
Customizable Parallel Execution of Scientific Stream
Queries

Milena Ivanova Tore Risch

Department of Information Technology
Uppsala University, Sweden

{milena.ivanova, tore.risch}@it.uu.se

Abstract

Scientific applications require processing high-
volume on-line streams of numerical data from
instruments and simulations. We present an
extensible stream database system that allows
scalable and flexible continuous queries on
such streams. Application dependent streams
and query functions are defined through an
object-relational model. Distributed execu-
tion plans for continuous queries are described
as high-level data flow distribution templates.
Using a generic template we define two par-
titioning strategies for scalable parallel execu-
tion of expensive stream queries: window split
and window distribute. Window split provides
operators for parallel execution of query func-
tions by reducing the size of stream data units
using application dependent functions as pa-
rameters. By contrast, window distribute pro-
vides operators for customized distribution of
entire data units without reducing their size.
We evaluate these strategies for a typical high
volume scientific stream application and show
that window split is favorable when expen-
sive queries are executed on limited resources,
while window distribution is better otherwise.

1 Introduction

In order to explore information from very high volume
raw data generated by scientific instruments, such as
satellites, on-ground antennas, and simulators, scien-
tists need to perform a wide range of analyses over the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

data streams. Complex analyses are presently done
off-line on data stored on disk using hard-coded pre-
defined processing of the data. The off-line processing
creates large backlogs of unanalyzed data and the high
volume produced by scientific instruments can even be
too large to store and process [13, 14]. Furthermore,
off-line data processing prevents timely analysis after
interesting natural events occurred.

We address these problems by utilizing an extensi-
ble stream database system, GSDM1, where scientists
can specify in a flexible way analyses as on-line dis-
tributed continuous queries (CQs) over the streams.
Since the target scientific applications have high vol-
ume data and expensive computations, GSDM has
been designed with a distributed and parallel archi-
tecture to provide scalability for both data volumes
and computations.

The user specifies operators on stream data as
declarative stream query functions (SQFs), defined
over stream data units called logical windows. The
SQFs may contain user-defined functions implemented
in, e.g., C and plugged into the system. New types of
stream data sources and SQFs over them can be spec-
ified.

GSDM provides the user with a generic frame-
work for specifying distributed execution strategies by
data flow distribution templates (or shortly templates).
They are parameterized descriptions of CQs as dis-
tributed compositions of SQFs together with a logical
site assignment for each SQF. For extensibility, a data
flow distribution template may be defined in terms
of other templates. For scalable execution of CQs
containing expensive SQFs we provide a generic tem-
plate for customizable data partitioning parallelism.
The template, illustrated in Figure 1, contains three
phases: partition, compute, and combine. In the parti-
tion phase the stream is split into sub-streams, in the
compute phase an SQF is applied in parallel on each
sub-stream, and in the combine phase the results of
the computations are combined into one stream.

1Grid Stream Database Manager

157

S2
Combine

S1
Partition Compute

Compute

Compute

Figure 1: A generic data flow distribution template for
partitioning parallelism of expensive stream queries

The generic distribution template has been used
to define two different stream partitioning strategies:
SQF dependent window split (WS) and SQF indepen-
dent window distribute (WD). Window split provides
SQF dependent partition and combine strategies while
window distribute is applicable on any SQF. Window
split is favorable, e.g., for many numerical algorithms
on vectors that scale through user-defined vector par-
titioning. Both strategies use a pair of non-blocking
and order preserving SQFs to specify the partition and
combine phases.

The partition phase in window split is defined by
another template, operator dependent stream split(OS-
Split) to perform application dependent splitting of
logical windows into smaller ones. An SQF, operator
dependent stream join (OS-Join), implements the com-
bine phase. Window split is particularly useful when
scaling the logical window size for an SQF with com-
plexity higher than O(n) over the window size. For
example, our Space Physics application [14] requires
the FFT (Fast Fourier Transform) to be applied on
large vector windows and we use OS-Split and OS-
Join to implement an FFT-specific stream partitioning
strategy. FFT is commonly used in signal processing
applications and is computationally expensive. Hence,
it strongly affects the performance of an entire class of
application queries.

As a window distribute strategy, we provide Round
Robin stream partitioning (RR) where entire logical
windows of streams are distributed based on the or-
der they arrive. In the combine phase, the result sub-
streams are merged on their order identifier2. This
is an extension of the conventional Round Robin par-
titioning [9] for data streams. Window distribute by
Round Robin does not decrease the size of logical win-
dows and therefore the compute phase of FFT is ex-
pected to run slower than with window split.

We evaluated the scalability of the two strategies in
terms of maximum processing throughput for differ-
ent logical window sizes. The experiments show that
both partitioning strategies have advantages in specific
situations. If the CQ is to be executed with limited re-
sources, so that the load of the compute nodes exceeds
the load of the partition and combine nodes, the win-
dow split is preferable since it utilizes query semantics
to achieve a more scalable parallel execution. How-

2E.g., in our application a time stamp is used.

ever, if the system has resources allowing a high de-
gree of parallelism where partition and combine nodes
become more loaded than the compute nodes, win-
dow distribute with RR may have better performance
depending on the cost of partitioning and combining
SQFs.

We have the following contributions:

• High-level data flow distribution templates spec-
ify distributed execution plans for CQs in terms of
SQFs. This allows easy specification of CQs and
various user-defined stream partitioning strate-
gies. In particular we define a generic distribu-
tion template for partitioned parallel execution of
expensive SQFs.

• Window split strategies are defined by parame-
terizing the generic distribution template with a
partitioning template, operator dependent stream
split (OS-Split), and a combining SQF, opera-
tor dependent stream join (OS-Join). They allow
stream windows to be split and joined through
user defined partitioning and combining functions
while preserving the stream order.

