs the click and clicks-through
the customer to the Web site of the advertiser.

Since the publishers earn revenue on the traffic they
drive to the advertisers’ Web sites, there is an incen-
tive for them to falsely increase the number of clicks
their sites generate. This phenomenon is referred to
as click inflation [3]. The complementary problem of
hit shaving has been studied by Reiter et al. [17]. Hit
shaving is another type of fraud performed by an ad-
vertiser, who does not pay commission on some of the
traffic received from a publisher. One of the advertis-
ing commissioner’s roles is to detect fraud that takes
place on either the publishers’ or the advertisers’ sides.

3.2.1 A Simple Inflation Attack

The advertising commissioner should be able to tell
whether the clicks generated at the publisher’s side
are authentic, or are generated by an automated script
running on some machines on the publisher’s end, to
claim more traffic, and thus, more revenue. To achieve
this goal, advertising commissioners should be able to
track each click by the advertisement ID, and the cus-
tomer ID. Advertising commissioners track individual
customers by assigning distinct customer IDs in cook-
ies set in the customers’ Browsers. Duplicate clicks
within a short period of time, a day for example, raise
suspicion on the commissioner’s side. In [14], we devel-
oped a solution that effectively identifies duplicates in
click streams to detect such fraud. The results on real
data collected at Commission Junction, a ValueClick
company, were revealing. The experiments were run
on a clicks stream that was collected on August 30,
2004. The stream was of size 5,583,301 clicks, among
which 4,093,573 clicks were distinct, and 1,489,728
were duplicates. That is, 27% of the clicks were fraud-
ulent, which is extremely high. Interestingly, the most
duplicated element occurred 10,781 times. That is, one
advertisement was clicked 10,781 times by the same
customer in one day. Even more shocking is the fact
that the fraud was practiced using a primitive attack.

3.2.2 An Undetectable Inflation Attack

Anupam et al. [3] identified a more sophisticated at-
tack for conducting hit inflation fraud, which is con-
sidered extremely difficult to detect. In order to avoid

171

Dishonest
Webslle
Advertiser
A

Figure 1: The Hit Inflation Attack

clicks with the same customer ID, the publisher can
construct its Web page to automatically click the ad-
vertisement, whenever the page is loaded on any cus-
tomer’s Browser. This can be done by incorporat-
ing, in the publisher’s Web page, a script that runs
on the customer’s machine just after the page loads.
The whole operation can be hidden from the customer.
Hence, the advertising commissioner will not detect
this fraud using a duplicate detection technique, since
all the customers’ IDs will be distinct. However, the
advertising commissioner could detect this fraud by
periodically visiting the publishers’ pages and making
sure that its customer ID is not logged as a click. Oth-
erwise, the publisher is using the advertising commis-
sioner’s visit to fraudulently generate an extra click.

Now, let us consider an even harder to detect at-
tack scenario. The attack is depicted in Figure 1. The
attack involves a coalition of a dishonest publisher,
P, with a dishonest Web site, S. The Web site, S,
could be any Web site on the Web. This makes the
attack very difficult to detect. S’s page will have a
script that runs on the customer’s machine when it
loads, and automatically re-directs the customer to P’s
Web site. This scenario can be hidden from the cus-
tomer. P will have two versions of its Web page, a
non-fraudulent page; and a fraudulent page. The non-
fraudulent page is a normal page that displays the ad-
vertisement, and the customer is totally free to click it
or not. The fraudulent page has a script that runs on
the customer’s machine when it loads, and automati-
cally clicks the advertisement in a way that is hidden
from the customer. P selectively shows the fraudu-
lent or the non-fraudulent pages according to the Web
site that referred the customer to P. P can know this
information through the Referer field, that specifies
the site from which the link to P was obtained. If the
site that referred the customer to P is S, then P loads
the fraudulent page onto the customer’s Browser, the
fraudulent script runs on the customer’s machine, and
simulates a click on the advertisement. All this is au-
tomatic and hidden from the customer.

This attack will silently convert every innocent visit
to S to a click on the advertisement in P’s page. Even
worse, P can establish a coalition with several dis-
honest Web sites, each of which can be in coalition
with several dishonest publishers. The attack is clas-

sified as almost impossible to detect [3]. If the ad-
vertisement commissioner visits the Web site of P, the
non-fraudulent page will be displayed, and thus P can-
not be accused of being fraudulent. Without a reason
for suspecting that such coalitions exist, the advertise-
ment commissioner has to inspect all the Internet sites
to detect such attacks, which is infeasible.

Although P’s click-through-rate! will be noticeably
high, the advertisement commissioner has no way of
proving that P is fraudulent, and will have to pay P
the full commission for his inflated number of hits.

This hit inflation attack scenario was described in
[3], and to the best of our knowledge, no solution has
been proposed. In Section 3.2.3, we will propose the
coalition of the advertisement commissioners with the
ISPs to detect such hit inflation attacks.

3.2.3 Detecting the Undetectable Attack

An advertisement commissioner cannot know the val-
ues in the Referer fields in the HTTP requests to
the publishers’ Web sites, and thus it cannot detect
such attacks. The only entity that can detect the as-
sociation between the dishonest publisher, P, and the
dishonest Web site, S, is the Internet Service Provider
(ISP), through which the customer logs on to the In-
ternet. The advertising commissioner can financially
motivate the ISP to help with detecting this fraud.
The solution for this problem requires analyzing the
stream of HTTP requests that have been made by the
customers in a specific time interval. Bearing in mind
the size and the speed of HTTP requests made to the
ISP, the problem boils down to identifying associations
between elements in a stream of HT'TP requests. Since
the severity of P’s attack is proportional to the number
of HTTP requests of P from customers visiting the dis-
honest Web sites, the ISP will be interested in knowing
what Web sites usually precede a popular Web site.

4 Formalizing the Problem

In this section we formalize our assumptions, and build
a model for the aforementioned applications.

4.1 Assumptions in Modeling the Problem
We start by the assumptions made to build our model.

Assumption 1 All requests from different users are
received as a single stream.

This assumption broadens the applicability of the
problem we are introducing. The session concept is not
always applicable. For instance, not all search engines
keep track of separate sessions through cookies.

In the case of ISPs, tracking the HTTP requests of
a customer violates his privacy?. Even from the tech-
nical point of view, a session is usually too big to be

IThe click-through-rate of a publisher is the number of cus-
tomers who click advertisements on the publisher’s Web page,
as a ratio of all the customers who visit the Web page.

