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Abstract

Emerging large-scale monitoring applications re-
quire continuous tracking of complex data-
analysis queries over collections of physically-
distributed streams. Effective solutions have to
be simultaneously space/time efficient (at each
remote monitor site), communication efficient
(across the underlying communication network),
and provide continuous, guaranteed-quality ap-
proximate query answers. In this paper, we pro-
pose novel algorithmic solutions for the problem
of continuously tracking a broad class of complex
aggregate queries in such a distributed-streams
setting. Our tracking schemes maintain approxi-
mate query answers with provable error guaran-
tees, while simultaneously optimizing the stor-
age space and processing time at each remote
site, and the communication cost across the net-
work. They rely on tracking general-purpose ran-
domized sketch summaries of local streams at re-
mote sites along with concise prediction mod-
els of local site behavior in order to produce
highly communication- and space/time-efficient
solutions. The result is a powerful approximate
query tracking framework that readily incorpo-
rates several complex analysis queries (including
distributed join and multi-join aggregates, and ap-
proximate wavelet representations), thus giving
the first known low-overhead tracking solution for
such queries in the distributed-streams model.

1 Introduction

Traditional data-management applications typically negju
database support for a variety @fie-shot queriesnclud-
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ing lookups, sophisticated slice-and-dice operationta da
mining tasks, and so on. One-shot means the data pro-
cessing is essentially done once, in response to the posed
query. This has led to a very successful industry of database
engines optimized for supporting complex, one-shot SQL
gueries over large amounts of data. Recent years, how-
ever, have witnessed the emergence of a new cldasge-
scale event monitoringpplications that pose novel data-
management challenges. In one class of applications, mon-
itoring a large-scale system is a crucial aspect of system op
eration and maintenance. As an example, consider the Net-
work Operations Center (NOC) for the IP-backbone net-
work of a large ISP (such as Sprint or AT&T). Such NOCs
typically need to monitor hundreds or thousands of net-
work elements (e.g., routers, links) and events at blisteri
speeds, continuously tracking and correlating data from a
multitude of points in the network in order to quickly detect
and react to hot spots, floods, element failures, and attacks
A different class of applications is one in which monitor-
ing is the goal in itself. For instance, consider a wireless
network of sensors deployed for habitat and environmen-
tal monitoring or inventory tracking. The key objective for
such systems is to continuously monitor and correlate sen-
sor measurements for trend analysis, detecting moving ob-
jects, intrusions, or other adverse events.

A closer examination of such monitoring applications
allows us to abstract a number of common characteristics.
First, monitoring iscontinuousthat is, we need real-time
tracking of measurements or events, not merely one-shot
responses to sporadic queries. Second, monitoring is in-
herentlydistributed that is, the underlying infrastructure
comprises several remote sites (each with its own local
data source) that can exchange information through a com-
munication network. This also means that there typically
are importantcommunication constraintswing to either
network-capacity restrictions (e.g., in IP-network monit
ing, where the volumes of collected utilization and traffic
data can be huge [7]), or power and bandwidth restrictions
(e.g., in wireless sensor networks, where communication
overhead is the key factor in determining sensor battery
life [18]). Furthermore, each remote site may sddgh-
speed strearof data and has its own local resource limita-
tions, such astorage-spacer processing-timeonstraints.



This is certainly true for IP routers (that cannot possiblyston et al. [3, 21], Das et al. [8], and our recent work on dis-
store the log of all observed packet traffic at high networktributed quantile tracking [6]. All these efforts considiee

speeds), as well as wireless sensor nodes (that, even thoutghdeoff between accuracy and communication for moni-
they may not observe large data volumes, typically haveoring a limited class of continuous queries (at a coordina-
very little memory onboard). tor site) over distributed streams (at remote sites). More

Another key aspect of large-scale event monitoring isSPecifically, Olston et al. [3, 21] consider tracking approx
the need for effectively tracking queries thebmbine imate top# values and simple aggregates (eAVERAGE
and/or correlate information(e.g., IP traffic or sensor OF MAX) over dynamically-changing numeric values spread
measurements) observed across the collection of remof/er multiple sources, whereas Das et al. [8] discuss mon-
sites. For instance, tracking the result size géia (the  itoring of approximate set-expression cardinalities over
“workhorse” correlation operator in the relational world) Physically-distributed element streams. Similarly, oew r
over the streams of fault/alarm data from two or more IPCent work [6] attacks the problem of approximately track-
routers (e.g., with a join condition based on their observednd one-dimensionatjuantile summaries of a global data
timestamp values) can allow network administrators to efdistribution spread over the remote sites. All these ear-
fectively detect correlated fault events at the routers), an lier papers focus solely on a narrow class of distributed-
perhaps, also pinpoint theot-causesof specific faults ~Monitoring queries (e.g., one-dimensional quantiles), re
in real time. As another example, consider the track-Sulting in special-purpose solutions applicable only @ th
ing of a two- or three-dimensional histogram summary ofspecific form of queries at hand. It is not at aII_ clear if/how
the traffic-volume distribution observed across the edgdhey can be extended to more general settings (such as,
routers of a large ISP network (along axes such as timdracking distributedoins or multi-dimensionabata sum-
source/destination IP address, etc.); clearly, such a higharies).
togram could provide a valuable visualization tool for ef- Our Contributions. In this paper, we tackle the problem
fective circuit provisioning, detection of anomalies and of continuously tracking approximate, guaranteed-gyalit
DosS attacks, and so on. Interestingly, when tracking staanswers to eroad, general class of complex aggregate
tistical properties of large-scale systems, answers tigat a queriesover a collection of distributed data streams. Our
precise to the last decimal are typically not needed; in-contributions are as follows.
steadapproximate query answefwith reasonable guaran- e Communication- and Space-Efficient Approximate

tees on the approximation error) are often sufficient, Sinc‘buery Tracking. We present the first known algorithms

we are typically Io_oking for indica_tors or patterns, ratherfor tracking a broad class of complex data-analysis queries
than precisely-defined events. This works in our favor, al-

lowi 1o effectively tradeoff effici ith ) over a distributed collection of streams to specified ac-
t?(;’\r’]'g%:ﬁtyoe ectively tradeolt efliciency with approxima curacy, provably, at all times. In a nutshell, our track-

ing algorithms achieve communication and space effi-
Prior Work. Given the nature of large-scale monitor- ciency through a combination of general-purpasgdom-

ing applications, their importance for security as well ized sketchetor summarizing local streams, and concise
as daily operations, and their general applicability, sur-sketch-prediction model®r capturing the update-stream
prisingly little is known about solutions for many ba- behavior at local sites. The use of prediction models, in
sic distributed-monitoring problems. The bulk of recentparticular, allows our schemes to achieve a natural notion
work on data-stream processing has focused on developirgf stability, rendering communication unnecessary as long
space-efficient, one-pass algorithms for performing a wideds local data distributions remain stable (aedictablg.
range ofcentralized, one-shot computations massive The end result is a powerful, general-purpose approximate
data streams; examples include computing quantiles [15guery tracking framework that readily incorporates selvera
estimating distinct values [13], counting frequent eletaen complex data-analysis queries (including join and multi-
(i.e., “heavy hitters”) [4, 20], approximating large Haar- join aggregates, and approximate wavelet/histogram repre
wavelet coefficients [14], and estimating join sizes andsentations in one or more dimensions), thus giving the first
stream norms [1, 2, 11]. All the above methods work inprincipled, low-overhead tracking solution for such qgesri

a centralized, one-shot setting and, therefore, do not corin the distributed-streams model. In fact, as our analy-
sider communication-efficiency issues. More recent worksis demonstrates, the worst-case communication cost for
has proposed methods that carefully optimize site comsimple cases of our protocols is comparable to that of a
munication costs for approximating different queries in aone-shot computation, while their space requirement is not
distributed setting, including quantiles [16] and heavy hi much higher than that of centralized, one-shot estimation
ters [19]; however, the underlying assumption is that thenethods for data streams.