• The same generic distribution template is also
used for defining window distribute strategies by
parameterizing it with a partitioning template,
stream distribute (S-Distribute) and a combining
SQF, stream merge (S-Merge). They provide SQF
independent data distribution that preserves the
stream order and are parameterizable by, e.g.,
Round Robin partitioning.

• We compared window split and window distribute
for an example scientific application to evaluate
their scalability. Experimental results show that
window split can improve scalability, in particular
when SQFs has a substantial computational cost
and are executed on limited resources, while win-
dow distribute is better when resources are not
limited.

• A distributed and parallel system architecture of
the GSDM prototype has been designed, imple-
mented and used in the experiments. A coordi-
nator server compiles CQ specifications into dis-
tributed execution plans, sets up the GSDM exe-
cution nodes, and supervises the CQ execution.

The rest of the paper is organized as follows: Sec-
tion 2 presents the related work on parallel stream pro-
cessing. Section 3 presents GSDM architecture, data
model, and query language. Different strategies for
scalable execution of expensive stream operators are
described in Section 4 and their performance is ana-
lyzed in Section 5. Section 6 summarizes.

158

2 Related work

Parallel CQs in [10, 11] is provided by the flux operator
that encapsulates general partitioning strategies, such
as hash partitioning. We also have customized gen-
eral partitioning and in addition investigate operator-
dependent window split strategies for expensive oper-
ators over streams of non-relational data.

The main advantage of the first version of flux [11] is
adaptive partitioning on the fly for optimal load bal-
ancing of parallel CQ processing. One of the moti-
vations is the fact that content-sensitive partitioning
schemas as hashing can cause big data skew in the
partitions and therefore need load balancing. We do
not deal with load imbalance problems since the parti-
tioning schemas we consider (window split and window
distribute with RR), chosen to meet our scientific ap-
plication requirements, are content insensitive, i.e. do
not cause load imbalance in a homogeneous cluster en-
vironment. The last version of flux [10] encapsulates
fault-tolerance logic and is not related to the problems
addressed here.

The need for partition, compute, and combine
phases for user-defined functions in object-relational
databases was indicated by [8]. However, the idea
to specify generic and modular data flow distribution
templates is to the best of our knowledge unique.

Data partitioning strategies for parallel databases
[9] such as Round Robin can be used as parameters
of the window distribute strategy. What makes the
stream partitioning strategies different is that the pro-
cessing must preserve chronological ordering of the
stream. We provide this property by special stream
operators synchronizing the parallel result streams in
the combine phase.

The idea to separate parallel functionality from
data partitioning semantics by customized partition-
ing functions is similar to Volcano’s [4] ’support func-
tions’ parameterizing the exchange operator. In con-
trast, we have pairs of partition and combine opera-
tors where the combine operator preserves stream or-
der. While window distribute parameterized by, e.g.,
Round Robin is similar to the exchange operator, win-
dow split is novel. Furthermore, we express stream
partitioning and combining as high level declarative
SQFs, which allows the user to customize the parallel
execution using application semantics.

Most of the stream processing systems [1, 3, 6, 7] are
based on the relational model have fine granularity of
stream data items and small cost of stream operators
per item. In contrast, the streams in the scientific ap-
plications we address have big total volume and data
item size, and the operators are computationally ex-
pensive. Therefore, we address the problem for paral-
lelizing expensive stream operators to achieve scalable
execution.

Some projects [2, 15] deal with processing of dis-
tributed streams but with small items and cheap oper-

Working
Node 2

Coordinator

Client

Radio Signal

Cluster

CQ

Name Server

Working
Node 4

Working
Node 3

Working
Node 1

Legend:

Data flow

Client request

Control flow

Application

Figure 2: An example of user interaction with dis-
tributed GSDM System

ators. This is different than the problem to efficiently
partition expensive stream operators. Box splitting in
distributed Eddies [15] is a form of parallel processing
of a stream operator where data partitioning is done
as a part of the tuple routing policy. This is similar
to our window distribute, but we customize explicitly
the data partitioning strategy and also provide order
preservation. Window split does not have analogue in
any stream database system.

Similarly to Tribeca [12] we utilize an extensible
object-based model. Our stream operators for the win-
dow distribute strategy are related to Tribeca’s demul-
tiplexing (demux) and multiplexing (mux) operators,
but they have more restricted partitioning based on
data content for aggregation purposes rather than for
parallelization.

The idea to extend the concept of a database query
with numerical computations over scientific data was
originally proposed by [16], but the work does not ad-
dress parallel execution nor stream databases.

3 The GSDM System

Figure 2 illustrates an example of user interaction with
the distributed GSDM system. The user submits a
continuous query (CQ) specification to the coordinator
through a GSDM client. The CQ specification con-
tains the characteristics of stream data sources such
as data types and IP addresses, the destination of the
result stream, and what stream operators to be exe-
cuted in the query. The CQ can be specified to run for
a limited amount of time or until explicitly stopped.

The coordinator handles requests for CQs from the
GSDM clients and manages CQs and GSDM working
nodes (WNs). Given the CQ specification, the coordi-
nator acquires resources from a cluster computer and
constructs an execution plan as a distributed data flow
graph where working nodes execute SQFs. The name
server is a lightweight server providing the communi-
cation between all GSDM servers.

Figure 3 shows the software architecture of the co-

159

User Interface

CQ Compiler

CQ Manager

Resource

Manager

CQ Specifications

Coordinator

Commands

to WNs

Meta data

Requests for

resources

Start & Kill

WNs

Figure 3: Coordinator Architecture

CQ Manager Working Node

Commands from

Coordinator

Scheduler

Query Executor

Statistics Collector
Active

Operators

Installed

Operators

Stream

Buffers

GSDM Engine

Stream

Interfaces

Buffer Manager

Data Messages Data Messages to WNs

Figure 4: GSDM Working Node Architecture

ordinator. The user interface module provides GSDM
client user primitives to specify, start and stop CQs.
Given CQ specifications the CQ compiler produces dis-
tributed physical execution plans.