218 U.S.C. § 2511(1) prohibits third parties from reading In-
ternet traffic. A provider of electronic communication service,

172

considered a holistic entity, since most customers log
on to the ISP through a Network Address Translation
(NAT) box. NAT boxes hide hundreds to thousands
of computers under the same IP address, and the ISP
cannot track those computers individually. Even more,
with the current widespread use of wireless Internet
connections, it is common that a customer is in a lo-
cation with more than one wireless router, each with
a different IP address. Two HTTP requests from the
same customer are routed through different routers,
according to which signal is stronger at the time each
HTTP request is made. Those two HTTP requests
will belong to two different sessions in the ISP logs.
In case of file servers, several machines can request
files from the same server. Correlations can hold be-
tween files, requested by different machines, since one
application can be running in parallel on these multiple
machines that communicate through message passing.

Assumption 2 Associations between elements occur
within some span® of elements.

For instance, a HTTP request has no effect on an-
other request several hours later. Associations can
hold only between elements that are temporally close
to each other. The span concept allows for interleav-
ing requests of different customers; and accounts for
the latency in communication between the server and
the customer, as well as on the customer’s machine.

Although, in our applications, an element in the
stream has almost no causality effect beyond the user
specified span, we accumulate the counts throughout
the whole stream, and never decrement our counters.
This is different from the sliding window model [7],
where the counters are decremented as their elements
expire, i.e., are no more in the current sliding window.

For instance, in the application of hit inflation de-
tection, the attacks are more difficult to detect if they
are waged at a slow rate, but on a longer time span. It
is less likely to detect such attacks in a sliding window
model, especially if the window is of limited size, as in
[20], because once a pattern expires from the current
sliding window, it does not appear in the counts.

Assumption 3 The server will not store the entire
stream. Rather, the number of elements remembered
s a function of the span within which causality holds.

This is due to the vast size of the streams. For
example, if the associations between elements are as-
sumed to occur within a range of 99 elements, then the
current window the server has to store is at least the
most recent 100 elements, to be able to discover asso-
ciation. Although the server might be physically able
to store more elements, we assume it can store only
(G(100) elements, where G is linear or polynomial.

whose facilities are used in the transmission, is allowed by 18
U.S.C. § 2511(2)(a)(i) to intercept and utilize random monitor-
ing only for mechanical or service quality control checks; or by
a court order, as stated in 18 U.S.C. § 2518.

3Section 4.3 formalizes the notion of span. Informally, it is
the span within which an element has relationship with others.

Assumption 4 Duplicates are independent.

In the application of hit inflation detection, we as-
sume that the dishonest site S will load the fraudulent
page P only once. Otherwise, there will be more than
one hidden click on the advertisement from the same
customer, which can be caught using a duplicate detec-
tion technique [14]. If any duplicates occur, we assume
they are issued by different customers. For instance, if
the HTTP requests at any time are a, b, b, then the as-
sociation between the sites a and b should be counted
exactly once. However, for the requests a,a,b,b, the
association should be counted exactly twice. More-
over, an element a, cannot be associated with itself.

Assumption 5 No false negative errors are allowed.

The algorithm should output all the correct rules,
but can still output a small number of erroneous rules.
Thus, we give the benefit of doubt when counting.

4.2 Two Problem Variations

Assuming the stream elements are search keywords,
if the search engine notices that keyword y is usually
requested after keyword x, it would cache the search
results for y, when x is searched for. Thus, the server
is interested in the elements that push the rules. It
is required to discover what elements usually succeed
interesting or frequent elements. We call this kind of
associations forward association, since the element of
interest is the cause of the association.

Conversely, the second problem is motivated by de-
tecting the hit inflation attack [3]. If the ISP notices
that page x is usually requested before page y, it would
suspect the relationship between x and y. Thus, the
server is interested in the elements that pull the rules.
It is required to discover what elements usually precede
interesting or frequent elements. We call the latter
kind backward association, since the element of inter-
est is the result of the association.

From the aforementioned motivating applications,
we can see that we are actually considering two vari-
ations of associations between pairs of elements in a
data stream. Next, we formally define these problems.
Most of our notation is borrowed from the association
mining literature reviewed in Section 2.1.

4.3 Formal Problem Definition

Given a stream q1,q2, - -.,q7,--.,qn Of size N, we say
element ¢ follows q; within a span of §,if 0 < J—1T <
0. We define the frequency of an element x as the num-
ber of times = occurred in the stream; and we denote it
F(z). We call an element, x, frequent if its frequency,
F(z), exceeds a user specified threshold, [¢N], where
0 < ¢ < 1. We define the conditional frequency of
two distinct elements, x and y, within a user specified
span, 0, to be the number of times distinct y’s follow
distinct z’s within J; and we denote it F'(z,y), since &
is always understood from the context.

173

An association rule is an implication of the form
x — y, where element z is called the antecedent, ele-
ment y is called the consequent, and = # y.

The problem of finding forward association rules is
to find all rules that satisfy the following constraints.

1. The antecedent is a frequent element, i.e., F'(z) >
[¢N], where 0 < ¢ < 1. We will call F(z) the
support of the rule.

. The conditional frequency of the antecedent, and
the consequent, within the user specified span,
Jd, exceeds a user specified threshold, [¢YF(x)],
where 0 <4 < 1. That is, F(z,y) > [¢F(z)].

The problem of finding backward association rules
is to find all rules that satisfy the following constraints.

1. The consequent is a frequent element, i.e., F(y) >
[¢N], where 0 < ¢ < 1. We will call F(y) the
support of the rule.

The conditional frequency of the antecedent, and
the consequent, within the user specified span 9§,
exceeds a user specified threshold, [¢F(y)], where
0 < < 1 That is, F(z,y) > [0F(y)].

In both forward and the backward cases, we call
F(z,y) the confidence of the rule. We call ¢ the min-
sup, P the minconf, and ¢ the mazspan within which
the user expects the causality to hold.

4.4 An Illustrative Example

To illustrate the above definitions, we give an example.

Example 1 Assume we have a stream qi,...,q12 =
T, T, U, U, C g, d,c,x, f,x,u. The frequencies of the el-
ements x,u, f, denoted F(x),F(u),F(f), are 4,3,1,
respectively. The span between g and f, i.e., qs and
q10, is 4. The conditional frequency of ¢ and d, within
span 2, F(c,d), is 1. Within span 3, F(u,g) = 1, since
only one of the two consecutive u’s can pair with g;
F(c,z) =1, since the ¢ at gs can pair only with one x
of g9 and q11. For any span greater than 1 F(x,u) = 3,
since there are only 3 occurrences of u.

