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Abstract

A “plan diagram” is a pictorial enumeration of the
execution plan choices of a database query opti-
mizer over the relational selectivity space. In this
paper, we present and analyze representative plan
diagrams on a suite of popular commercial query
optimizers for queries based on the TPC-H bench-
mark. These diagrams, which often appear simi-
lar to cubist paintings, provide a variety of inter-
esting insights, including that current optimizers
make extremely fine-grained plan choices, which
may often be supplanted by less efficient options
without substantively affecting the quality; that
the plan optimality regions may have highly in-
tricate patterns and irregular boundaries, indicat-
ing strongly non-linear cost models; that non-
monotonic cost behavior exists where increasing
result cardinalities decrease the estimated cost;
and, that the basic assumptions underlying the re-
search literature on parametric query optimization
often do not hold in practice.

Introduction

Modern database systems useuery optimizerto iden-
tify the most efficient strategy to execute the SQL queries,; 5], or from a color print copy, since the greyscale version

that are submitted by users. The efficiency of the strate
gies, called “plans”, is usually measured in terms of query
response time. Optimization is a mandatory exercise sinc
the difference between the cost of the best execution pla
and a random choice could be in orders of magnitude. Th
role of query optimizers has become especially critical in

While commercial query optimizers each have their own
“secret sauce” to identify the best plan, the de-facto stan-
dard underlying strategy, based on the classical System R
optimizer [17], is the following: Given a user query, ap-
ply a variety of heuristics to restrict the combinatorially
large search space of plan alternatives to a manageable size;
estimate, with a cost model and a dynamic-programming-
based processing algorithm, the efficiency of each of these
candidate plans; finally, choose the plan with the lowest es-
timated cost.

Plan and Cost Diagrams

For a query on a given database and system configuration,
the optimal plan choice is primarily a function of tise-
lectivitiesof the base relations participating in the query —
that is, the estimated number of rows of each relation rele-
vant to producing the final result. In this paper, we use the
term “plan diagram” to denote a color-coded pictorial enu-
meration of the execution plan choices of a database query
optimizer over the relational selectivity space. An example
2-D plan diagram is shown in Figure 1(a), for a query based
on Query 7 of the TPC-H benchmark, with selectivity vari-
ations on theoRDERSandcUSTOMERrelations.

[Note to Readers: We recommend viewing all diagrams pre-
sented in this paper directly from the color PDF file, available

may not clearly register the various featurés.

In this picture, produced with a popular commercial
uery optimizer, a set of six optinfaplans, P1 through
6, cover the selectivity space. The value associated with

Bach plan in the legend indicates the percentage space cov-

erage of that plan — P1, for example, covers about 38% of

recent times due to the high degree of query complexityne area whereas P6 is chosen in only 1% of the region.

characterizing current data warehousing and mining ap-
plications, as exemplified by the TPC-H decision supporty,,

benchmark [20].

*Contact Author: haritsa@dsl.serc.iisc.ernet.in

Complementary to the plan diagram is a “cost diagram”,
own in Figure 1(b), which is a three-dimensional visual-
ization of the estimated plan execution costs over the same
relational selectivity space (in this picture, the costs are nor-

Permission to copy without fee all or part of this material is granted pro- malized to the ma)f'mum CO_St over t_he spac_e, and_the col-
vided that the copies are not made or distributed for direct commercialOrs reflect the relative magnitudes with blue indicating low

advantage, the VLDB copyright notice and the title of the publication andcost, white — medium cost, and red — high cost).
its date appear, and notice is given that copying is by permission of the

Very Large Data Base Endowment. To copy otherwise, or to republish;

requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005
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Ispecifically, the variation is on theo_totalprice and
c_acctbal attributes of these relations.
2The optimality is with respect to the optimizer’s restricted search

space, and not in a global sense.
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(a) Plan Diagram (b) Cost Diagram

Figure 1:Smooth Plan and Cost Diagram (Query 7)

The Picasso Tool alert database system designers and developers to the phe-
nomena that we have encountered during the course of our

As part of our ongoing project on developing value- gy,qy, with the hope that they may prove useful in building
addition software for query optimization [24], we have cre-iha next generation of optimizers.