The resource manager module communicates with
the resource managers of cluster computers to acquire
processing resources. It also starts and stops dynam-
ically working nodes when preparing or finishing the
CQ execution. The architecture allows starting addi-
tional working nodes when necessary during the query
execution, e.g., to increase the degree of parallelism.

The CQ manager installs, activates, and starts dis-
tributed execution plans by sending commands to the
working nodes. The coordinator stores in its local
database meta-data about the data flow graphs and
the working nodes. The meta-data are accessed and
updated by all the modules.

Each working node (Fig. 4) executes the part of the
execution plan assigned to it and sends intermediate
streams to the next working nodes in the plan. All
SQFs installed at a node are organized in a hash-table,
the installed operators. The input streams have buffers
accessed by stream interfaces and a buffer manager.

GSDM working nodes have two server modes.
When working in regular server mode they listen for
messages coming on TCP sockets that typically con-
tain calls to the WN CQ manager primitives for in-
stallation and activation of execution plans.

In CQ server mode the GSDM engine executes con-
tinuously SQFs over the incoming streams. The sched-
uler assigns processing resources to different tasks in
the working node. The scheduler scans a list of ac-
tive SQFs, active operators, schedules the operators
according to a chosen scheduling policy and calls the
query executor. The operators access stream data by
calls to stream interfaces methods. A GSDM engine
in CQ server mode also listens for messages as in the
regular server mode, but in contrast the main body of
incoming messages contain stream data. In addition,
the scheduler calls some system tasks, such as buffer
management and statistics collection.

3.1 Stream Query Functions

The stream data are modeled through an extensible
object-relational data model where entities are repre-
sented as types organized in a hierarchy. The entity
attributes and the relationships between entities are
represented as functions on objects. In this model,
the stream data sources are instances of a user-defined
type Stream (Fig. 5) with functions name that iden-
tifies the stream, and source and dest that specify
stream source and destination addresses, respectively.

In our model stream elements are objects called log-
ical windows. A logical window can be an atomic ob-
ject but is usually a collection, which can be an ordered
vector (sequence) or unordered bag. The elements of
the collections can be any type of object. The logical
windows are represented as instances of subtypes of an
abstract type Window. Streams with different types of
logical windows are instances of different subtypes of
the type Stream.

A stream query function (SQF) is a declarative
query that computes a logical window in a result
stream given one or several input streams. The GSDM
engine executes continuously an SQF to produce out-
put windows inserted by the engine into the result
stream. Every input stream maintains its own buffer
and cursor, where the GSDM engine moves the cursor
with the advance of SQF execution. There is a library
of stream access functions that return logical windows
from streams relative to the current cursor position.
For example, the generic function

currentWindow(Stream s)->Window w

returns the current logical window w at the cursor of
an input stream s.

There are also functions aggregating logical win-
dows from a stream. For example, the function

slidingWindow(Stream s, Integer sz,
Integer st)-> Vector of Window w

160

Stream

Radiosignal

name

source

dest

Window

RadioWindow

x

y

z

currentWindow

Is-a Is-a ts

interface

slidingWindow n1

1 1

currentWindow

slidingWindow n1

1 1

Figure 5: Metadata of Radio Signal Stream Source

combines sz next logical windows in a stream s into
a vector of logical windows. The parameter st is the
sliding step.

The stream access functions are overloaded for
each user stream subtype and generated automatically
when a new type of stream source is registered to the
system. They do not have side effects since they oper-
ate on a list of pointers to logical windows maintained
by the system. Thus, stream access functions can be
called possibly many times in SQF definitions provid-
ing referential transparency.

The streams in our application [14] are radio signals
produced by digital space receivers represented by type
Radiosignal (Fig. 5). The instrument produces three
signal channels, one for each space dimension, and a
time stamp. Thus each logical window of type Ra-
dioWindow has the attributes ts, x, y, and z, where ts
is a time stamp and x, y, and z are vectors of complex
numbers representing sequences of signal samples.

The types and functions in the application specific
part of Figure 5 are generated when the user defines an
application stream type by calling a system procedure,
create stream type3:

create_stream_type("RADIOSIGNAL",
{"ts","x","y","z"},
{"timeval","vector of complex",
"vector of complex","vector of complex"});

The SQF fft3 below is defined on Radiosignal stream
type and computes FFT on each of the three channels
of the current logical window of the radio stream. It
calls a foreign function fft that computes the FFT over
a vector of complex numbers4:

create function fft3(Radiosignal s) ->
RadioWindow

as select radioWindow(ts(v),
fft(x(v)),fft(y(v)),fft(z(v)))

from RadioWindow v
where v = currentWindow(s);

3The notation {...} is used for constructing vectors (se-
quences) in GSDM.

4The function radioWindow is a system generated construc-
tor of a new instance of type RadioWindow

S2
S-merge

S1
S-distribute

FFT3 256

S2
OS-join

S1
OS-split

FFT3 128

FFT3 128

S1 S2
FFT3

FFT3 256

a)

b)

c)

S11

S12 S22

S21

S11

S12

S21

S22

Figure 6: (a)FFT Central Execution (b)Round Robin
Strategy in 2 (c)Operator Dependent Strategy in 2

To enable stream processing independent on a
stream’s physical communication media, the stream
type needs interface methods for different physical me-
dia (function interface). The stream interface includes
open, next, insert, and close methods. These meth-
ods have side effects on the state of the stream and
are not called in SQF definitions. The next method
reads the next logical window from an input stream
and moves the cursor while insert emits a logical win-
dow to an output stream. The system provides sup-
port for streams communicated on TCP and UDP pro-
tocols, local streams stored in main memory, streams
connected to the standard output, or to visualization
programs.