Assume the user queries for association rules within
0 =3; ¢ = 0.2; and ¥ = 0.3. The minimum fre-
quency requirement is [¢N] = [0.2 % 12] = 3. Thus,
the only frequent elements are x and u. For forward
association rules, the possible antecedents are x and
u, since they are the only frequent elements. Since
1 = 0.3, then for rules with antecedent x, the mini-
mum required confidence is [YF(x)] = [0.3x4] = 2,
and similarly, the minimum required confidence for u
is 1. Since § = 3, then the only forward association
rules are x — u, u — ¢, u — ¢, and u — d.

For backward association rules, the only possible
consequents are again x and u. Since = 0.3, then the
minimum required confidences for x and u are 2 and
1, respectively. Since § = 3, then the only backward
association rules are x — u, and f — u.

Notice that in the formal definition, the support of
a forward (backward) rule is the support of its an-
tecedent (consequent). In contrast, in the classical
notion of association [1], the support of a rule is the
number of transactions containing both the antecedent
and consequent. The deviation from the classical no-
tion is motivated by the hit inflation attack. If there
are several frequent fraudulent publishers, and they
are in coalition with several frequent Web sites, such
that every Web site automatically re-directs the cus-
tomer to one of the publishers in a round robin man-
ner, the attack is more difficult to detect using the
old notion, since although all the sites and publishers
are frequent, the site-publisher combinations might be
infrequent. However, requiring that F'(z,y) satisfies
minsup enforces the classical notion of support.

Throughout the rest of the paper, we will discuss
the forward association rules, and an analogous ap-
proach can be used for backward association rules.

5 Streaming-Rules Building Blocks

To discover associations between pairs of elements in
a data stream, we propose the Streaming-Rules algo-
rithm. We start by developing the building blocks of
Streaming-Rules. We propose the Unique-Count tech-
nique, to enforce the assumptions of Section 4.1, so
that the counting is meaningful in our applications.

5.1 The Unique-Count Technique

From Assumptions 4, and 5 of Section 4.1, we can
conclude the following. The association relation is not
assumed to be reflexive, i.e., a cannot be assumed to
cause itself again. For every two elements, a and b, we
cannot count one a for more than one b. In addition,
we try to count the maximum possible associations
that could have taken place in the stream. Thus, we
have to give the benefit of doubt when counting, i.e.,
count pairs in a way that maximizes the count for any
pair, a and b. For instance, if the user span, J, is 3,
then a stream of a,a,b,c,b would result in counting
the association between a and b exactly twice. That
is, the b at g3 (g5) should be associated with the a at ¢;
(g2), since otherwise it yields a count of 1. Although,
counting in a way that satisfies the above assumptions
seems simple, we give an example to show otherwise.

Example 2 Assume § = 5, we only consider the asso-
ciation between a and b, and that the elements observed
so far in the stream, q1,q2,qs, are a,a,b. Upon receiv-
ing the b at g3, it will be counted for association with
the a at q1, so that there is a better chance to count the
a at go with another b that may arrive afterwards. The
elements that arrived afterwards, qa,qs,qs, are ¢, d, a.
Upon receiving another b, the current window that the
server sees is only qo,...,q7, which are a,b,c,d,a,b.
The server will assume it cannot associate the b at g7
with the a at qo, since the b at q3 should have been
counted before for this specific a at q3. Thus it asso-
ciates the b at g7 with the a at gs. On the arrival of

174

another b, The current window that the server sees is
qs, - ..,qs, which are b,c,d,a,b,b. The server assumes
that the b at g7 was counted for the a at qg, which is
correct. Thus, the b at qg is not counted for any a.
The total count of the association between a and b is
2. However, if the b at q7 was associated with the a at
q2, the total count would have been maximized to 3.

From the above example, it is clear that viewing
only the current window might violate Assumption 5.
Keeping more recent history will not help, since the
problem can be recursive, and the server will not know
which elements were paired together except by keeping
the entire history, as illustrated in the next example.

Example 3 Assume § = 5, we are considering the
association between a and b, and that the stream fol-
lows the pattern a, (a,b,c,d)tb, where L is arbitrarily
large. To keep a correct count of the number of b’s
associated with a’s, the server has to keep the entire
history. In addition, if the stream follows the pat-

tern (a, (a,b,c, d)Qb)L, and the window is of length
0+1=06, only % of the association pairs are counted.

For this counting problem, we propose the Unique-
Count technique. To enforce Assumption 4, the way
we count should maximize the count for any pair, a
and b. In case of HTTP requests, if the stream is
a,a,b, then from Assumption 4, b should be counted
exactly once for association with a. However, should
the page b be counted with the first or the second a?
Although we consider them almost equiprobable, we
will count the page b for the first a, to maximize the
number of counting pages b’s with a’s. The intuition
is that if b is requested afterwards, it can be counted
for the second a. Care should be taken, since b should
not be counted for association with any of them, if it
was already counted for a previous a page.

Every b should not be counted for more than one
instance of a. Then, for the last element, ¢y, observed
in the stream, we associate an Antecedent Set, ty, of
the elements that arrived before g7, with which ¢; was
counted for as a consequent. When ¢y is observed in
the stream, the set t; should be initialized to empty.
Every element ¢; was counted for, should be inserted
into t7, to avoid counting ¢y with identical elements.

To enforce Assumption 5, the older elements are
given higher priority than the new elements when
counting ¢y for association. Thus, the scanning of the
current window is done in the order of arrival.

To decide which elements are still free for associa-
tion with the last observed element, i.e., they were not
counted previously with the same element, we keep
track of which elements were associated with every
element in the current window. For each element,
qy, viewed by the server, associate a Consequent Set,
sy, of the elements that arrived after ¢y, and were
counted for ¢; as a consequent. When ¢y is observed
in the stream, the set s should be initialized to empty.
When the element q; expires, i.e., it is not in the cur-
rent window any more, sy is deallocated.

The algorithm scans the current window elements
in the order of arrival, from ¢;_s5 to g;_1. For each
scanned element ¢z, the algorithm checks if ¢; has been
inserted into sy, and whether ¢; has been inserted into
tr. If either condition holds, the algorithm skips to
qj+1- Otherwise, gy is inserted into sj; g is inserted
into t7; and ¢y is counted for association with ¢;. Upon
receiving a new element g1, the set ¢ty is deallocated.

For backward association rules, the only difference
is that ¢y, the antecedent, is counted for association
with ¢r, the consequent.