ated a tool, calledPicasso that given a query and a rela-
tional engine, automatlcall_y generates the associated plalgeatures of Plan and Cost Diagrams
and cost diagrams. In this paper, we report on the fea-

tures of the plan/cost diagrams output by Picasso on a suitgnalyzing the TPC-H-based query plan and cost diagrams
of three popular commercial query optimizers for queriesprovides a variety of interesting insights, including the fol-
based on the TPC-H benchmark. [Due to legal restrictionslowing:

these optimizers are anonymously identified as OptA, OptB

and OptC, in the sequel.] Fine-grained Choices: Modern query optimizers often
Our evaluation shows that a few queries in the bench-  make extremelyine-grainedplan choices, exhibiting
mark do produce “well-behaved” or “smooth” plan dia- a marked skew in the space coverage of the individual

grams, like that shown in Figure 1(a). A substantial remain- plans. For example, 80 percent of the space is usu-
der, however, result in extremely complex and intricate plan ~ ally covered by less than 20 percent of the plans, with

diagrams that appear similar¢abist painting3, providing many of the smaller plans occupying less thare
rich material for investigation. A particularly compelling percentof the selectivity space. Using the well-known
example is shown in Figure 2(a) for Query 8 of the bench-  Gini index [22], which ranges over [0,1], to quantify
mark with optimizer OptA, where no less than 68 plans the skew, we find that all the optimizeragross the
cover the space in a highly convoluted manner! Further,  board exhibit a marked skew in excess of 0.5 for most
even this cardinality is aonservativeestimate since it was queries, on occasion going even higher than 0.8.

obtained with a query grid of 100 x 100 — a finer grid size

. oo ; Further, and more importantly, we show that the
of 300 x 300 resulted in the plan cardinality going up to 80

small-sized plans may often be supplanted by larger

plans! _ _ siblings without substantively affecting the quality
Before we go on, we hasten to clarify that our goal in - For example, the plan diagram of Figure 2(a) which

this paper is to provide a broad overview of the intriguing has 68 plans can be “reduced” to that shown in Fig-

behavior of modern optimizers, budtto make judgements ure 2(b) featuring as few asevenplans, without in-

on specific optimizers, nor to draw conclusions about the  ¢reasing the estimated cost of any individual query

relative qualities of their execution plans. Further, not be-  noint by more than 10 percent.

ing privy to optimizer internals, some of the conclusions
drawn here are perforce speculative in nature and should
therefore be treated as such. Our intention is primarily to

Overall, this leads us to the hypothesis that current
optimizers may perhaps be over-sophisticated in that
they are “doing too good a job”, not merited by the
SHence, the name of our tool — Pablo Picasso is considered to be a _Co,arseness Of,the und,erlyl,ng cost spage. Moreover,
founder of the cubist painting genre [23]. if it were possible to simplify the optimizer to pro-
“4Operating at its highest optimization level. duce only reduced plan diagrams, it is plausible that
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Figure 2:Complex Plan and Reduced Plan Diagram (Query 8, OptA)

the considerable processing overheads typically asso-  the actual selectivity parameter settings to identify the

ciated with query optimization could be significantly best plan — the expectation is that this would be much
lowered. faster than optimizing the query from scratch. Much
of this work is based on a set of assumptions, that we
CompleX Patterns: The plan diagrams exhibit a Val’iety do not f|nd to hold trueeven approximatelyin the
of intricate tessellated patterns, includisgeckles plan diagrams produced by the commercial optimiz-
stripes blinds mosaicsandbands among others. For ers.

example, witness the rapidly alternating choices be- . ) .
tween plans P12 (dark green) and P16 (light gray) For example, one of the assumptions is that a plan is

in the bottom left quadrant of Figure 2(a). Further, optimal within theentire regionenclosed by its plan
the boundaries of the plan optimality regions can be ~ Poundaries. But, in Figure 2(a), this is violated by the
highly irregular — a case in point is plan P8 (dark small (brown) rectangle of plan P14, close to coordi-

pink) in the top right quadrant of Figure 2(a). These  Nates (60,30), in the (light-pink) optimality region of
complex patterns appear to indicate the presence of plan P3, and there are several other such instances.
strongly non-linear and discretized cost models, again ~ On the positive side, however, we show that some
perhaps an over-kill in light of Figure 2(b). of the important PQO assumptions do hold approxi-