computation is triggered either periodically or in resgns o Time-Efficient Sketch-Tracking Algorithms, and Ex-

to a one-shot request. Such techniques are not immediensjons to Other Streaming Models When dealing with
ately applicable focontinuous-monitoringvhere the goal  massive, rapid-rate data streams (e.g., monitoring high ca
is to continuously provide real-time, guaranteed-quaty  pacity network links), théime needed to process each up-
timates over a distributed collection of streams. date (e.g., to maintain a sketch summary of the Stream) be-
Closest in spirit to our work are the recent results of Ol-comes a critical concern. Traditional approaches that need
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to “touch” every part of the sketch summary can quickly
become infeasible. The problem is further compounded in _
our tracking schemes that need to continuously track the B NP

User Query Q(fi, fj, ...)——=

Global Streams Coordinator

divergence of the sketch from an evolving sketch predic- >
tion. We address this problem by proposing a novel struc- ate-Unoie
. pdat
ture for randomized sketches that allows ugt@rantee Site 1 Messages Site b

small (i.e., logarithmic) update and tracking tim@egard- mom | femee g
less of the size of the sketch), while offering the same (in
fact, slightly improved) space/accuracy tradeoffs. Ferth
more, we discuss the extension of our distributed-tracking
schemes and results to different data-streaming modéls tha
place more emphasis on recent updates to the stream (using
eithersliding-windowor exponential-decagnechanisms).

e Experimental Results Validating our Approach. We " thg case of IP routers monitoring the numbeTGP con-
perform a thorough set of experiments with our scheme&€ctions andJDP packets exchanged between source and
over real-life data to verify their benefits in practical sce destlna_tlon P address_e[ﬂ_l] = [Uz] denote the domain
narios. The results clearly demonstrate that our algosthm©f 64-bit (source, destination) IP-address pairs, gad,
can result in dramatic savings in communication — reduc2,; €apture the frequency of specific (source, destination)
ing overall communication costs by a factor of more thanPirs observed ilfCP connections antdDP paclfe;lts routed

20 for an approximation error of only0%. The use of so- through routey. (We usef, ; to denote both the" update .
phisticated, yet concise, sketch-prediction models istgey Stréam at sitg as well as the underlying element multi-
obtaining the best results. Furthermore, our numbers Sho@et/frequency dlstrl_b_qnon n what follows.) _Each stream
that our novel schemes for fast local sketch updates angPdate atremote sitgis a triple of the form< 4, v, +1 >,
tracking can allow each remote site to process many huri€noting an insertion 1) or deletion (*~1") of element

dreds of thousands of updates per second, matching evén€ Uil in the f; ; frequency distribution (i.e., a change
the highest-speed data streams. of =1 in v's net frequency inf; ;). All frequency distri-

: bution vectorsf, ; in our distributed streaming architec-
Throughout, we have chosen to omit all proof arguments,re change dynamically over time — when necessary, we
due to space constraints.

make this dependence explicit, usiffig; (¢) to denote the
.. ) state of the vector at time(assuming a consistent notion
2 Preliminaries of “global time” in our distributed system). (The unquali-
System Architecture. ~ We consider a distributed- fied notationf, ; typically refers to theurrentstate of the
computing environment, comprising a collectionfofe-  frequency vector.)

mote sitesand a designatedoordinator site  Streams  pyoplem Formulation. For each {1,....s}, we define
of data updates arrive continuously at remote sites, Wh”?heglobal frequency distribution vect;)f. for theit" up-

: - ; . . i
the coordinator site is responsible for generating approxigate stream as the summation of the corresponding local,
mate answers to (possibly, continuous) user queries pos%%r—site vectors; that isf, — Z;? £, Note that, in gen-
over theunionsof remotely-observed streams (across aIIeral the local sﬁb—stregmsfo?zlstrléjﬁmay onlf/ be ob-
S|_tes_). Following earlier wo_rk in the area [3, 6, 8, 21], our er\;ed at subsebf thek remote sites — we use t es(f,)
distributed stream-processing model does not allow dlrec0 denote that subset, and write — |si t es(f, )| (henlce
communication between remote sites; instead, as illestrat = _ k). Our focus is on the problem of effectii/ely answer-

;< k).

in Figure 1, a remote site exchanges messages only wit : : :
- S : ; . user queries over this collection of global frequenc
the coordinator, providing it with state information on Itsaﬁ:g q 9 g Y

local update streams local update stream:

Figure 1:Distributed Stream Processing Architecture.

(locally-observed) streams. Note that such a hierarchic Ztr?%t:qtggfni bqﬁé.r;/ J; f/a?lgeiggnc?/s)édaltgzhoraslf.coﬁfilmirus-
rocessing model is, in fact, representative of a largesclas : . S .
gf applicafci]ons including netwo?k monitoring Wherega cen-querylng en\_/lronment W.h'Ch. implies that the coo_rdlnator
tral Network O erations Center (NOC) is responsible forneeds tontinuously malntanﬁor, track) the approximate
; tp K traffic statisti i kpb dwvidt 2nswers to user queries as the local update streggms
E{iIC)ig(:if)lrrllglSesr)vl?rz:e-:jz;gnzgt;?\ ka;te(ec'(g)un ,:2) co?lrt; oml evolve at individual remote sites. More specifically, we fo-

. cus on a broad class of user querigs= Q(f+, ..., f,)
switches, routers, and/or Element Management Syste ; L
(EMSs) distributed across the network. TSver the global frequency vectors, including:

Each remote sitg € {1,..., k} observes local update ¢ Inner- and Tensor-Product Queries (i.e., Join and Multi-
streams that incrementally render a collection of (upsto) Join Aggregates)Given a pair of global frequency vectors
distinctfrequency distribution vectofgquivalently, multi- ~ f1, f over the same data domditi], theinner-product
sets)f, ;, .-, fs; over data elements from correspond- queryQ(f;, f2) = f1- fo = Zg;ol filv] - folv] is the
ing integer domaingl;] = {0, ..., U; — 1}, fori = 1, result size of an (equi)join query over the corresponding

.., s, that is, f, ;[v] denotes the frequency of element streams (i.e.|f; > f,[). More generaltensor prod-
v € [U;] observed locally at remote sije As an example, uct queriesQ(f;, fi» fms ---) = fi fir fom -+ Over