3.2 Data Flow Distribution Templates

A data flow distribution template specifies a CQ as a
distributed composition of SQFs or other templates.
Each template has a constructor that creates a data
flow graph where vertices are SQFs assigned to logi-
cal execution sites. The arcs in the graph are stream
producer-consumer relationships between SQFs. We
provide a library of templates including the generic
PCC (Partition-Compute-Combine) that specifies a
lattice-shaped data flow graph pattern as in Fig. 1.

For example, the window distribute data flow in Fig-
ure 6b is created by:

set wd= PCC(2,"S-Distribute","RRpart",
"fft3","S-Merge",0.1);

The PCC constructor is parameterized on i) the
degree of parallelism (2); ii) partitioning method (S-
Distribute); iii) parameter of the partitioning method
(RRpart); iv) SQF to be computed (fft3); v) the com-
bining method (S-Merge); and vi) parameter of the
combining method (0.1, a time-out).

The operator dependent window split data flow in
Figure 6c is created by:

set ws = PCC(2,"OS-Split","fft3part","fft3",
"OS-Join","fft3combine");

161

In this case the parameters fft3part and fft3combine
are FFT-dependent window transformation functions
defined in the next section. They are parameters of
the partitioning method OS-Split and the combining
method OS-Join.

Executions of SQFs on one central node are speci-
fied by the Central template. For example, the follow-
ing call generates the central data flow graph shown
in Fig. 6a:
set c = Central("fft3");

Notice that templates can also be used in place of
SQF arguments in the constructor calls in order to
generate complex graph structures. For example, the
following call creates the distributed graph in Fig. 10a:

set wd-tree = PCC(2,"S-Distribute","RRpart",
"PCC",{2,"S-Distribute","RRpart","fft3",

"S-Merge",0.1},
"S-Merge",0.1);

3.3 CQ Specification and Execution

The CQ specification contains i) the characteristics of
input and result streams; ii) a data flow graph created
by a call to a distribution template constructor; and
iii) computational resources for the execution, i.e. an
IP address of a cluster computer. For example:

set s1 = register_input_stream(
"Radiosignal","1.2.3.4","UDP");

set s2 = register_result_stream(
"1.2.3.5","Visualize");

compile(ws, {s1}, {s2}, "hagrid.it.uu.se");
run(ws);

In the example the data flow graph ws has one in-
put stream of type Radiosignal accessible by a stream
interface called UDP. The result stream connects to a
visualizing application on the specific address using a
stream interface called Visualize. The CQ will be ex-
ecuted on the nodes of cluster named hagrid.it.uu.se.

Given the CQ specification the CQ compiler pro-
duces a physical distributed execution plan. The run
procedure starts the execution performing the follow-
ing steps: i) the resource manager starts the GSDM
working nodes on the cluster in regular server mode; ii)
the compiled plan is installed on the working nodes dis-
tributed according to the execution site assignments;
iii) the plan is activated by adding stream operators to
the active operators list and performing initialization
operations, such as creating stream buffers and open-
ing TCP connections; iv) working nodes are switched
into CQ server mode to start the execution.

4 Query Execution Strategies

In this section we investigate different strategies for
parallelizing an application dependent stream opera-
tor using as an example the SQF fft3 defined in the
previous section.

First, we look at what strategies are appropriate to
parallelize application specific operators over streamed
data and formulate the requirements for the strategies.
In the next section, we evaluate their scalability.

In the work presented we consider data partitioning
parallelism for an expensive SQF5. Future work will
include a CQ optimizer that constructs and searches
in a wider space of distributed execution plans.

We can formulate the following requirements for
stream data partitioning strategies to parallelize an
expensive SQF:

1) It must preserve semantics of the SQF.
2) It must be order preserving.
3) It has to provide good load balancing.
Our two overall stream data partitioning strategies,

window distribute and window split fulfill the require-
ments stated above. Window distribute distributes en-
tire logical windows to different partitions. Since the
SQFs are executed on logical windows, window dis-
tribute does not affect the parallelized operator neither
is it dependent on it. The routing of windows can be
based on any well-known partitioning strategy, such as
Round Robin, hash partitioning, or other user-defined
partitioning. This is a parameter of the template S-
distribute. The chosen partitioning strategy affects the
load balance of the parallel computing nodes.

In contrast, window split strategy splits a single
logical window into sub-windows that are distributed
to corresponding partitions. In this way the stream
operator can be executed in parallel on smaller sub-
windows, which allows to achieve better scalability of
expensive SQFs with respect to the sizes of the log-
ical windows. In order to preserve operator seman-
tics, window split needs knowledge about application
data types and SQF semantics when creating and com-
bining sub-windows. Therefore, the stream operators
implementing the window split strategy need SQF-
dependent parameters specifying window splitting and
combining functions. The load balancing of the paral-
lel computing nodes in window split strategy depends
on the window splitting function.

Both partitioning strategies utilize the generic PCC
template and preserve ordering by specialized stream
operators in the combine phase.

4.1 Window Distribute Implementation in
GSDM

For window distribute we provide a partitioning tem-
plate, S-Distribute and a combining SQF, S-Merge
with the following signatures:

S-Distribute(Integer n, Function distrf)
-> Dataflow

S-Merge(Vector of Stream s, Real timeout)
-> Window

5Notice that complex queries can always be encapsulated in
SQFs.

162

S-distribute
S1

RRPart(2,0)

RRPart(2,1)

S11

S12

Figure 7: S-Distribute template with RRpart as param-
eter and 2 partitions

S-Distribute takes as parameters the number of par-
titions n and an SQF distrf that selects the next logical
window for a sub-stream. The S-Distribute construc-
tor generates a distributing hyper-node in the data
flow graph. Figure 7 illustrates the result of a call
to the S-Distribute constructor with parameters 2 and
RRpart, specifying Round Robin partitioning on two
nodes:

S-Distribute(2,"RRpart");

The RRpart is an SQF that specifies a single Round
Robin partition on any stream of logical windows:

create function RRpart(Stream s,
Integer ptot, Integer pno)
-> Window

as select w[pno]
from Vector of Window w
where w = slidingWindow(s,ptot,ptot);

Here, ptot is the total number of partitions and pno
is the order number of the partition selected.