Example 4 Assume 6 = 3, and that the elements
qr,qr+1,qr+2 were a,a,b. When b arrives, syio and
tryo are empty. The algorithm scans the elements in
the current window in the order of arrival. For qp,
the algorithm inserts b into its sy, and inserts a into
trya, then b is counted for association with a. For
qr+1, since tyyo already contains the element a, and
thus does not insert b into syy1, and does not count
b again for association with a. Upon the arrival of
a new element ¢ at qrys3, ti4o is deallocated, and an
empty tris is allocated. Similarly, ¢ will be inserted
into sy, and not sry1, since a was already inserted in
trys. Since syyo does not contain c, ¢ will be inserted
into qrro. When another b arrives at qr44, the element
qr expires, and sy is deallocated. The current window
is now a,b,c,b. Although in the current window, both
a and b exist, the b that just arrived will be counted
for association with a and c, since both sy+1 and Sry3
do not contain the element b. This is in contrast with
Ezxample 2.

If sets are implemented using hash tables, Unique-
Count requires O(6?) space. The amortized processing
cost of a new element arrival is only O(J) operations.

Given the Unique-Count technique, we know which
elements should be counted together for association.
However, it is not feasible to keep a counter for every
pair of elements that occurred within ¢ in the stream.
Thus, we need an efficient algorithm to detect frequent
elements associated with other frequent elements, i.e.,
nested frequent elements, in a data stream.

5.2 Nesting Frequent Elements Algorithms

The modular design of Streaming-Rules allows for in-
tegration with current stream management systems,
since it uses existing techniques for counting frequent
elements. The idea of nesting a frequent elements al-
gorithm, to detect association, is novel. Finding exact
counts of elements in a data stream entails keeping ex-
act information about all the elements in the stream
[5, 8]. Hence, many approximate proposals have been
made for detecting frequent elements in streams.

In our case, we need to find frequent elements to
find rules satisfying minsup.

The basic premise in our development is that if we
have an algorithm that finds, in a data stream, fre-
quent elements satisfying minsup, then we can use it

175

Antecedent Data Structure T

IR “on] L[]
c c c e =
o @ @’ £ =

& o
&) = =
=3 3 = < 3
— ~
)) @’ o o
. . . - ||o -

9| @ D T 51

— : — — I_% -

2 : 2 g g <

2 : 2 2 2 2

S S o ° 3]

2 2 2 2 =

= =) 5 o = - s o

n o (2P] o n £ %) £

o]] < < ||o g ||®

< < © <t ©

[a] [a] [a] [a} o

2 5l Bl & e 2 |2 £ |[ie

S ||o S || S |lo S e S o

s s s = 5

@ @ @ g g

7] D | (20| %] = 1% [

c - c [T c T c : c 3

Q ||o Q ||o S ||w S |lof S |lo

] (] 6] O O

Figure 2: Streaming-Rules Nested Data Structure

to discover the antecedents of the rules. For every an-
tecedent, to know the consequents, we have to find
which elements occurred after the antecedent within
maxspan, which satisfy the minconf. Even more, this
has to be done at streaming time, since we cannot af-
ford a second look at the data. This is exactly the
original frequent elements problem in data streams,
but with a user threshold of minconf.

Formally, assume an algorithm, A, exists that de-
tects, with some accuracy, frequent elements [11] in
a data stream. Assume A is a counter-based tech-
nique [14], i.e., it keeps a data structure, I', of a set
of counters. Each counter monitors the frequency of
an element that is expected to be important. For each
element, z, in the data structure, I', we build another
separate data structure, I',. When we observe an ele-
ment x in the stream, its counter is incremented in the
outer data structure, I', using A. For forward associa-
tion, using A, we insert into the nested data structure
of x, 'y, all the elements that were observed in the
data stream after x within a span of mazspan, 0, as
specified by the user. Those are the elements expected
to be associated with z. For backward association, we
insert into I';, all the elements that were observed in
the data stream before x within a span of 9.

We call the outer data structure, I', the antecedent
data structure; and we call the nested data structures,
I';, Vz, the consequent data structures. The concept
of nested data structures is illustrated in Figure 2

Given a stream g¢1,42,...,41,--.,9Nn, and a user
specified maximum span, §; when a new element, gy,
arrives, data structure I' updates its counters, if nec-
essary. For forward association, for each element, ¢
arriving after gy, where I < J < (I+4), data structure
I'y, updates its counters, if necessary. Alternatively,
we can update the counts in a more eager way. When
a new element, gy, arrives, data structure I' updates
its counters. For each element, ¢; that arrived before
qr, where (I —¢) < J < I, data structure I';, updates
its counters for the arrival of g;. Throughout the rest
of the paper, we will use the latter scheme, i.e., the
data structures are fully updated after each element.

Algorithm: Space-Saving(Stream-Summary(m))
begin
for each element, z, in the stream S{
If z is monitored{
let Count(e;) be the counter of =
Count(e;) ++;
telse{
//The replacement step
let e, be the element with least hits, min
Replace e,, with z;
Assign e(x) the value min;
Count(z)++;

}
}// end for

end;
Figure 3: The Space-Saving Algorithm

For backward association, when a new element, g,
arrives, I' updates its counters, if necessary. For each
element, ¢; that arrived before g, where (I —§) <
J < I, data structure I'y, updates its counters for ¢;.

When the user queries for forward association rules,
the frequent elements in the antecedent data structure,
I', are the antecedents of the prospective rules. For
each discovered frequent element, x, the elements in
its consequent data structure, I',, satisfying minconf
are the consequents of the rules with antecedent x.

Streaming-Rules is a general framework for nesting
data structures proposed for detecting frequent ele-
ments. We apply it to Space-Saving [15], an already
existing effective technique for solving the problem of
frequent elements in data streams [11], where a fre-
quent element is any element with frequency exceed-
ing the user specified threshold, [¢N7]. In Section 5.3,
we describe the Space-Saving algorithm, and its error
bounds.

5.3 The Space-Saving Algorithm

In this section, we briefly describe the Space-Saving
algorithm. The reader is referred to [15] for a full
description and analysis of the algorithm.

The underlying idea is to maintain partial informa-
tion of interest; i.e., to keep counters for m elements
only. Each counter, at any time, is assigned a spe-
cific element to monitor. The counters are updated
in a way that accurately estimates the frequencies of
the significant elements. A lightweight data struc-
ture, Stream-Summary, is utilized, to keep the mon-
itored elements, e1,€es,...,€;,..., €y, sorted by their
estimated frequencies. Therefore, if any monitored el-
ement, e;, receives a hit, then its counter, Count(e;),
will be incremented, and the counter will be moved
to its right position in the list, in amortized constant
time. Among all monitored elements, e; is the ele-
ment with the highest estimated frequency, and e, is
the element with the lowest estimated frequency. If an
element is not monitored, its estimated frequency is 0.