15



multiple (domain-compatible) frequency vectofs, f;, mote devices (such as wireless sensor nodes) [10, 18]. A
fms - - Capture the result size of the corresponding multi-main part of our approach is to adopt the paradigm of con-
join query f, > f; > f,.--- (see, e.g., [11]); here the tinuous tracking opproximateguery answers at the coor-
notion of a “frequency vector” is generalized to capture adinator site with strong guarantees on the quality of the ap-
(possibly)multi-dimensionafrequency distribution (i.e., a proximation. This allows our schemes to effectively trade-
tenso). For instance, in the three-way join quefy- f- off communication efficiency and query-approximation ac-
f3 =2 u>.,f1lul - folu,v] - fs[v], the f, vector cap- curacy in a precise, quantitative manner; in other words,
tures the joint distribution of the two attributes of stregim  larger error tolerances for the approximate answers at the
participating in the join. Without loss of generality, waeo  coordinator imply smaller communication overheads to en-
tinue to view such multi-dimensional frequency tensors asure continuous approximate tracking.

vectors (e.g., assuming some standard linearization of thRandomized Stream Sketching. Techniques based on
tensor entries, such as row-major). In the relational W0r|dsmall-space pseudo-randaketchsummaries of the data
join and multi-join queries are basically the “workhorse” haye proved to be very effective tools for dealing with mas-
operations for correlating two or more data sets. Thus, theyjye rapid-rate data streams in a centralized setting [, 1
play a crucial role in any kind of data analysis over mul-14 11]. The key idea in such sketching techniquesis to rep-
tiple data collections. Our discussion here focuses primaregent a streaming frequency vecfausing a much smaller

ily on join and multi-join result sizes (i.eCOUNT aggre-  sietchvector (denoted bgk (f)) that can be easily main-
gates), since our approach and results extend to other aggined as the updates incrementally rendeffirage stream-
gregate functions in a relatively straightforward manmasr ( ing by. Typically, the entries of the sketch vectdt(f))
discussed in [11]). are appropriately-defingandom variablesvith some de-

e L,-Norm Queries (i.e., Self-Join Size¥heself-join size ~ Sirable properties that can provide probabilistic guarest
query for a (global) streanfi; is defined as the square of the for the quality of the data approximation.

Lo norm (| - ||) of the corresponding frequency vector; that ~ More specifically, consider the AGMS (or, “tug-of-
is, Q(f:) = ||fill2 = f; - f: = 32, (F:[v])2. The self-join war") ske;ches_propo_sed by Alon, Gibbons, Matias, and
size represents important demographic information about §zegedy in their seminal papers [2,'1]Fhe " entry in
data collection; for instance, its value is an indicatiothef ~an AGMS sketctsk(f) is defined as the random variable
degree of skew in the data [2]. ZUU:_(} flv] - &[v], where{&;[v] : v € [U]} is a family of
four-wise independent binary random variables uniformly
distributed in{—1, +1} (with mutually-independent fam-
ilies used across different entries of the sketch). The key
. . . b here is that, using appropriate pseudo-random hash func-
n th? given range, that.'SR(fi’a’b) = Do Filvl. tions, each such family can be efficiently constructed on-
A point queryis the special case of a range query whenjine in small (i.e., O(log U)) space [2]. Note that, by

a = b. Theheavy hittersare those points € U satisfy- construction, each entry ak(f) is essentially aandom-

ing R(f;,v,v) > ¢- R(f;,0,U; —1) (i-e., their frequency ;o4 jinear projectior(i.e., an inner product) of the vec-
exceeds ab—fracuon of the overall number of stream ele- (using the corresponding family), that can be eas-
ments) for a givew < 1[4, 5]. ily maintained over the input update stream: Start with
o Histogram and Wavelet Representation&. histogram  each countesk(f)[i] = 0 and, for eachi, simply set
query H(f;, B) or wavelet quenyiV (f,, B) over a fre-  sk(f)[i] = sk(f)[i]+ &[v] (sk(f)[i] = sk(f)[i]— &[v])
quency distributionf; asks for aB-bucket histogram rep- whenever an insertion (resp., deletion).ois observed in
resentation, or @-term (Haar) wavelet representation of the stream. Another critical property is tlgearity of such

the f, vector, respectively. The goal is to minimize the er- sketch structures: Given two “parallel” sketches (buik us
ror of the resulting approximate representation, typjcall ing the same families) sk(f,) andsk(f,) and scalars
defined as theL, norm of the difference between the «, (3, thensk(af,+03f,) = ask(f)+Bsk(f,) (i.e., the
H(f,;, B) or W(f,, B) approximation and either the true sketch of a linear combination of streams is simply the lin-
distribution £, or thebest-possibleé3-term representation ear combination of their individual sketches). The follow-
of f, [14, 22]. ing theorem summarizes some of the basic estimation prop-
erties of AGMS sketches (for centralized streams) that we
gemploy in our study. (Throughout, the notatiere (y+z)

is equivalent tdz — y| < z.)

e Range Queries, Point Queries, and Heavy Hittews.
range querywith parametersa, b] over a frequency dis-
tribution f, is the sum of the values of the distribution

The distributed nature of the local streams comprisin
the global frequency distributionsf;} raises difficult al-
gorithmic challenges for our approximate query tracking
problems. Naive schemes that accurately track query arFheorem 2.1 ([1, 2]). Let sk(f,) and sk(f,) denote
swers by forcing remote sites to ship every remote streartwo parallel sketches comprisir@( % log(1/4)) counters,
update to the coordinator are clearly impractical, sincebuilt over the streamsf, and f,, wheree, 1 — § de-
they not only impose an inordinate burden on the underlynote the desired bounds on error and probabilistic confi-
ing communication infrastructure (especially, f-OI’ higiter Lour techniques and results can also be extended to othesrméret
data streams and large numbers of remote sites), but alSgeam sketching methods, such as @@int-Min sketcheS]; due to
drastically limit the battery life of power-constrained re space constraints, details are omitted.
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dence, respectively. Then, with probability at least ¢, is no need for communication between the remote sites and
l[sk(f1) —sk(f)|I? € (1 xe)||fy — fol|* andsk(f,)-  the coordinator.
sk(fy) € (f1 - Fa £ ellF1llllf2l])- The processing time Our solution avoids global information exchange en-
required to maintain each sketch¥ % log(1/4)) per up- tirely by each individual remote sitgcontinuously moni-
date. toring only theL, norms of itslocal update streamsgf, . :

o ) i =1,...,s}. When a certain amount of change Is ob-
Thus, the self-join of the difference of the sketch vec-ggped locally, then a site may send a consiste-update
tors gives a high-probabilitye relative-error estimate message in order to update the coordinator with more re-
of the self-join of the 2d|fference of the QaCtU_al,Streamscentinformation about its local update stream, and then re-
(so, naturally,||sk(f)[[* € (1 £ e)|f,[[*); similarly,  gymes monitoring its local updates (Figure 1). Such state-
the inner product of the sketch vectors gives a highypgate messages typically comprise a small sketch sum-
probability estimate of the join of theztwo streams 10 mary of the offending local stream(s) (along with, possi-
within an additive error ofe||f,[|[|f]|. “ To provide py ‘additional summary information), to allow the coor-

¢ relative-error guarantees for the binary join qugty-  ginator to continuously maintain accurate approximate an-
f2, Theorem 2.1 can be applied with error bourid= gyers to user queries. Our tracking scheme depends on
(ell £11lIF211)/(f1 - £2), giving a total sketching space re- o parameters and6, where: e captures the error of the
quirement O@(% log(1/4)) counters [1]. local sketch summaries communicated to the coordinator;

The results in Theorem 2.1 can be extended in a natuand, ¢ captures (an upper bound on) the deviation of the
ral manner to the case of multi-join aggregate queries [11]local-streamZ, norms at each remote site involved in the