In order to fulfill the order preserving requirement,
the combine phase must order result sub-streams after
the compute phase. This is the purpose of the S-Merge
stream operator. It assumes that the sub-streams are
ordered by e.g. a time stamp, and thus it is a variant of
merge join on the stream ordering attribute extended
with an additional parameter - a time-out period. The
time-out is needed since the partitioned sub-streams
are processed on different execution nodes, which in-
troduces communication and/or processing delays at
the merging node. Since the merge algorithm needs to
be non-blocking for real time stream processing, it has
a policy how to handle delayed or lost data. Our cur-
rent policy is to introduce the time-out. It is the time
period that the S-Merge waits for a stream window
to arrive if it is not present locally before assuming
that the window was lost. Other policies, such as re-
placement or approximation of missing windows are
also possible. The following call to S-Merge merges
the result sub-streams on time stamp with time-out
parameter set to 0.1 sec.:

S-Merge({s21,s22},0.1);

The notations s21 and s22 are logical names of
streams from the compute phase (Figure 6b).

OS-Split
S1

fft3part(2,0)

fft3part(2,1)

S11

S12

Figure 8: OS-Split template with fft3part as parameter
and 2 partitions

Our choice to implement Round Robin as parame-
ter of window distribute was based on the fact that it
provides good load balancing. Other strategies, such
as hash partitioning, are content-sensitive, i.e. the de-
cision where to distribute a window is based on the
content in the window. They usually introduce load
imbalance due to the data skew. For some applications
this disadvantage can be compensated by the benefits
for queries such as join or grouping on the partition-
ing key. Such benefits cannot be expected in our signal
processing application.

4.2 Window Split Implementation in GSDM

The window split strategy can be used for a particu-
lar stream operator if a pair of window transformation
functions are defined that specify how to split a logical
window into sub-windows and how to combine the re-
sult sub-windows while preserving the SQF semantics.

Window split partitioning is implemented by a par-
titioning template OS-Split and a combining SQF OS-
Join with the following signatures:

OS-Split(Integer n, Function splitf)
-> Dataflow

OS-Join(Vector of Stream s,
Function combinef)->Window

OS-Split takes as a parameter the number of partitions
n, which is equal to the number of sub-windows to be
created from one logical window. Another parameter
is a window transformation function splitf that spec-
ifies how a logical window is split into sub-windows.
The following call to the OS-Split constructor creates
the hyper-node in Figure 8:

OS-Split(2,"fft3part");

The splitf parameter fft3part is an FFT-specific win-
dow transformation function that creates a sub-
window from a logical window by splitting its vector
components:

create function fft3part(Radiowindow w,
Integer ptot, Integer pno) -> RadioWindow

as select radioWindow(ts(w),
fftpart(x(w),ptot,pno),
fftpart(y(w),ptot,pno),
fftpart(z(w),ptot,pno));

163

Here ptot is the total number of partitions and pno is
the order number of the partition selected.

The function fftpart partitions a vector according
to the FFT-Radix K [5] algorithm where K is a power
of 2. For example, when K = 2 the algorithm com-
putes FFT for vector of size N by computing FFT on
2 sub-vectors of size N

2 formed from the original vector
by grouping the odd and even index positions, respec-
tively.

OS-Join combines logical sub-windows, one from
each parallel SQF computation, into one logical re-
sult window. It is a form of equijoin on the ordering
components of the windows that in addition takes as
a parameter a window transformation function, com-
binef, that specifies how the logical result window is
computed from the sub-windows. OS-Join also takes
care of preserving the order of the result windows by
processing sub-windows in chronological order.

The following call to OS-Join combines the re-
sult sub-streams from the compute phase by call-
ing the FFT-specific window transformation function
fft3combine.

OS-Join({s21,s22},"fft3combine");

The fft3combine function uses the FFT-Radix algo-
rithm to compute the result vector components from
the sub-vectors.

5 Experimental Results

In this section we present the experiments we con-
ducted in order to investigate how the two stream
partitioning strategies scale and when it is favorable
to use operator dependent window split that utilizes
knowledge about the SQF semantics.

The experimental set-up included three main strate-
gies for the example SQF fft3. The central execution
on a single node (Figure 6a) is a reference strategy.
The second strategy is window distribute (WD) using
Round Robin (Figure 6b). The third strategy is win-
dow split (WS) using FFT-dependent split and join
operators (Figure 6c). In all the cases synchronization
of the partitions after the parallel execution is per-
formed and taken into account in the measurements.

The parallel strategies WD and WS were tested for
degree of parallelism 2, 4, and 8. The data flow graphs
for degree of parallelism 4 are illustrated in Figure 9.

For degree of parallelism 4 we consider in addi-
tion two strategies, WD4-Tree and WS4-Tree (Fig.
10), where the partition and combine phases have a
distributed tree-structured implementation. The tree
structure in the example has two levels where each
partitioning node creates two partitions and, analo-
gously, each combine node recombines the results from
two partitions. A potential advantage of such tree-
structured partitioning is that it allows for scaling the
partition and combine phases with higher degree of

S2S-merge
S1

S-distribute

FFT3 256

FFT3 256

a)

FFT3 256

FFT3 256

S2
OS-join

S1
OS-split

b)

FFT3 64

FFT3 64

FFT3 64

FFT3 64

Figure 9: Parallel strategies with flat partitioning in 4
(a)Window Distribute with Round Robin (b)Window
Split with fft3part and fft3combine

S1

FFT3 256

FFT3 256

FFT3 256

FFT3 256

S2S-merge

S-merge

S-merge

S-distribute

S-distribute

S-distribute

S2
OS-join

OS-split OS-join

OS-join
S1

OS-split

b)

OS-split

FFT3 64

FFT3 64

FFT3 64

FFT3 64

a)

Figure 10: Parallel strategies with tree partitioning in
4 (a)Window Distribute with Round Robin (b)Window
Split with fft3part and fft3combine

parallelism in cases when communication and/or com-
putational costs in these phases limit the flow.