: . , mately forreducedplan diagrams.
Non-Monotonic Cost Behavior: We have found quite a

few instances where, although the base relation selecl— 1 Organization
tivities and the result cardinalities are monotonically ™ 9
increasing, the cost diagram doest show a corre- The above effects are described in more detail in the re-
sponding monotonic behavidrSometimes, the non- mainder of this paper, which is organized as follows: In
monotonic behavior arises due to a change in planSection 2, we present the Picasso tool and the testbed en-
perhaps understandable given the restricted searofironment. Then, in Section 3, the skew in the plan space
space evaluated by the optimizer. But, more surprisdistribution, as well as techniques for reducing the plan set
ingly, we have also encountered situations where gardinalities, are discussed. The relationship to PQO is ex-
plan shows such behavior evieternalto its optimal-  plored in Section 4. Interesting plan diagram motifs are
ity region. presented in Section 5. An overview of related work is pro-
vided in Section 6. Finally, in Section 7, we summarize

Validity of PQO:  Arich body of literature exists opara-  the conclusions of our study and outline future research av-
metric query optimizatiofPQO) [1, 2, 5, 6, 7, 8, 12, o es.

13, 14]. The goal here is to apriori identify the optimal
set of plans for the entire relational selectivity space .
at compile time, and subsequently to use at run tim(,z Testbed Environment

= , . " . In this section, we overview the Picasso tool and the ex-

Our query setup is such that in addition to the result cardinality . . . .
monotonically increasing as we travel outwards along the selectivity axed?€rimental environment under which the plan and cost dia-
the result tuples are alsmpersetsf the previous results. grams presented here were produced.
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2.1 Picasso Tool relations, was produced after adding to Q8 the predicates
s_acctbal < Clandl _quantity < C2,whereC1
andC2 are constants that are appropriately set to generate
the desired selectivities on these relations. In the remainder
dof this paper, for ease of exposition, we will use the bench-
ark query numbers for referring to the associated Picasso

The Picasso tool is part of our ongoing project on de-
veloping value-added tools for query optimization [24].
Through its GUI, users can submigaery templat¢3], the

grid granularity at which instances of this template shoul
be distributed across the plan space, the relations (axe%@m lates
and their attributes on which the diagrams should be con- V\?h'l .I d ¢ di h b ted f

structed, and the choice of query optimizer. A snapshot of lié plan and cost diagrams have been generated for

the interface for a template based on Query 2 of the TPC-HmOSt of the benchmark queries, we focus in the remainder

benchmark, is shown in Figure 3 (the predicatessize of this paper oniy on those queries that.have “dense” p'ai‘
< C1" and s suppblvcost < C2  ” determine the se- diagrams — that is, diagrams whose optimal plan set cardi-
lectivity axesF; -Supply nality is 10 or more, making them interesting for analysis

With this information, the tool automatically generates for at least one of the commercial optimizers. For com-

SQL queries that are evenly spaced across the relationgf"tatlonal tractability, a query grid spacing of 100 x 100 is

selectivity space (the statistics present in the database calefzig’ol]fnl;zséﬁé%lgcr']tgn?3&'3?52,{%2etrr\:\gseljer':uvr\;{gfkrlbggs
alogs are used to compute the selectivities). For exam: P ' query

ple, with a grid spacing of 100 x 100, a plan diagramare restricted to 2-dimensional selectivity spaces (with the

is produced by firing 10000 queries, each query coverin%xception of queries Q1 and Q6, which feature only a sin-

0.01 percent of the plan diagram area. The resulting plan Ieeﬁ:]e}tlile)tr;(;n, and therefore have a 1-D selectivity space by

are stored persistently in the database, and in the post-
processing phase, a unique color is assigned to each distinct, . .
plan, and the area covered by the plan is also estimate -3 Relational Engines
The space is then colored according to this assignment, anel suite of three popular commercial relational optimizers
the legend shows (in ranked order) the space coverage @fere evaluated, but, as mentioned earlier, we are unable to
each plan. Differences between specific plans are easilgrovide their details due to legal restrictions. Some of the
identified using a@PlanDiff component that only requires engines offer a range of optimization levels that tradeoff
dragging the cursor from one plan to the other in the plaryuality against time, or result latency versus response time.
diagram. We have experimented with all these levels, but for ease of
For each plan diagram, the corresponding cost diagraraxposition, the diagrams presented here, unless explicitly
is obtained by feeding the query points and their assomentioned otherwise, are restricted to those obtained with
ciated costs to a 3-D visualizer — currently, the freewarethe default optimization levels. Also, we ensured that the

Plot3D [21] is used for this purpose. full choice of candidate algorithms for each query operator
was made available. To support the making of informed
2.2 Database and Query Set plan choices, commands were issued to collect statistics on