Given anm-way join (i.e., tensor-product) quer@(f,, guery since the last communication with the coordinator.
oo ) = f1 - fo--- f,,, and corresponding paral- The overall error guarantee provided at the coordinator is
lel AGMS sketch vectorsk(f,), ..., sk(f,,) of size  givenby a functiory(e, ), depending on the specific form

0(6%10g(1/5)) (built based on the specific join predi- of the query being tracked._ It is important to no_te, how-
cates in the query [11]), the inner product of the sketchegVer, that the local constraints at each remote site are es-

I sk (f;) can be shown to be within an additive error of Sentially identical (i.e., simply tracking,-norm deviations
e(2m~1 — 1)21172, || £, of the true multi-join result size. for individual streams)regardlessof the specific (global)

7=

The full development can be found in [11]. guery being tracked; as our results demonstrate, the combi-
nation of small sketch summaries and local constraints on

3 Our Query-Tracking Solution the stream, norms at individual sites is sufficient to pro-
vide high-probability error guarantees fobead class of

The goal of our tracking algorithms is to ensure strong er-
ror guarantees for approximate answers to queries over tP}

colle(cj:_'uor; of glr(?_tl)al SFr?aF“;Wz' thz =1, "t‘ ’ ]f} at the . such ageneral-purposédistributed-tracking mechanism for
coordinator, while minimizing the amount of communi- o 56 imate query answers.

patlon with thg remoFe sites. We can als.o identify oth_er Intuitively, largerd values allow for larger local devi-
'ml‘?o“a”? d.es'gn desujerata th.at our solution shouldestriv ations since the last communication and, so, imply fewer
_for. (1.) Minimal glob_al mforrr_]au_on exchange& s_chemes communications to the coordinator. But, for a given er-
in which the coordinator (.j'St”bUteS |nf9rmat|on on the ror tolerance, the size of theapproximate sketches sent
global streams to remote sites WOUId. typlca[ly neQd to re'during each communication is larger (singg, 6) is in-
broadcast up-to-date global information to sites (eitteer p creasing in both parameters). We provide some analysis

riodically or during some “global resolutio.n” stage [3, 8]) that allows us to optimally divide the allowed query-error
to ensure correctness; instead, our solutions are deS|gn(§ erance in simple cases, and provide empirical guidsline

to explicitly avoid such expgnsive “g_lobal synchronizatio for more complex scenarios based on our experimental ob-
steps; (2)Summary-based information exchanrgerather servations

than shipping complete update streaff)s to the coordi- A local sketch summargk(f, () communicated to

nator, remotes sites only communicate concise summary . .oordinator gives an—approximate) picture of the

information (e.g., .S.ketCh.eS).(.)n their Iocally_—observed up snapshot of thef, . stream at time.® To achievestability,
dates; and, (3ptability— intuitively, the stability property a crucial compoﬁent of our solutions are concketch-

means that, provided the behavior of the local streams at r%'rediction modelshat may be communicated from remote
mote sites remains reasonably stableggaedictablg, there o 4 the coordinator (along with the local stream sum-

2We note that the above “inner product” operator over sketatiors maries_) in an attempt to accurately capture the_ anticipated
is slightly more complex, involving both averaging and naeeselection  behavior of local streams. The key idea here is to enable
operations over the sketch-vector components [1, 2]. —#fiymeach  egch sitej and the coordinator to share a prediction of how

sketch vector can be viewed as a two-dimensionat m array, where . .
n = O(Z), m = O(log(1/5)), and the “inner product" in the sketch- the streany’; ; evolves over time. The coordinatoremploys

vector space for both the join and se;llf-join case is defined as

ueriesover the global streamsf, : i = 1, ..., s}. To
e best of our knowledge, this work is the first to provide

1 3To simplify the exposition, we assume that communicatioith the

Sk(f,) - SK(f3) = median {— Zsk(fl)[i,j] -SK(Fo)[, 4]} coordinator are instantaneous. In the case of non-triekdyd in the un-
j=1,...m T =] derlying communication network, techniques based on staeping and

message serialization can be employed to ensure correcteem [21].
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this prediction to answer user queries, while the remoge sitzj sk(f;;(t)) (i = 1,2), and provide an approximate an-
checks that the prediction is close (witldibounds) to the swer to the join query at timewith the error guarantees
actual observed distributiofi; ;. As long the prediction specified in Theorem 35.

accurately captures the local update behavior at the remote In our tracking scheme, to minimize the overall commu-
site, no communication is needed. Taking advantage of thaication overhead, remote sites can also potentially ship a
linearity properties of sketch summaries allows us to repconcisesketch-prediction modédbr their local updates to
resent the predicted distribution using a congisedicted  f, (in addition to their local-stream sketches) to the co-
sketch thus, our predictions are also based solely on conerdinator. The key idea behind a sketch-prediction model
cise summary information that can be efficiently exchangeds that, in conjunction with the communicated local-stream
between remote site and coordinator when the model isketch, it allows the coordinator to construcpeedicted
changed. A high-level schematic of our distributed tragkin sk?(f; ;()) for the up-to-date state of the local-stream
scheme is depicted in Figure 2. The key insight from oursketchsk(f; ;(t)) at any future time instarit based on the
results is that, as long as local constraints are satisfied, t locally-observed update behavior at the remote site. The
predicted sketches at the coordinator are basically equivaoordinator then employs these collectionspoédicted
lent tog(e, 0)-approximate sketch summariekthe global  sketchesk?(f, ;) to continuously track an approximate

data streams. answer to the d'istributed—join query. (We discuss differen
options for sketch-prediction models in Section 3.2). Fix a
site j € sites(f;) (wherei € {1,2}). After shipping
M Prediction used b its local sketchsk(f; ;) and (possibly) a corresponding
~ / \ " coordinator for sketch-prediction model to the coordinator, siteontin-
Predicted quety answering uously monitors the., norm of the deviation of its local,
Distribution Predicted \ up-to-date sketchk (f, ;(t)) from the corresponding pre-
Sketch Prediction error dicted sketctsk? (£, ;()) employed for estimation at the
/ tracked by sites coordinator. The site checks the following condition at ev-
1 / \ f ery time instant:
M - lIsk(f5,;(2)) — skP(fi ;)] < ’ sk (f ;DI ()
True Distribution True Sketch - d ~ Vk; -

thatis, acommunication to the coordinator is triggereg onl
if the relative Lo-norm deviation of the local, up-to-date
sketchsk(f; ;(t)) fromthe corresponding predicted sketch

0 C— g ) -
In the remainder of this section, we discuss the details O;rexceedsm (recall, i [sites(f,)]). The pseudo

our distributed query-tracking schemes, and our propose§0d€ for processing stream updates and tracking local con-

sketch-prediction models for capturing remote-site behavStraints at remote sites, as vyell as provi_ding_ approximate
ior. In addition, we introduce a simple, yet very effective, answers at the coordinator is depicted in Figure 3.  The
lfollowmg theorem demonstrates that, as long as the local

improvement of the basic AGMS sketching technique tha - ; o

plays a crucial role in allowing remote sites to track theirL.Q'norm deVIE.ltIO.n constraints are met at all participating

local constraints over massive, rapid-rate streanguir- sites for the distributedf, - £, join, then_ we can provide

anteed small timger update strong error guarantees for the approximate query answer
' (based on the predicted sketches) at the coordinator.