The experiments were done on a cluster computer
with processing nodes having Intel(R) Pentium(R) 4
CPU 2.80G-Hz and 2GB RAM. The nodes were con-
nected by a gigabit Ethernet. The communication be-
tween GSDM working nodes used TCP/IP protocol.
The data was produced by a digital space receiver. For
efficient inter-GSDM communication complex vectors
were encoded in binary format when sent to and re-
ceived from TCP/IP sockets.

An important metric for any parallel system is the
scale up. In the case of parallel data flow graphs it
depends both on the scalability of the SQF in the com-
pute phase and on the scalability of the partitioning
strategy itself in the partition and combine phases.

We measured the scalability in terms of two crite-
ria: total maximum throughput and size of the logi-
cal windows with respect to the SQFs. We measured
the throughput by the time to process a stream seg-
ment of 2MB signal samples for each of the 3 channels.
With binary encoding the amount of communicated
data was approximately 50MB. The size of the seg-

164

 0

 0.5

 1

 1.5

 2

 2.5

 16384 8192 4096 2048 256

T
im

e
in

 s
ec

 fo
r

1
lo

gi
ca

l w
in

do
w

Logical window size

Processing Times for FFT Function

Fast implementation
Slow implementation

Figure 11: Times for FFT implementations

ment was chosen in such a way that even the fastest
strategies run long enough so that the slow start-up
of TCP communication is stabilized. To investigate
peak throughput the tests were run with increasing
input stream rates until the point where the idle time
of the most loaded nodes decreased under a threshold
of 3%. All the diagrams show execution times for such
maximum throughput.

Many scientific stream functions need to scale with
the increase of the logical window size, e.g. to improve
the precision of the results. In order to investigate
the scalability with respect to the window size, seven
different logical window sizes from 256 to 16384 signal
samples were used in all of the experiments.

Another important parallel performance metric is
speed up. It is the ratio of the time elapsed in the
central execution towards the time elapsed in the par-
allel execution for the same problem size, which in our
case means the same logical window size. In order to
analyze the speed up we also ran the central reference
strategy for all window sizes.

The execution of distributed scientific stream
queries combines expensive computations with high
volume communication. In order to investigate the
importance and impact of each of them on the total
data flow performance, we ran two sets of experiments
- one with a highly optimized fft3 function implemen-
tation and one with a slow implementation, where we
deliberately introduced some delays in the FFT algo-
rithm. Figure 11 shows the execution times of FFT
implementations for logical windows of different sizes.

Figure 12 illustrates the increase of the total elapsed
time with increase of the logical window size for the
central strategy and both parallel strategies with de-
gree of parallelism 2, and in both fast and slow ex-
periment sets. For all the strategies the FFT process-
ing nodes are most loaded and therefore the through-
put is determined by the FFT operation complexity,
O(n log n). The WS strategy is faster than the WD
strategy, since the parallel FFT processing nodes work
on logical windows with vectors having size smaller by

 0

 20

 40

 60

 80

 100

 120

 140

 16384 8192 4096 2048 256

T
im

e
in

 s
ec

 fo
r

50
M

B
 s

tr
ea

m
 s

eg
m

en
t

Logical window size

FFT times - fast implementation

Central
WS in 2
WD in 2

 0

 50

 100

 150

 200

 250

 300

 350

 16384 8192 4096 2048 256
T

im
e

in
 s

ec
 fo

r
50

M
B

 s
tr

ea
m

 s
eg

m
en

t

Logical window size

FFT times - slow implementation

Central
WS in 2
WD in 2

Figure 12: FFT times for central and parallel in 2
execution (a)Fast implementation (b)Slow implemen-
tation

a factor of two than the vector size in WD strategy.
Given the operator complexity this results in less total
time in the dominating compute phase.

In the fast experimental set for the smallest window
size 256 we observed an exception of this behavior be-
cause of overhead per logical window due to increased
memory management and communication.

Figure 13 illustrate fast and slow experimental sets
for degree of parallelism 4. Here we compare four
strategies: WD and WS with flat partitioning, i.e. in
a single node, and WD4-Tree and WS4-Tree with tree
partitioning, i.e. by a structure of two partitioning
levels.

FFT processing nodes in WD4 strategies are more
loaded than the partition and combine nodes for all
logical window sizes. Hence, the WD throughput
curves are similar to the central and WD2 strategies.
This is illustrated in Figure 14 which shows the total
real time spent in communication, computation, and
system tasks in the different phases of the distributed
data flow.