Space-Saving is straightforward. The algorithm is
sketched in Figure 3. If there is a counter, Count(e;),
assigned to the observed element, z, i.e., e; = x, then
Count(e;) is incremented. If the observed element, z,
is not monitored, i.e., no counter is assigned to it, give
it the benefit of doubt, and replace e,,, the element
that currently has the least estimated hits, min, with

176

x; assign Count(zx) the value min + 1. For each moni-
tored element, e;, keep track of its maximum possible
over-estimation, €(e;), resulting from the initialization
of its counter when inserted into the list. That is,
when starting to monitor z, set e(x) to the counter
value that was evicted. When queried, the elements of
Stream-Summary are traversed in order of their esti-
mated frequency, and all the elements are output, until
an element is reached that does not satisfy minsup.

The basic intuition is to make use of the skewed
property of the data, since usually a minority of the
elements, the more frequent ones, gets the majority of
the hits. Frequent elements will reside in the coun-
ters of bigger values, and will not be distorted by the
ineffective hits of the infrequent elements, and thus,
will never be replaced out of the monitored counters.
Meanwhile, the numerous infrequent elements will be
striving to reside in the smaller counters, whose values
will grow slower than those of the larger counters.

We borrow some results proved in [15]. Assum-
ing no specific data distribution, and regardless of the
stream permutation, to find all frequent elements with
a user permissible error rate, €, the number of coun-
ters used is bounded by [1]. Thus, for any element
e; in Stream-Summary, 0 < e(e;) < min < eN; and
F(e;) < Count(e;) < (Fl(e;)+e(e;)) < F(e;) +min <
F(e;) + eN. An element z with F(z) > min, is guar-
anteed to be monitored.

6 Streaming-Rules and Analysis

After describing the building blocks of Streaming-
Rules in Section 5, we now present the Streaming-
Rules algorithm, and analyze its properties.

6.1 The Streaming-Rules Algorithm

Formally, given a stream ¢1, g2, ...,qr,---,qnN, assume
that the user is interested in forward association rules,
and the mazspan is 6. The algorithm maintains a
Stream-Summary data structure for m elements. For
each element, e;, of these m counters, the algorithm
maintains a consequent Stream-Summary., data struc-
ture of n elements®. The j** element in Stream-
Summary,, will be denoted €], and will be monitored
by counter Count(e;,e;), whose error bound will be
¢(es, e;). Each element, g7, in the current window has
a consequent set sy. In addition, the last observed
element has an antecedent set ;.

For each element, ¢;, in the data stream, if there
is a counter, Count(e;), assigned to gy, i.e., e¢; = qr,
increment Count(e;). Otherwise, replace e,,, the ele-
ment that currently has the least estimated hits, min,
with ¢r; assign Count(qr) the value min + 1; set (qr)
to min; and re-initialize Stream-Summaryg, .

Delete the consequent set, s;_s_1, of the expired
element, gr_s_1. Assign an empty consequent set sy
to gr. Delete the antecedent set t;_1, and create an

4The parameters m and n will be discussed in Section 6.3.3.

Algorithm: Streaming-Rules(nested Stream-Summary(m,n))
begin
for each element, gz, in the stream S{
If g; is monitored{
let Count(e;) be the counter of gr
Count(e;) ++;
telse{
//The replacement step
let e,, be the element with least hits, min
Replace e,, with qr;
Assign £(qr) the value min;
Count(qr)++;
Re-initialize Stream-Summaryq;

Delete s;_5_1 of the expired element, qr_s5_1;
Create an empty set sy for qr;
Delete the set t7_1;
Create an empty set t; for qr;
for each element, ¢, in the stream S, where (I —§) < J < I{
If g is monitored AND gq; ¢ s; AND q; ¢ t1{
Insert gr into ss;
Insert gy into tr;
//The association counting step
let g; be monitored at e;
If g7 is monitored in Stream—SummaryEJ{
let Count(ej, qr) be the counter of qr
Count(e;, qr) ++;
telse{
//The nested replacement step
let e be the element with least hits, min;
Replace e with qr;
Assign e(ej, qr) the value min;
) Count(e;, q1)++;

}
}// end for
}// end for

end;

Figure 4: The Streaming-Rules Algorithm

Algorithm: Find-Forward(Stream-Summary(m,n))
begin
Integer i = 1;
while (Count(e;) > [¢N] AND i < m){
Integer j = 1;
while (Count™ (e;, e;) > [1h(Count(e;) — e(e;))] AND j < n){
output e; — ej;
J++;
}// end while
i+
}// end while
end;

Figure 5: The Find-Forward Algorithm

empty antecedent set t; for ¢;. Scan the current win-
dow qr_s to qr—1. For each scanned element ¢;, the
algorithm checks if gy has been inserted into sy, and
whether ¢; has been inserted into t;. If both condi-
tions do not hold, insert ¢y into s; and ¢ into ;.

If ¢; is monitored, say at e;, ie., Stream-
Summarye; is Stream-Summary,,, then insert gr into
Stream-Summary,, as follows. If there is a counter,
Count(ej,qr), assigned to q; in Stream-Summary,;,
increment it. If Count(e;,qr) does not exist, let e
be the element with currently the least estimated hits,
min; in Stream-Summary.;. Replace e with qr; set
Count(ej, qr) to min; + 1; and set e(ej, gr) to min;.

If ¢; has been inserted into sy, or gy has been
inserted into t;, or ¢y is not monitored in Stream-

Summary, the algorithm skips to qji+1. Streaming-
Rules is sketched in Figure 4.
For backward association, ¢; is inserted into

Stream-Summary,, in an analogous way.

177

6.2 The Find-Forward Algorithm

When the user queries for forward association rules,
Find-Forward scans Stream-Summary in order of es-
timated frequencies, starting by the most frequent el-
ement, ey, until it reaches an element that does not
satisfy minsup. For each scanned element e;, Find-
Forward scans its Stream-Summary,,, in order of esti-
mated frequencies, starting by the most frequent, e},
until it reaches an element that does not satisfy min-
conf, and outputs all the elements that satisfy minconf.

Outputting Count(z,y) as an approximation of the
number of times element y was counted for association
with element z violates Assumption 5, since we as-
sume we cannot under-estimate counts in order avoid
false negative errors. If element z was deleted at
one point of time from Stream-Summary, then all the
counts of Stream-Summary, were lost. When = was
later re-inserted into Stream-Summary, we know that y
could never have been counted before this re-insertion
more than e(z) times, since any element could not be
counted for association with z more than once for each
occurrence of x. Therefore, we know the lost counts of
y with = could never exceed e(x).