3.1 The Basic Tracking Scheme Theorem 3.1. Assume local-stream sketches of size
We present our tracking scheme focusing primarily onO(Z log(1/9)), and lets; = 35, ves(s,) SKP(£i ;) (i €
inner-product and generalized, tensor-product (i.e.timul {1,2}). Also, assume that, for each remote sjtec
join) gueries, since our results for the other query classesi t es(f;) (i € {1,2}), the condition (*) is satisfied. Then,
discussed in Section 2 follow as corollaries of the inner-with probability at leastl — 2(k; + k2)d,

product c_ase_(Sectlon 3.4). We focus on a singler- ¢, .4, e f, - fo+ (e+ (1+6)2(14+0)2 = )| £l 2]
product (i.e., join) quenQ(f,, f2) = f1 - f, over our

distributed-tracking architecture. Consider a remote sit ) )

j participating in the distributed evaluation 6k(f,, f,) N otherk VILIOI’dS, using local sketches of size
(.., j € sites(f,) Usites(f,)) — we assume that O(g log(®-5*2)), satisfying the localL,-norm devi-
each such site maintains AGMS sketches on its locally@tion constraints at each participating remote site essure
observed sub-streamg, ; and/or f, .. (we often omit that the approximate answer for the join sigze- f, com-

the “AGMS” qualification in what follows). If each par- Puted using only the predicted sketches at the coordinator
ticipating site sends the coordinator itp-to-datelocal- IS Within an absolute error afgq (¢, 0)||f1 ||| f2[| of the

stream sketchesk (f, ;(¢)) and/orsk(f, ;(t)), then, by 4This also assumes an initial “coordination” step where aachote

sketch linearity, the coordinator can simply compute thesjte gbtains the size parameters for its local sketcheshenzhirresponding
up-to-date sketches of the global streastgf;(¢)) =  hash functions (same across all sites) from the coordinator

Figure 2:Schematic of Sketch-Prediction-Based Tracking.
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Procedure SiteUpdate(y,i, v, +1,¢, 9, 0, k;) (1 +o)m — 1)2Hm £
1

Input: Site indexj, stream index, inserted/deleted value< [U]; (€ +mf) (27

sketch error, confidence, and local-deviation paramet@t®; o
“distribution factor”; for stream. 3.2 Sketch-Prediction Models

1. UpdateSketcsk (f; ;), < 4,v,+1>) //update currentand We give different options for the sketch-prediction mod-
2. UpdatePFEdiCtedSkewap(f ; J(t))) /lpredicted sketches  e|s employed to describe local update behaviors at remote
3. if [[sk(f; ;) —skP(f; () > THSK( ;.5 then sites. Such models are part of the information exchanged
4.  Compute sketch- pred|ct|0n mogsi edModel (f; ;) between the remote sites and the coordinator so that both
5. Send{i, j,sk(f, ;), predModel (f, ;)} to coordinator parties are “in-sync” with respect to predicted query rissul
and local-constraint monitoring. If our prediction models
ProcedureEstimateJoin(i d(f),i d(f,)) result in predicted sketchek”(f, ;) that are sufficiently
Input: Global-stream identifierisd (f,),i d(f5). close to the true state of the local sketches at jitien
Output: Approximate answer to join-size quefy - f. no communication is required between sitand the coor-

1. fori:=1t02do dinator. Thus, it is critical to keep sketch-prediction mod
2. Setsk”(f,(t)) =0 \ ’ b P

3 for eachj € si t es(f,) do els conc.iee and, yet, powerfull enough to eff_ectively cap-
4 SkP(f, (1)) = Skp(lf;( £) + Sk (£,,(1)) turestability properties in our distributed-tracking environ-
5. return skp(fll(t)) . skp(f;( ) ment® In each case, our prediction models consider how

the local distributionf, ; changes (as a function of time)
Figure 3: Procedures for (a) Sketch Maintenance and Trackingoetween the time of the last communication to the coordi-
at Remote Sitg € sites(f,) (i € {1,2}), and (b) Join-Size natort,,., and the current time; then, we show how to
Estimation at the Coordinatort lenotes current time) translate this model to a model for predicting the change
in the sketchof f, ; over time (Figure 2). As we will see,

exact answer. Note that these error guarantees are vefge linearity properties of sketches play a crucial role in
similar to those obtained for the much simpler, centralizedhe design of space-, time-, and communication-efficient
case (Theorem 2.1), with the only difference being thesketch-prediction models.

approximation-error bound ofg(e,6) = e+ (1 + ¢€)? Static Model. Our simplest prediction model is ttstatic

(1 4+6)% — 1) ~ e+ 26 (ignoring quadratic terms in,  mode] which essentially assumes that the local-stream dis-
6 which are typically very small since,§ < 1). The tribution f, ; remains static over time; in other words, our
following corollary gives the adaptation of our tracking prediction for the distributiory, ; at the current time in-
result for the speC|aI case ofself-joinqueryQ(f,) =  stantt (denoted byf? (t)) does not change over the time
£ 1P =32, (F1[0])% intervalt — tyrep, OF f7(t) = f;;(tpres). This implies

Corollary 3.2. Assume local-stream sketches of sizethat the predicted sketchkp(f”( )) employed at both
O(4 log(1/5)), and lets; = 3. csites(s,) SKP(F1). If the coordinator and remote sijas exactly the sketch last
€2 7 1 s

each remote sitg € si t es(f,) satisfies the condition (+), ShiPPedfrom sitg; thatis,sk”(f ; (1) = sk?(f7,(1) =
then with probability at least — 2k;0, ||s1|? € [1 & (e+  SK(fi;(tpres)). Such a prediction model is trivial to im-
(14 6)2 (1+60)2 — D|IFI12 ~ (1 £ (e+ 20))[| £,] - plement, essentially requiring no additional information

be exchanged between the coordinator and remote sites

Extension to Multi-Joins. The analysis and results for (besides the sites’ local sketches).

our distributed-tracking scheme can also be extended to theinear-Growth Model. Due to its simplistic nature, the
case of distributednulti-join (i.e., tensor-product) queries. static model can only achieve stability in very “easy” and
More formally, consider am-way distributed joinQ(f, somewhat unrealistic scenarios, namely when all frequency
ooy fm) = F1- fo--- fy, and corresponding parallel counts in thef; ; remain reasonably stable. This is clearly
sketchessk(f; ;) built locally at participating siteg € not the case, for instance, when local frequency counts are
U sites(f;) (based on the specific join predicates in growing as more updates arrive at remote sites. In such
Q as detailed in [11]). As shown in the following theo- cases, a reasonable “strawman” model is to assume that
rem, simply monitoring the.o-norm deviations of local- the future of the local distribution will resemble a scaled-
stream sketches is sufficient to guarantee error bounds fap version of its past; that is, assume tifat;(t) has the

the predicted-sketch estimates at the coordinator that arsame shape ag, ; (t,..,) With proportionately more ele-
very similar to the corresponding bounds for the simple,ments. Our secondllnear -growth modeis based on this

centralized case (see Section 2). assumption, setting? ;(t) = tpﬁfw (tprev). i-€., USINg
Theorem 3.3. Assume parallel local-stream sketches of@ linear scaling off; ;(t,re,) to predict the current state
sizeO(z log(1/9)), and lets; = 2 jesites(s o SKP(fi5) 5A similar notion of prediction models was introduced for gmecific
(t = 1, ..., m). If each remote sitg € si tes(f ) problem of tracking one-dimensional quantiles in [6]; &&l, we focus on