The database was created using the synthetic generat%p the attributes participating in the queries. Finally, for
supplied with the TPC-H decision support benchmark EVery query submitted to the database systems, commands

which represents a commercial manufacturing environ\Vere issued to only “explain” the plan — that is, the plan

ment, featuring the following relationeGIon, NATION, (O €Xecute the query was generated, but not executed. This
SUPPLIER CUSTOMER PART, PARTSUPP ORDERSand IS because our focus here is on plan choices, and not on

LINEITEM. A gigabyte-sized database was created on thi€valuating the accuracy of the associated cost estimations.
schema, resulting in cardinalities of 5, 25, 10000, 150000, )
200000, 800000, 1500000 and 6001215, for the respectivé-4 Computational Platform

relations. A vanilla platform consisting of a Pentium-IV 2.4 GHz
All query templates were based on the TPC-H benchpc with 1 GB of main memory and 120 GB of hard disk,
mark, which features a set of 22 queries, Q1 through Q22 nning the Windows XP Pro operating system, was used
To ensure coverage of the full range of selectivities, the rein qur experiments.  For this platform, the complete set
lational axes in the plan diagrams are chosen only from thef evaluated queries and their associated plan, cost, and
large-cardinality tables occurring in the query (NATION reduced-plan diagrams, over all three optimizers, are avail-

and REGION, which are very small, are not considered). gple at [25] — in the remainder of this paper, we discuss
An additional restriction is that the selected tables shouldheir highlights.

feature only in join predicates in the query, but not in any
constant predicates. For a given choice of such tables, a ;
ditional one-sided range predicates on attributes with high(gig Skew in Plan Space Coverage

cardinality domains in these tables are added to the queriédfe start off our analysis of plan diagrams by investigating
to support a fine-grained continuous variation of the assothe skewin the space coverage of the optimal set of plans.
ciated relational selectivities. As a case in point, the plarin Table 1, we show for the various benchmark queries,
diagram in Figure 2(a) on theuPPLIERand LINEITEM three columns for each optimizer: First, the cardinality of
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and ps_supphycost =
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Figure 3:Picasso GUI

TPC-H OptA OptB OptC
Query Plan 80% Gini Plan 80% Gini Plan 80% Gini
Number Card Coverage Index || Card Coverage Index || Card Coverage Index
2 22 18% 0.76 14 21% 0.72 35 20% 0.77
5 21 19% 0.81 14 21% 0.74 18 17% 0.81
7 13 23% 0.73 6 50% 0.46 19 15% 0.79
8 31 16% 0.81 25 25% 0.72 38 18% 0.79
9 63 9% 0.88 44 27% 0.70 41 12% 0.83
10 24 16% 0.78 9 22% 0.69 8 25% 0.75
18 5 60% 0.33 13 38% 0.57 5 20% 0.75
21 27 22% 0.74 6 17% 0.80 22 18% 0.81
Avg(dense) | 28.7 17% 0.79 || 245 23% 0.72 || 28.8 16% 0.8

Table 1: Skew in Plan Space Coverage

the optimal plan set; second, the (minimum) percentage gblan density is not solely query-specific since there can
plans required to cover 80 percent of the space; and, thirdye wide variations between the optimizers on individual
the Gini index [22], a popular measure of income inequalityqueries — for example, Q18 results in 13 plans for OptB, but
in economics — here we treat the space covered by eaabnly 5 plans each for OptA and OptC. Conversely, OptB
plan as its “income”. Our choice of the Gini index is due to requires only 6 plans for Q7, but OptA and OptC employ
its desirable statistical properties including being Lorenz-13 and 19 plans, respectively. It should also be noted that
consistent, and bounded on the closed interval [0,1], witta common feature between Q8 and Q9, which both have
0 representing no skew and 1 representing extreme skewarge number of plans across all three systems, is that they
Finally, the averages across diknse querie$l0 or more  are join-intensive nested queries with the outer query fea-
plans in the plan diagram) are also given at the bottom ofuring dynamicbase relations (i.e. the relations in tihem
Table 1. clauseare themselves the output of SQL queries).