WD4-Tree strategy with a distributed implemen-
tation of the partition and combine phases did not
improve the result substantially since the FFT nodes
limit the flow and we skip therefore this strategy for

165

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 16384 8192 4096 2048 256

T
im

e
in

 s
ec

 fo
r

50
M

B
 s

tr
ea

m
 s

eg
m

en
t

Logical window size

FFT times - fast implementation

WS4-Flat
WS4-Tree
WD4-Flat

WD4-Tree

 0

 20

 40

 60

 80

 100

 16384 8192 4096 2048 256

T
im

e
in

 s
ec

 fo
r

50
M

B
 s

tr
ea

m
 s

eg
m

en
t

Logical window size

FFT times - slow implementation

WS4-Flat
WS4-Tree
WD4-Flat

Figure 13: FFT times for parallel in 4 execution
(a)Fast implementation (b)Slow implementation

the slow experimental set.
The partitioning and combining nodes of WS4

strategies are much more loaded than the correspon-
dent nodes in WD. First, the WS strategy has more
expensive operator dependent splitting and merging
SQFs. For example, the OS-Split using fft3part copies
vector elements in order to create partitioned logical
windows and the OS-Join computes the result win-
dows using fft3combine that executes the last step of
the FFT-Radix algorithm. The computations involve
one multiplication and one sum of complex numbers
for each element of the vector components of the result
window. For WS4-Flat strategy with degree of paral-
lelism 4 both fft3part and fft3combine are more ex-
pensive than the corresponding functions in the outer-
most partition and combine nodes of WS4-Tree strat-
egy where they process 2 partitions.

The second source of higher load of WS partition
and combine nodes is that they communicate more
logical windows with smaller size compared to WD
strategies. Therefore, the overhead per logical window
is bigger there. This overhead is smaller for WS4-Tree
strategy than for WS4-Flat strategy since the outer-
most partition and combine nodes communicate an
amount of logical windows smaller by a factor of 2.
As a result the combining node in WS4-Flat strategy

0

5

10

15

20

25

30

35

40

Partition FFT Combine

WD-Flat

WD-Tree

WS-Flat

WS-Tree

0

5

10

15

20

25

30

35

Partition FFT Combine

WD-Flat

WD-Tree

WS-Flat

WS-Tree

Figure 14: Real time spent in partition, FFT, and com-
bine phases of the parallel-4 strategies. a)Logical win-
dow of size 2048 b)Logical window of size 8192

is the bottleneck for windows of size smaller than 512
in the slow experimental set and for all window sizes in
the fast experimental set. The load of this node deter-
mines the maximum throughput of the data flow. Even
though the compute phase of WS is more efficient than
the compute phase of WD, the system cannot benefit
from this because of the combine phase limitation.

In the slow experimental set FFT processing nodes
in WS-Flat strategy are more loaded than the combin-
ing node for logical windows of size bigger than 512.
Hence, the throughput curve for these sizes follows the
FFT complexity behavior.

The WS4-Tree throughput curves are similar to
WS4-Flat curves. In the slow experimental set and
logical windows of size higher than 512 the FFT nodes
have the highest load. Therefore WS4-Tree and WS4-
Flat strategies have the same throughput for these
sizes. For window sizes smaller than 1024 in the slow
experimental set as well as for all window sizes in
the fast experimental set, the combining node limits
the flow. Hence, WS4-Tree strategy shows a higher
throughput since its combining node is less loaded.

Table 1 illustrates the percentage of the total time
spent in communication in the partition, compute, and
combine phases for the logical window size 8192.

As a conclusion, the strategy that gives the max-
imum throughput depends on the load balancing be-
tween partition, combine and compute nodes.

When, for a particular degree of parallelism and log-
ical window size the nodes in the compute phase are
loaded more than the nodes in the partition and com-
bine phases, the compute phase limits the throughput.
This occurred for all experiment with all WD strate-
gies and for the WS strategy with degree of parallelism
2 for both experimental sets, and in the slow exper-

166

Part Comp Comb
WS Proc 0.42 57.66 13.8

WS Comm 15.94 2.82 5.17
WS Comm % 95% 4.6% 26.7%

WD Proc 0.04 62.95 0.09
WD Comm 7.56 2.72 5.01

WD Comm % 93.9% 4.1% 91.2%

Table 1: Communication and computational costs in
different PCC phases

imental set with degree of parallelism 4 and logical
windows of size bigger than 512. In these settings the
window split strategy showed to be more efficient than
window distribute since it utilizes knowledge about
FFT semantics to make the compute phase more effi-
cient.

However, if the nodes in the partition and combine
phases are less loaded than the nodes in the com-
pute phase, the former ones become the bottleneck
that limits the flow. This situation occurred for WS
strategies with degree of parallelism 4 for all window
sizes in the fast experimental set and for window sizes
smaller than 1024 in the slow experimental set. Which
of the strategies has higher throughput in this situa-
tion depends on the proportion between the load of
WS combining nodes and WD computing nodes. Fig-
ure 14a illustrates that WD4 strategies have higher
throughput than WS4-Flat strategy for logical win-
dows of size 2048 where the WS combine node is more
loaded than WD compute nodes. However, the WS4-
Tree strategy has more efficient combine node and is
best for this window size. This also confirms that the
tree-structured partitioning increases the throughput
by scaling the combine phase.

Figure 14b illustrates that for windows of size 8192
and bigger the WS combine nodes becomes more ef-
ficient than the WD compute nodes and therefore
both WS strategies have higher throughput than WD
strategies.

Figure 15 shows that the window split strategy has
better speed-up than window distribute for an expen-
sive function (slow FFT version) and limited resources.
For example, when resources are limited to 6 computa-
tional nodes, 2 of which are dedicated to split and join,
WS achieves a speed up of 4.72 for window size 8192
while WD has a speed up of 4. For bigger number of
nodes, e.g. 10 in the diagram, window distribute using
RR shows better result.

Optimal Data Flows

In presence of user-defined expensive queries and vary-
ing execution environments, it is hard to estimate pro-
cessing and communication costs in order to construct
a precise cost model for cost based query optimization.
Instead we envision to run the system in a training

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

S
pe

ed
-u

p
to

w
ar

ds
 c

en
tr

al
 e

xe
cu

tio
n

Number of processing nodes

Speed up of parallel FFT with logical window size 8192

Ideal speed-up
Window Split

Window Distribute

Figure 15: Speed up of parallel FFT strategies for win-
dow size 8192.

mode to find the best plan among a space of parallel
plans. Using the experimental results we suggest the
following heuristics to generate the plan space:

• Given a number of nodes, the optimal degree
of parallelism for a given PCC parallel strategy
can be found by: i) start with 2 partitions and
measure the load of partition, compute and com-
bine nodes. ii) increase the degree of parallelism
while there are available resources and the com-
pute nodes have highest load;

• Choose the best plan among the optimal plans for
all parallel strategies. The choice can be based on
maximum throughput and/or resources used.