fofi e * : H tracking general-purpose randomized sketch summarieatafdistribu-
satlsﬁesw'ghe condition ( .)’ then with prO.bablllty 6}t IeaSt tions. Such notions of models are very different from thosg 0]: there,
1-2 Zz 1 kid, the pred'Cted -sketch eSt'maH%n 15i & models are used in a sensor network to optimize the cost ddiagirsg
the coordinator lies in the rang®?™, f,+ (e+ (1 + e) one-shot queries by polling specific sensors.
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of the distribution. (Scaling by time makes sense, e.g., ifty/acceleration predictions can depend on the size of the
a synchronous-updatesvironment, where updates to re- update window. While it is possible to seti” adaptively
mote sites arrive regularly at each time tick.) By sketchfor different stream distributions, this problem lies baglo
linearity, this easily implies that the corresponding pre-the scope of this paper; instead, we evaluate different set-
dicted sketch is simplsk?(f, ;(t)) = sk(f};(t)) =  tingsforlW experimentally over real-life data (Section 5).

7=SK(f; ; (tprev)), @ linear scaling of the mostrecentlo-  The following table summarizes the key points for each
cal sketch offwv; ; shipped to the coordinator (and no ad- of our three sketch-prediction models (namely, the model
ditional information need be exchanged between sites anihformation exchanged between the sites and the coordina-

the coordinator). tor, and the corresponding predicted sketches).

| Model [ Info. ] Predicted Sketch |
Static 0 sk(fl (tprev))
Linear-Growth 0 ——SK(f, ;(tprev))
Velocity/ sk(vi;) | sk(f; ](tprev)) + Atsk(v; ;)
Acceleration +(At)?sk(ai, ;)

Velocity/Acceleration Model. Although intuitive, our
linear-growth model suffers from at least two important
shortcomings. First, it predicts the future behavior of the
stream as a linear scaling of the entire history of the dist
tribution, whereas, in many real-life scenarios, only the r
cent history of the stream may be relevant for such predic
tions. Second, it imposes a linear, uniform rate of chang
over the entire frequency distribution vector, and, thas;c
not capture or adapt to shifts and differing rates in the,
distribution of updates over the vector. Our finagloc-
ity/acceleration modedddresses these shortcomings by ex-Theorem 3.4. Assume our static prediction model for an
plicitly attempting to build a richer prediction model that inner-product quenQ(f,, f2) = f1 - fo (with ¢, 4, 6,
uses more parameters to better fit changing data distribuand k; as defined earlier), and let = g (€, 0) ~ € + 26
tions; more specifically, letting\t = ¢ — ¢,,.,, OUr veloc-  denote the error tolerance at the coordinator. Then, for
ity/acceleration model predicts the current state offhe  appropriate settings of parameteesand ¢ (specifically,
distribution asf? ;(t) = f; ;(tprev) + Atwv; j + (At)a;;, €= % 0 = %), the worst-case communication cost for
where the vectors; ; anda; ; denote avelocityandac- ~ a remote sitgj processingV; local updates to strearf; ;
celerationcomponent (respectively) for the evolution of g O(W log() log N;).

the f, ; stream. Again, by sketch linearity, this implies

the pred|cted sketchk?(f; ;(t)) = sk(f;;(tprev)) +  That is, assuming that the “distribution factors; of
Atsk(v;;) + (At)? Sk(aw) Thus, to build a predicted Streams in the join query are reasonably small, the worst-
sketch at the coordinator under a velocity/acceleratiortase communication cost even for our simplest prediction
model, we need a velocity sketalk(v; ;) and an accel- modelis comparable to that ofome-shotketch-based ap-
eration sketctsk(a; ;). A concrete scheme for comput- proximate query computation with the same error bounds
ing these two sketches at sifds to maintain a sketch on (Theorem 2.1). (Note, of course, that each counter in the
a window of theW most recent updates tf; ;; scaling ~ sketches for sitg is of size O(log N;).) This analysis

this sketch by the time difference between the newest anéixtends in a natural manner to the case of multi-join ag-
oldest updates stored in the window gives an appropriatgregates. Providing similar analytical results for our enor
velocity sketch to be shipped to the coordinator, whereasomplex linear-growth and velocity/acceleration modsls i
the acceleration sketch can be estimated as the differencaore complex; instead, we experimentally evaluate differ-
between the recent and previous velocity sketches scaleght strategies for settingand ¢ to minimize worst-case

by the time difference. In detail, when remote sjtele- communication over real-life streams in Section 5.

tects a violation of its local.,-norm constraint forf, ; at _ o _

time ¢, it computes a new velocity skettk (v; ;) based 3.3 Time-Efficient Tracking: The Fast-AGMS Sketch

on the window of thé?’ most recent updates tf, ;, and A drawback of AGMS randomized sketches (Section 2) is
estimates a new acceleration sketdt(a; ;) as the dif-  that every streaming update must “touch” every compo-
ference betweesk(v; ;) and the corresponding velocity nent of the sketch vector (to update the corresponding ran-
sketch at time,,.,,, scaled bY— Note that, the only  domized linear projection). Since sketch-summary sizes
additional model information that needs to be communi-can vary from tens to hundreds of Kilobytes, especially
cated to the coordinator from sitgis the new velocity when tight error guarantees are required, e.g., for join or
sketchsk(v; ;) (since the coordinator already has a copymulti-join aggregates [1, 11], touching every counter in
of the previous velocity sketch and so can independentlguch sketches is simply infeasible when dealing with large
compute the acceleration sketch). Thus, while our richedata rates (e.g., monitoring a high-capacity network link)
velocity/acceleration model can give a better fit for dy- This problem is compounded in our distributed-tracking
namic distributions, it also effectively doubles the amioun scenario where, for each streaming update, a remote site
of information exchanged (compared to our simpler predicheeds to track the difference between a sketch of the up-
tion models). Furthermore, the effectiveness of our velocdates and an evolving predicted sketch.