Hence, to guarantee that Find-Forward always ap-
proximates by over-estimation only, it reports the es-
timated count of association x — y as Count(z,y) +
e(x), and we denote it Count™(z,y). Any element
y, whose Count™ (x,y) satisfies 1(Count(e;) — £(e;))
should be reported as an association of the form x — y.
As clear from the Find-Forward sketch in Figure 5, to
output all correct rules, the minconf constraint is re-
laxed, since (Count(e;) —e(e;)) < F(e;).

6.3 Properties and Error Bounds

In this section, we will discuss the properties and error
bounds of the proposed solution.

6.3.1 Limited Processing Per Element

From algorithm Streaming-Rules, we know that the
processing per element received involves mainly in-
crementing its counter in the antecedent Stream-
Summary, and incrementing multiple counters for as-
sociating it with elements in the current window.

Notice that incrementing a counter in Stream-
Summary takes O(1) amortized cost if the Stream-
Summary is stored in a hash table, and O(1) worst
case cost if it is stored in associative memory [15].

Incorporating an element for association with the
elements in the current window involves membership
checking in 2 * § sets, and incrementing a counter in §
consequent Stream-Summary structures.

Theorem 1 The Streaming-Rules algorithm has a
constant processing time of O(§) per element in the
stream. This is amortized complezity if the data struc-
ture is stored in hash tables, and is worst case com-
plexity if it was stored in associative memory.

6.3.2 Guaranteed Output

An element, x, whose guaranteed hits [15], i.e.,
Count(z) — e(x), exceed minsup is guaranteed to be
frequent. Similarly, a forward (backward) association
rule, * — y, is guaranteed® to hold if z (y) is frequent,
and the guaranteed count of y with x satisfies minconf,
ie., Count(z,y) —e(z,y) > [¢PpCount(e;)].

6.3.3 Error Bounds

For finding frequent elements, Streaming-Rules inher-
its from Space-Saving the fact that the number of
counters to guarantee an error rate of € is bounded
by (%1 Thus, in estimating the frequency of the rule

antecedents, the error rate will be less than %, where
m is the number of elements in Stream-Summary.

As discussed in Section 6.2, the uncertainty when
counting forward associations for the rule x — y
arises from two sources. The first source is the lim-
ited number of counters in Stream-Summary. Since
x could be deleted at any time if has the minimum
estimated frequency, we loose all information stored
in Stream-Summary,, since it gets deallocated. The
second source of uncertainty is the limited number
of counters in Stream-Summary,. An element y can
be replaced out of Stream-Summary, if Count(z,y)
has the minimum value, min,. When y is re-inserted
into Stream-Summary,, it will be given the benefit of
doubt, and thus the new value of Count(x,y) could
be an over-estimation. Hence, we can prove the error
bounds. For space limitations, all proofs are omitted,
and the reader is referred to the full version [16].

Theorem 2 Using m * n counters, Streaming-Rules
outputs association rules with an over-estimation rate
i support of no more than # The over-estimation

rate in confidence is no more than % —|—%. This is true
regardless of stream distribution or permutation.

From Theorem 2, the user can specify two error pa-
rameters, € and 7, which are the maximum permissible
over-estimation error rates for support and confidence,
respectively, such that e < n. To guarantee the error
bounds, Streaming-Rules can allocate m counters in
Stream-Summary, and n counters in each consequent
Stream-Summary, where m 1] and n =]'nie].
Thus, Streaming-Rules can guarantee the error bounds
using O(—++—) space. Interestingly, the maximum

ex(n—e
space usage(is I)IOt affected by the mazspan, 0.

In addition to accurately estimating the support
and the confidence using limited space, Streaming-
Rules can guarantee that any association rule whose
support exceeds the user permissible error, eN, and
whose confidence exceeds the user permissible error,
nN, will be monitored in the consequent structures.

Theorem 3 An association rule x — vy, is guaranteed
to be monitored in the consequent Stream-Summary,

5 Find-Forward can easily adapt to applications that permit
only false negative errors, by outputting guaranteed rules only.

178

if F(x) > eN, and F(z,y) > nN, where € and 1, are
the mazimum permissible over-estimation error rate
for support and confidence, respectively. This is true
regardless of stream distribution or permutation.

7 Experimental Results

We conducted a comprehensive set of experiments to
evaluate the efficiency and scalability of the proposed
Streaming-Rules algorithm. To show the strengths of
Streaming-Rules, we implemented Omni-Data, which
uses the same lightweight data structure, but keeps
counts and nested structures for every element in the
data stream. Although Omni-Data is not practical to
implement for large data sets, it provides all the associ-
ation rules that can be detected within a user specified
0, when used for smaller data sets. Both algorithms
were implemented in C++, and were executed, on a
Pentium IV 2.66 GHz, with 1.0 GB RAM, against syn-
thetic data for forward association, and real data for
backward association. For both algorithms, we mea-
sured the run time, and space usage. For Streaming-
Rules, we measured the recall, the number of correct
elements found as a percentage of the number of ac-
tual correct elements; precision, the number of correct
elements found as a percentage of the entire output
[6]; and guarantee, the number of guaranteed correct
elements as a percentage of the entire output [15].

7.1 Synthetic Data

For synthetic data experiments, we generated several
Zipfian [23] data sets. We chose the Zipfian dis-
tribution since it models the nature of many data
flows on the Internet [13, 18]. The zipf parameter,
«, was varied from 1, which is moderately skewed,
to 3, which is highly skewed, on a fixed interval of
1. This set of experiments measure how Streaming-
Rules adapts to, and makes use of data skew. The
streams were processed by both Streaming-Rules, and
Omni-Data for different 6’s. A query was then is-
sued, asking for forward associations with ¢ = 0.1, and
1 = 0.1, and we recorded the run time and space used
by each algorithm, to estimate the gains achieved by
Streaming-Rules. Throughout the synthetic data ex-
periments, Streaming-Rules used a data structure with
m = n = 500, which yields € = Wlo’ and n = 2—;).

Interestingly enough, for all the synthetic data ex-
periments, Streaming-Rules achieved a recall, a pre-
cision, and a guarantee of 1. That is, it guaranteed
that it output all the correct rules, and nothing but
the correct rules.