6 Conclusions and Future Work

We presented an extensible stream database system
where continuous queries (CQs) on data streams are
executed as distributed data flow graphs containing
stream query functions (SQFs). An SQF is a query
over logical stream windows. The data flow graphs
are defined using a user-extensible library of data flow
distribution templates.

Many expensive computations use a lattice shaped
distribution pattern for scale-up with partition, com-
pute, and combine phases. Using a generic tem-
plate, PCC (Partition-Compute-Combine) for such
lattice-shaped distributions, we implemented two over-
all stream partitioning strategies, window split and
window distribute. Both strategies are customizable
with stream partitioning and combining functions as
parameters. Window split allows to utilize knowledge
about SQF semantics to achieve better performance
on the parallel computing nodes for expensive SQFs.
By contrast, window distribution partitions data inde-
pendent of SQF.

We evaluated the strategies in a cluster environ-
ment with real scientific application data. The ap-

167

plication requires scalability in both data throughput
and window size. We measured how the total loss-less
throughput scales as the window size increases.

The experiments showed that window split is bet-
ter than window distribute when the compute phase
is more loaded than the partition and combine phases.
This happens when executing with limited resources
an SQF which is increasingly more expensive for larger
windows, such as FFT. By reducing the size of win-
dows for SQFs with higher than linear complexity the
total processing time in the compute phase is reduced,
thus increasing the total throughput.

When the partitioning nodes are more loaded than
the computational ones, the scalability of the entire
data flow graph is limited by the scalability of the par-
titioning strategy itself. Therefore it is favorable to use
a fast partitioning strategy, i.e. window distribution
with Round Robin in our experimental settings.

In our current system we utilize in a training mode
the parameterized high level template specifications
to vary the degree of parallelism and the partition-
ing strategies. A built-in performance monitoring sub-
system measures the performance of different data flow
graphs in order to find the optimal one.

In our continuing work we will investigate how to
utilize adaptively query monitoring and knowledge
about the trade-offs of the partitioning strategies dur-
ing the query execution.

We are also investigating how GSDM can utilize
computational Grids for stream query executions.

Acknowledgments

This work has been supported by VINNOVA under
contract #2001-06074. We would like to thank the
team of prof. Bo Thidé at Swedish Institute of Space
Physics and Uppsala University for the useful discus-
sions and application problems and data provided.

References

[1] D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, S. Lee, G. Seidman, M. Stonebraker, N. Tat-
bul, and S. Zdonik. Monitoring streams: A new
class of data management applications. In Proc.
of the 28th VLDB Conf., pages 215–226, 2002.

[2] M. Cherniack, H. Balakrishnan, M. Balazinska,
D. Carney, U. Çetintemel, Y. Xing, and S. Zdonik.
Scalable distributed stream processing. In Proc.
of the CIDR Conf., 2003.

[3] C. Cranor, T. Johnson, O. Spataschek, and V.
Shkapenyuk. Gigascope: A stream database for
network applications. In Proc. of the ACM SIG-
MOD Conf., 2003.

[4] G. Graefe. Volcano - an extensible and parallel
query evaluation system. IEEE Trans. Knowl.
Data Eng., 6(1):120–135, 1994.

[5] V. Kumar, A. Grama, A. Gupta, and G.
Karypis. Introduction to Parallel Computing. The
Benjamin/Cummings Publishing Company, Inc.,
1994.

[6] S. Madden, M. A. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous
queries over streams. In Proc. of the ACM SIG-
MOD Conf., pages 49–60, 2002.

[7] R. Motwani, J. Widom, A. Arasu, B. Babcock, S.
Babu, Mayur Datar, G. S. Manku, C. Olston, J.
Rosenstein, and R. Varma. Query processing, ap-
proximation, and resource management in a data
stream management system. In Proc. of the 1st
CIDR Conf., 2003.

[8] K. W. Ng and R. R. Muntz. Parallelizing user-
defined functions in distributed object-relational
DBMS. In IDEAS Conf., pages 442–445, 1999.

[9] M. Tamer Özsu and Patrick Valduriez. Principles
of Distributed Database Systems. Prentice Hall,
1999.

[10] M. A. Shah, J. M. Hellerstein, and E. A.
Brewer. Highly-available, fault-tolerant, parallel
dataflows. In Proc. of the ACM SIGMOD Conf.,
pages 827–838, 2004.

[11] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran,
and M. J. Franklin. Flux: An adaptive parti-
tioning operator for continuous query systems. In
Proc. of the ICDE Conf., pages 25–36, 2003.

[12] M. Sullivan and A. Heybey. Tribeca: A system
for managing large databases of network traffic.
In USENIX Conf., pages 13–24, 1998.

[13] A. S. Szalay, J. Gray, A. Thakar, P. Z. Kunszt,
T. Malik, J. Raddick, C. Stoughton, and Jan van
den Berg. The SDSS SkyServer: public access to
the sloan digital sky server data. In Proc. of the
SIGMOD Conf., pages 570–581, 2002.

[14] LOIS - The LOFAR Outrigger In Scandinavia.
http://www.lois-space.net/

[15] F. Tian and D. J. DeWitt. Tuple routing strate-
gies for distributed eddies. In Proc. of the 29th
VLDB Conf., pages 333–344, 2003.

[16] R. H. Wolniewicz and G. Graefe. Alge-
braic optimization of computations over scientific
databases. In Proc. of the 19th VLDB Conf.,
pages 13–24, 1993.

168