Analysis. We analyze th&orst-casecommunication cost
%f our inner- -product tracking scheme as a function of the
overall approximation error at the coordinator under some
S|mpI|fy|ng assumptions.
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Our proposedFast-AGMS sketch structure solves In our solution, each update to the logg] ; at sitej
this problem by guaranteeindogarithmic-time (i.e.,  requires checking the local sketch-tracking condition on
O(log(1/6))) sketch update and tracking costs, while of-the L, norm of the divergence of the site’s true sketch
fering essentially the same (in fact, slightly improved)from the corresponding predicted sketch. Implementing
space/accuracy tradeoff as basic AGMS sketches. Our disuch a sketch-tracking scheme directly over local sketches
cussion is brief since the structure bears similarities<to e of size O(}2 log(1/4)) would imply a time complexity
isting techniques proposed in the context of different {cen of 0(}2 log(1/4)) per update (to recompute the required
tralized) streaming problems (e.g., [4, 12]), althouglajis  norms) — this complexity can easily become prohibitive
plication over the bacic AGMS technique for join/multi- when dealing with rapid-rate update streams and tight
join aggregates is novel and requires a different analysis. error-bound requirements. Fortunately, as the following
A Fast-AGMS sketch for a streaghover [U] (also de-  theorem demonstrates, we can reduce the sketch-tracking
noted bysk(f)) comprises x d counters (i.e., linear pro- overhed in onlyO(log(1/)) per update by computing
jections) arranged id hash tables, each withhash buck-  the tracking condition in aincrementalfashion over the
ets. Each hash table= 1, ..., d is associated with (1) a input stream. Our tracking algorithm makes crucial use
pairwise-independent hash functibp() that maps incom-  of the Fast-AGMS sketch structure, as well as concise
ing stream elements uniformly over thash buckets (i.e., (O(log(1/6))-size) precomputed data structures to enable
hy - [U] — [b]); and, (2) a family{[v] : v € [U]} of  incremental sketch tracking. We focus primarily on our
four-wise independent—1, 41} random variables (as in most general velocity/acceleration model, since both the
basic AGMS). To updatek(f) in response to an inser- static and linear-growth models can be thought of as in-
tion/deletion of element, we use they,; () hash functions  stances of the velocity/acceleration model with certain pa
to determine the appropriate buckets in the sketch, settinggmeters fixed.
sk(f)[lu(v),1] = sk(f)[hi(v), 1] £ &[v], for eachl = 1,
..., d. Note that the required time per update is ofl/), = Theorem 3.6. Assuming Fast-AGMS sketches of size
since each update touchesly one buckeper hash table. O(% log(1/4)), the computation of the sketch tracking
Now, given two parallel Fast-AGMS sketchsis(f,) and  condition (*) at sitej can be implemented i@ (log(1/4))
sk(f) (using the same hash functions gnamilies), we  time per update, where the predicted skeskh(f; ;(t)) is
estimate the inner produgt, - f, by the sketch “inner prod- computed in the velocity/acceleration model.
uct™
b If our tracking scheme detects thafl dound has been vi-
sk(f,) - sk(f2) =median {Y_SK(£1)[i, 1] - sk(£3)[i, 1]} olated, we must recompute the parameters of the sketch-
=1nd =1 prediction model and send sketch information to the
In other words, rather than averaging over independent lincoordinator. Such communications necessarily require

ear projections built over the en_tilféf] domain, our Fast- O(EL2 log(1/6)) time, but occur relatively rarely.
AGMS sketch averages ovgartitions of [U] generated

randomly (through théy,;() hash functions). As the fol-
lowing theorem shows, this results in essentially idetica
space/accuracy tradeoffs as basic AGMS sketching, whil¥Ve outline how our results apply to the other query classes
requiring onlyO(d) = O(log(1/4)) processing time per introduced in Section 2. The basic intuition is that such
update. gueries can be viewed as special inner products of the dis-
tribution (e.g., with wavelet-basis vectors [14]), for whi
Theorem 3.5. Letsk(f,) andsk(f,) denote two paral-  gketches can provide guaranteed-quality estimates. The
lel Fast-AGMS sketches of streanfis and f,, with pa-  predicted sketch of,; at the coordinator can be treated as a

rametersb = O(z) and d = O(log(1/5)), wheree, (¢ 9)-approximate sketch of ;, which accounts for both
1 — ¢ denote the desired bounds on error and probabilis-gketching errord) and remote-site deviationg)(

tic confidence, respectively. Then, with probability atstkea . . . .
1= 5, ||sk(f,) — fk(f2)||¥ c(1+ €)||JP1 B f2||2yand e Range Queries, Point Queries, and Heavy Hitteis.
sk(F1) - sk(fs) € (F1 - F2 = el F1llllF2I]). The process- given range quenk(f;,a,b) can be reposed as an in-

: . : LA ner product with a vectoe where = 1if
ng t|m§ required to maintain each sketch(glog(1/9)) a <pv < b, and0 otherwiS([amb]This impeli[gg]t[ﬁ]e following
per update. = 7 =" :

theorem.

3.4 Handling Other Query Classes

Note that tighter error tolerances only increase the size

of each hash table, but not the number of hash tafbles Theorem 3.7. Assume local-stream sketches of size
(which depends only on the required confidence). FinallyO( log(1/6)) and lets; = 3, tes(s,) SK”(fi ;). If

for givene andd, our Fast-AGMS sketch actually requires for each remote sitg € si t es(f;) satisfies the condition
less spacehan that of basic AGMS; this is because basic(*), then with probability at least — k;d, s; - sk(ejq,p)) €
AGMS requires a total ot')(el2 log(1/6)) hash functions R(f;,a,b) e+ (1+6)2((1+6)2—=1))(b—a+1)]|f]
(one for eachkt family), whereas our Fast-AGMS sketch

only needs a pair of hash functions per hash table for a to- An immediate corollary is that point queries can be an-
tal of only O(log(1/6)) hash functions. swered with~ (e + 20)||f;|| error. Heavy-hitter queries
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can be answered by asking &I} point queries, and re- sk(f;(t)) = X~"'sk(f,(t')) Applying this directly would
turning thosev whose estimate exceed®(f,a,b) (with  mean the tracking operation takes timé’; log(1/4)), but
guarantees similar to the centralized, one-shot case [4]). by devoting some extra space to the problem, we can track

e Histogram and Wavelet RepresentationsGilbert et  the condition in timeD(log(1/4)) again. In summary,
al. [14] demonstrate how to ugseapproximate sketches to
find B-term Haar-wavelet transforms that carry at Idast

of the energy of besB-term representation if this repre-
sentation has large coefficients. In our setting, the skattch
the coordinator is essentially(e, ¢)-approximate sketch; Alternate Sketch-Prediction Models. We outlined three
thus, our analysis in conjunction with Theorem 3 of [14], distinct approaches to sketch prediction, each buildilg pr
imply that our schemes can track a- g(e, #) approxima-  gressively richer models to attempt to capture the behav-
tion to the bestB-term wavelet representation at the co- jor of local stream distributions over time. Our most so-
ordinator. Similarly, Thaper et al. [22] show how to use phisticated model explicitly tries to model both first-orde
e-approximate sketches to find an approximate histograngj.e., “velocity”) and second-order (i.e., “acceleratipef-
representation with error at most Be times the error of  fects in the local update-stream rates while increasing the
the bestB-bucket multi-dimensional histogram. Combin- amount of sketching information communicated to the co-
ing our results with Theorem 3 of [22], we have a schemeprdinator by a factor of only two. One can envisage other
for tracking al + Bg(e, ) approximation to the besB-  models of evolving local distributions, and translatingsh

Theorem 4.1. The sketch tracking condition (*) can be
tracked in timeO(log(1/4)) per update in both the sliding
window and the exponential decay streaming models.

bucket multi-dimensional histogram. into predicted sketches by applying the linearity propsrti
of the sketch transformation. Other variations are alse pos
4 Extensions sible. Thus far, our models operate on whole sketches at

) L . atime; it is possible, however, to design “finer-grained”
We consider modifications to accommodate answeringn,qe|s that consider different parts of the distributiop-se
queries based only on recent updates, and incorporatingarely. For instance, individual data elements with high
different query models. counts in thef, ; distribution carry the highest impact on
the norm of the distribution. Thus, we can separate such
“heavy-hitter” elements from the rest of the distributiorda
model their movements separately (e.g., tracking an accel-
eration model), while using a sketch only for tracking the
remainder of the distribution. Once a local constraint is

units, and track whether a predicted sketch for this infervaYiolated, then it may be possible to restore the constraint
is within ¢ error of the interval norm. The role of the co- PY only shipping information on some of the heavy-hitter
ordinator remains the same: to answer a query, it uses tHiEMS, instead of shipping an entire sketch — clearly, this
predicted sketch, as above. In the case that the site is 81y drastically reduce the amount of communication re-
space-constrained, the remote site can buffer the updat ired. At a high level, this approach is similar to the idea

that occurred in the window. When the oldest update  ©f “Skimming sketches” of Ganguly et al. [12], but for the
the buffer is more than,, time units old, it can be treated PUrpose of decreasing communication rather than increas-

as an update i,v, —1 > to f,. The effect of the original ing accuracy. We will e_xplore sych sketch-skimming ap-
update of is subtracted from the sketch, and so the sketctProaches in the full version of this work.
only summarizes those updates within the window.pf .
Using the above efficient tracking method, the asymptotid® Experimental Study
cost is not altered in the amortized sense, since each updagel  Testbed and Methodology
is added and later subtracted once, giving an amortized co
of O(log(1/4)) per update.