7.1.1 Streaming-Rules Efficiency

To evaluate the efficiency of Streaming-Rules, we com-
pare the space usage, Figure 6(a), and the run time,
Figure 6(b), of Streaming-Rules, and Omni-Data, us-
ing ¢’s of 10 and 20. In this set of experiments, the
size of each data set, N, is 3 * 10%. We did not exper-
iment with larger sets and did not increase § beyond

(a) Streaming-Rules and Omni-Data
Space Usages Using Synthetic Data

(b) Streaming-Rules and Omni-Data
Run Times Using Synthetic Data
2500

-+ S-R,MaxSpan=10

< 2000 ~ - S-R,MaxSpan=10

\ -m- O-D,MaxSpan=10
\ 4 S-R,MaxSpan=20 1500 \ -m- 0-D,MaxSpan=10

— 0-D,MaxSpan=20

Run Time (s)

\ —&- S-R,MaxSpan=20
—- O-D,MaxSpan=20

1000

\ 500

25 3 1

2
Zipf Parameter Zipf Parameter

Figure 6: Streaming-Rules Efficiency

20, since on the more realistic data sets with Zipf « of
1 and 1.5, Omni-Data executes excessively slow, due
to thrashing.

As is clear from Figure 6(a), Streaming-Rules con-
sumed space that is 35 times smaller, for § = 10; and
47 times smaller, for § = 20, when the Zipf o was 1.
We expect the performance gap to increase as ¢ in-
creases, though we were not able to run Omni-Data
on bigger &’s, due to thrashing. When the data is
moderately skewed, which is the realistic case [15, 18],
there is a higher probability that more combinations
of elements will occur in the windows, and Omni-Data
kept complete information about all the pairs that oc-
curred. Since not all such pairs are significant, with
much less space, Streaming-Rules reported all correct
rules. For a > 1, the performance gap decreased, since
smaller numbers of unique elements occurred in the
windows, and Omni-Data did not suffer any more from
keeping too many counters, unnecessarily.

As shown in Figure 6(b), the running time of
Streaming-Rules is much better than Omni-Data, es-
pecially for moderately skewed data, and bigger d’s.
The performance gap decreased with higher skew.

From this set of experiments, we conclude that in
addition to handling highly skewed data, Streaming-
Rules can handle weakly skewed data, which is the
more realistic case. Moreover, it uses very limited
space with no loss in accuracy.

7.1.2 Streaming-Rules Scalability

(a) The Space Scalability of ~ Streaming-
Rules Using Synthetic Data

(b) The Time Scalability of Streaming-
Rules Using Synthetic Data
9000

Size (MB)

-+~ MaxSpan=10 8000 X -+-MaxSpan=10

-m- MaxSpan=20 7000 \\ -# MaxSpan=20

-4~ MaxSpan=30 & 6000 v\\\ -4 MaxSpan=30

— MaxSpan=40 2 s000 A — MaxSpan=40

-Kk- MaxSpan=50 2 4000 - MaxSpan=50
&

3000

2000

1000

3 1

2 2
Zipf Parameter Zipf Parameter

Figure 7: Streaming-Rules Scalability

To demonstrate the scalability of Streaming-Rules,
we used data sets of size 107 for this set of experiments.
Thus, we did not compare with Omni-Data, because
of the thrashing problem. We were interested in the
time and space requirements of Streaming- Rules under
different o’s and §’s. The mazxspan, 6, was varied from
10 to 50, and the results are sketched in Figure 7.

From Figure 7(a), it is clear that the space re-
quirements of Streaming-Rules is not affected by d,

179

as pointed out in Section 6.3.3, since all the curves are
bundled together. Still, the effect of a on the space
usage is interesting. The behavior when o > 1.5 is
predictable. Since as the skew increases, less unique
elements are expected to exist in the windows, and
thus less demand exists on antecedent and consequent
counters. The behavior when 1 < a < 1.5 is due to
the weak data skew. Owing to the high variability of
elements in windows, there is high contention on the
antecedent counters. Hence, when an element is as-
signed a counter in the antecedent Stream-Summary, it
gets replaced so quickly, before its consequent Stream-
Summary is highly populated. Thus, the space is not
always fully utilized, as shown in Figure 7(a). The
space utilization increases with the skew, until the de-
mand on the counters falls after o > 1.5.

Given the same number of counters, this trend is not
manifested in Figure 6(a), due to the smaller data size,
and thus, the fewer combinations between elements.

In Figure 7(b) the equal distances between the
curves is because the time complexity of Streaming-
Rules is linear with §, according to Theorem 1. All
the run time curves are inversely proportional to «,
since as the skew increases, more duplicate elements
exist in the windows, and thus less counting is needed.

From Figure 7, we can see that Streaming-Rules can
handle queries with large ¢’s on long streams of mod-
erately skewed data, with a very limited space needs.

7.2 Real ISP Data

(a) Streaming-Rules and Omni-Data
Space Usages Using ISP Data

(b) Streaming-Rules and Omni-Data
Run Times Using ISP Data

/’/M*”

/ ~+-Omni-Data
-#- Streaming-Rules

e R e S e 0

Run Time (s)

~+-Omni-Data
-m- Streaming-Rules

0 20 30 40 s

50 6 70 8 90 100 1 20 30 4
MaxSpan

0 6 70 8
MaxSpan

Figure 8: Streaming-Rules on Real Data

We were able to get some ISP logs from an anony-
mous ISP. We were provided with a stream of the en-
coded HTTP requests to html files, due to the privacy
policy of the ISP. The data size was 678,191 requests.

We were interested in backward association to de-
tect potential hit inflation attacks. We carried out a
set of queries on the ISP data using Streaming-Rules
and Omni-Data, with a low ¢ of 0.002, a high ¢ of
0.5. The ¢, and the 1) values are typical for detecting
such attacks, since we are interested in consequents,
publishers, which might not be frequent. Yet, we are
searching for very strong correlations. Throughout the
ISP data experiments, Streaming-Rules used a data
structure with m = 1000 amd n = 500, which yields
€= Tloov and n = ﬁ.

The § was varied between 10 and 100. The different
values of § are suitable for different loads. The higher
the load on the ISP servers, the more interleaved the

%0 100

requests of different customers are. To adapt for this
situation, ¢ should increase, to be able to detect the
causality relations.

The performance of both algorithms is sketched in
Figure 8. From Figure 8(a), it is clear that the space
usage of Streaming-Rules is consistently 2.5 to 2.8
times smaller than that of Omni-Data, which is a great
advantage. The run times of both algorithms were very
similar, since both utilize the same data structure, the
same Unique-Count technique, and the data set was
relatively small. The recall of Streaming-Rules was
constant at 1, since its errors are false positives only.
The precision and guarantee both varied between 0.974
and 0.989. Thus there was almost no loss of accuracy.