The exponential decay model is a popular alternative t
the sliding window model (see, e.g., [14]). Briefly, the cur-

Sliding Windows and Exponential Decay.In the sliding
window case, the current distributigfy is limited to only
those updates occurring within the lagt time units, for
some fixed value of,,. We modify the tracking condition:
the remote sites build a sketch of the most rec¢gntime

%e implemented a test system that simulated running our
Oorotocols in C.% Experiments were run on a single ma-
chine, simulating the actions of each kbfsites and the
o2 , ey ; coordinator. For each experimental simulation, all remote
rent distributionf;(¢) is computed a¢f;(t) = X" f(f')  jtes used the same class of prediction model with the same
for a positive decay constant < 1 — for example, tracking parameters 6.

A = 0.95 or 0.99. Updates are processed as pefore, SO We report the results of experiments run on data sets
an updatev meansf;({)[v] — f;({)[v] + 1. Asin the drawn from the Internet Traffic Archive [17], representing

sliding window case, the action at the coordinator iS Un-r7p requests sent to servers hosting the World Cup 1998
changed: given a suitable model of how the (exponentiallyyyap site. Servers were hosted in four geographic loca-

decayed) distribution changes, the coordinator uses &e prijqng Therefore, we modeled this system with four remote
dicted sketch to answer queries. At the remote site, thgjies one handling requests to each location. We tracked

tracking condition is again checked. Since the decay opel,q g|ations defined by this sequence of requests, using the
ation is a linear transform of the input, the sketch of the de-

cayed distribution can be computed by decaying the sketch: Throughout, we set the probability of failuré,= 1%.
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Figure 4:Experiments on real data: (a) Tradeoff between the parasteemde. (b) Effect of varying the window size used to estimate
the “velocity” sketch. (¢) Communication cost as numberpdates increase.

“objectID” attribute as the attribute of interest. Thisgee shown the static model cost as the leftmost point (plot-
a good approximation of many typical data sets, taking on ded with a cross), since this can be thought of as the ve-
large number of possible values with a non-uniform distri-locity/acceleration model with no history used to predict
bution. We obtained similar results to those reported hereelocity. Similarly, we plot the cost of the linear growth
when using different data sets and settings. model as the rightmost point on each curve (marked with
Throughout, we measure tatemmunication cosais the — an asterisk), since this can be thought of as using the whole
ratio between the total communication used by a protocohistory to predict velocity. We see that for the best setting
(in bytes) divided by the total cost to send every update irof the window size the velocity/acceleration model outper-
full (in bytes). For example, if our protocol sent 3 sketghes forms both the other models by at least a third, but it is
each of which was 10KB in size, to summarize a set ofsensitive to the setting di’: too small or too large, and
50,000 updates, each of which can be represented as a 32t#e overall communication cost is noticeably worse than
integer, then we compute the communication cost as 15%he best value. The static model gets close to the worst
Our goal is to drive this cost as low as possible. Whencost, while the linear growth model does quite well, but
measuring the accuracy of our methods, we compute a#till about a third more than the best velocity/acceleratio
estimated resulest, and (for testing) compute the exact model. For this data set, irrespective of e, #) value the
answertrue. The error is then given bg“f;estl, which  bestsetting ofV is in the range 10000-100000. Therefore,
gives a fraction, 0% being perfect accuracy. for the remainder of our experiments, we focus on the ve-
locity/acceleration model withi” = 20000.

5.2 Experimental Results Communication cost. We look at how the communica-

i ) ) tion cost evolves with time in Figure 4 (c), using the ve-
Setting Parameters and Tradeoffs.We investigated the  |oity/acceleration model. This experiment was performed
tradeoff between parameterand in order to guarantee & o a larger data set from a week of HTTP requests to the
given global error bound, and the setting of the parameteé{yorid Cup data sets, totaling over 50 million updates. We
W for the velocity/acceleration model. We took one day ofgee that the cost is initially high, as the remote site adapts
HTTP requests from the World Cup data set, which yieldedy, the stream, but as the number of updates increases, then
a total of 14 million requests. Figure 4 (a) shows the effecihe requirement for communications drops. For the higher

of varyinge andf subject toe 20 = 1), for¢) = 10%, 4%, error bounds, there are long periods of stability.
and 2% error rate. In each case, we verified that the total

error was indeed less thah The communication cost is Accuracy of Approximate Query Answers. Our first set
minimized fore roughly equal ta0.55¢. Our analysis in  Of experiments focused on the communication cost of our
Section 3.2 showed that for a worst case distribution undeProposed protocols. We now consider the accuracy they
the static modele should be around.66¢. In practice, it ~ Provide for answering queries at the coordinator, and the
seems that a slightly different balance gives the lowest costime cost at the remote sites. In Figure 5 (a), we plot the
although the trade-off curve is very flat-bottomed, and set€rror in answering queries at the coordinator based on pro-
ting e between0.3y and0.7¢ gives similar bounds. We cessing the one day of data from the World Cup data set.
have shown the curves for the velocity/acceleration modetiere, we have fixed, and plotted the observed accuracy
with W = 20000; curves for the different models and dif- for computing the size of a self-join asvaries when we
ferent settings of¥ look similar. For the remainder of have processed all updates. We show with a heavy line the
our experiments, we set= 0.5y andd = 0.25¢, giving ~ Worst case error bound+ 20 ~ g(e, 0).
g(e,0) = . In Figure 5 (b), we attempt to separate the sketch error
In Figure 4 (b), we show the effect of varying the win- from the tracking error, by computing the approximation
dow size W for the velocity/acceleration model on the we would get if the remote site sent the sketch of its current
communication cost for three values 9f= ¢ + 26. In  distribution to the coordinator when the self-join queryswa
order to show all three models on the same graph, we haveosed. In this figure, we have subtracted this error from the
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Figure 5:Quality experimenrs: (a) Estimation quality, fixégdvaryinge. (b) Estimation quality due to tracking delay with sketctoer
subtracted, a8 varies. (c) Timing cost, comparing fast tracking methodgeidorming sketch estimation every step.

total error to give an indication of how much error is due toanswered using sketches in the centralized model can be
tracking ag) varies. The negative values seen in the resultdracked efficiently in the distributed model, with low space
for the velocity/acceleration model indicate that the agrsw time, and communication.
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