The results are interesting. There was a set of sus-
picious sites A that are always being requested before
another set of sites B with confidence at least 0.5. This
held even when = 10, which is a very small value for
0. Hence, we can guess that there is a direct relation-
ship between these two sets. Even more interesting is
the fact that the A sites did not have high frequency,
as estimated by the antecedent Stream-Summary.

It is not possible to check out the results, even if
we know the URLs. Internet Browsers record the re-
ferring site, and not the referred to site, in the history.
For instance, if page a.com has an invisible frame of
height 0, where another page b.net gets loaded when
a loads, the Browser records only a.com in the his-
tory. Thus, visiting a.com, and then looking for b.net
in the history is not effective. Only an entity that
monitors the HTTP requests made, like ISPs, can test
a relationship that Streaming-Rules reported for being
fraudulent.

8 Discussion

In this paper, the applications of predictive caching,
and detecting a difficult-to-detect hit inflation attack
[3] were described. The underlying applications en-
tailed developing a new notion for association rules be-
tween pairs of elements in a data stream. To the best
of our knowledge, this problem has not been addressed
before. Forward and backward association rules were
defined, and the Streaming-Rules algorithm was de-
vised. Streaming-Rules reports association rules with
tight guarantees on errors, using minimal space, and
it can handle very fast streams, since limited process-
ing is done per element. Our experimental results on
synthetic data demonstrate great performance gains,
and our runs on real ISP data discovered suspicious
relationships.

Acknowledgment

We thank Eng. Molham Serry for helping us with
acquiring the real data, and for his useful discussions.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining Association
Rules Between Sets of Items in Large Databases. In Proceed-
ings of the 12th ACM SIGMOD International Conference on
Management of Data, pages 207-216, 1993.

180

(2]

(3]

(4]

(5]

(6]

(7

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(18]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

R. Agrawal and R. Srikant. Mining Sequential Patterns. In
Proceedings of the 11th IEEE ICDE International Confer-
ence on Data Engineering, pages 3—14, 1995.

V. Anupam, A. Mayer, K. Nissim, B. Pinkas, and M. Reiter.
On the Security of Pay-Per-Click and Other Web Advertis-
ing Schemes. In Proceedings of the 8th WWW International
World Wide Web Conference, pages 1091-1100, 1999.

J. Chang and W. Lee. Finding Recent Frequent Itemsets Adap-
tively over Online Data Streams. In Proceedings of the 9th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 487-492, 2003.

M. Charikar, K. Chen, and M. Farach-Colton. Finding Fre-
quent Items in Data Streams. In Proceedings of the 29th
ICALP International Colloquium on Automata, Languages
and Programming, pages 693-703, 2002.

G. Cormode and S. Muthukrishnan. What’s Hot and What’s
Not: Tracking Most Frequent Items Dynamically. In Proceed-
ings of the 22nd ACM PODS Symposium on Principles of
Database Systems, pages 296-306, 2003.

M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
Stream Statistics over Sliding Windows. In Proceedings of the
13th ACM SIAM Symposium on Discrete Algorithms, pages
635—-644, 2002.

E. Demaine, A. Lépez-Ortiz, and J. Munro. Frequency Es-
timation of Internet Packet Streams with Limited Space. In
Proceedings of the 10th ESA Annual European Symposium
on Algorithms, pages 348-360, 2002.

M. El-Sayed, C. Ruiz, and E. Rundensteiner. FS-Miner: Ef-
ficient and Incremental Mining of Frequent Sequence Patterns
in Web Logs. In 6th ACM CIKM WIDM International Work-
shop on Web Information and Data Management, pages 128
135, 2004.

J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns with-
out Candidate Generation. In Proceedings of the 19th ACM
SIGMOD international conference on Management of data,
pages 1-12, 2000.

G. Manku and R. Motwani. Approximate Frequency Counts
over Data Streams. In Proceedings of the 28th ACM VLDB
International Conference on Very Large Data Bases, pages
346-357, 2002.

H. Mannila, H. Toivonen, and A. Verkamo. Discovery of Fre-
quent Episodes in Event Sequences. Data Mining and Knowl-
edge Discovery, 1(3):259-289, 1997.

M. Meiss, F. Menczer, and A. Vespignani. On the Lack of
Typical Behavior in the Global Web Traffic Network. In Pro-
ceedings of the 14th WWW International World Wide Web
Conference, pages 510-518, 2005.

A. Metwally, D. Agrawal, and A. El Abbadi. Duplicate Detec-
tion in Click Streams. In Proceedings of the 14th WWW In-
ternational World Wide Web Conference, pages 12—21, 2005.
A. Metwally, D. Agrawal, and A. El Abbadi. Efficient Com-
putation of Frequent and Top-k Elements in Data Streams. In
Proceedings of the 10th ICDT International Conference on
Database Theory, pages 398-412, 2005. An extended version
appeared as a University of California, Santa Barbara, Depart-
ment of Computer Sciemce, technical report 2005-23.

A. Metwally, D. Agrawal, and A. El Abbadi. Using Association
Rules for Fraud Detection in Web Advertising Networks. Tech-
nical Report 2005-13, University of California, Santa Barbara,
2005.

M. Reiter, V. Anupam, and A. Mayer. Detecting Hit-Shaving
in Click-Through Payment Schemes. In Proceedings of the 3rd
USENIX Workshop on Electronic Commerce, pages 155-166,
1998.

C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Anal-
ysis of a Very Large Web Search Engine Query Log. SIGIR
Forum, 33(1):6-12, 1999.

L. Sun and X. Zhang. Efficient Frequent Pattern Mining on
Web Logs. In Advanced Web Technologies and Applications,
6th APWeb Asia-Pacific Web Conference, pages 533-542,
2004.

W. Teng, M. Chen, and P. Yu. A Regression-Based Tempo-
ral Pattern Mining Scheme for Data Streams. In Proceedings
of the 29th ACM VLDB International Conference on Very
Large Data Bases, pages 93-104, 2003.

A. Tung, H. Lu, J. Han, and L. Feng. Breaking the Barrier of
Transactions: Mining Inter-Transaction Association Rules. In
Proceedings of the 5th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 297
301, 1999.

J. Yu, Z. Chong, H. Lu, and A. Zhou. False Positive or False
Negative: Mining Frequent Itemsets from High Speed Transac-
tional Data Streams. In Proceedings of the 30th ACM VLDB
International Conference on Very Large Data Bases, pages
204-215, 2004.

G. Zipf. Human Behavior and The Principle of Least Effort.
Addison-Wesley, 1949.