These statistics show that the cardinality of the optimal When the fractional cardinality required to cover 80 per-
plan set can reach high values for a significant proportion otent of the space is considered, we see that on average it
the queries. For example, the average (dense) cardinality is in the neighborhood of 20 percent, highlighting the in-
considerably in excess diventy across all three optimiz- equity in the plan space distribution. This is comprehen-
ers. Q9, in particular, results in more than 40 plans for allsively captured by the Gini index values, which are mostly
the optimizers. But it is also interesting to note that highin excess of 0.5, and even reaching 0.8 on occasion, indicat-
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ing very high skew in the plan space distribution. Further,for replacements by “foreign” (i.e. belonging to a different
note that this skew is presemgross the board, in all the plan) query points that are in thigst quadrantrelative to
optimizers s as the origin, since these points upper-bound the cost of
Overall, the statistics clearly demonstrate that moderrihe plan at the origin. This is made clear in Figure 4, which
optimizers tend to make extremely fine-grained choicesshows that, independent of the cost model of the dominat-
Further, these numbers arenservativen that they were ing plan, the cost of any foreign query point in the first
obtained with a 100 x 100 grid — with finer-granularity quadrant will be an upper bound on the cost of executing
grids, as mentioned in the Introduction, the number of planshe foreign plan at the swallowed point. We now need to
often increased even further. For example, using a 1000 find the set of dominating foreign points that are within the
1000 grid for Q9 on OptB, the number of plans increased\ threshold, and if such points exist, choose one replace-

from 44 to 60! ment from among these — currently, we choose the point
with the lowest cost as the replacement. Finallyeatire
3.1 Plan Cardinality Reduction by Swallowing plancan be swallowed if and only #ll its query points can

) - . be swallowed by either a single plan or a group of plans. In
Motivated by the above skewed statistics, we now look into, processing, we first order the plans in ascending order

whether it is possible to replace many of the small-sizedyt iz and then go up the list, checking for the possibility
plans by larger-sized plans in the optimal plan set, withouty swallowing each plan.

unduly increasing the cost of the query points associated Ngte that the cost domination principle is conservative
with the small pla”ns. That is, can small plans be “com-j, that it does not capture all swallowing possibilities, due
pletely swallowed” by their larger siblings, leading to are- , regtricting its search only to the first quadrant. But, as
duced plan set cardinality, without materially affecting the ;e \ill show next, substantial reductions in plan space car-

associated .queries.. ) . dinalities can be achieved even with this conservative ap-
To do this, we first fix a thresholdy, representing the .o5ch.

maximum percentage cost increase that can be tolerated.
Specifically, no query point in the original space should 2°

have its cost increasegpst-swallowing by more than. 00

Next, to decide whether a plan can be swallowed, we use c

the following formulation: e
S 70

Cost Domination Principle: Given a pair of distinct T oo
query pointsg: (x1,y1) and gs(zs,y2) in the two- Cost=35
dimensional selectivity space, we say that pajnt 50
dominatesy;, symbolized bygs = ¢1, if and only if L

z2 > x1, Y2 > y1, and result cardinalit?,, > R, E Cost=40
(note that result cardinality estimations are, in prin- g ™ Cost-00
ciple, independent of plan choicés)Then, if points 20

q1(x1,y1) andgs (2, y2), are associated with distinct
plans P, and P,, respectively, in the original space,

C2, the cost of executing query; with plan P, is 0
upper-bounded by’2, the cost of executing, with

Py, ifand only ifgs > ¢1.

ORDERS

Intuitively, what is meant by the cost domination prin- Figure 4:Dominating Quadrant

ciple is that we expect the optimizer cost functions to be ko the experiments presented here, we)sahe cost
monotonically non-decreasing with increasing base relaj,crease threshold, to 10 percent. Note that in any case
tion selectivities and result cardinalities. Equivalently, aihe cost computations made by query optimizers are them-
plan that processes a superset of the input, and producesgjyes statisticastimatesand therefore allowing for a 10
superset of the output, as compared to another plan, is esfiarcent “fudge factor” may be well within the bounds of
mated to be more costly to execute. However, as discussgle inherenterror in the estimation process. In fact, as
later in Section 5, this (surprisingly) does not always provementioned recently in [15, 19], cost estimates can often be
to be the case with the current optimizers, and we thereforgjgnficantly off due to modeling errors, prompting the new
have to explicitly check for the applicability of the princi- 46 of “learning” optimizers (e.g. LEO [19]) that itera-
ple. o o tively refine their models to improve their estimates.

Based on the above principle, when considering swal- \yhen the above plan-swallowing technique is imple-
lowing possibilities for a query poing;, we only look  mented on the set of plans shown in Table 1, and with

6Result cardinalities are usually monotonically non-decreasing with/\ — 10%’. the. .resu't'”g reduc_:tlons (as a percentage) in the
increasingz andy, but this need not always be the case, especially forPlan cardinalities are shown in Table 2. We see here that the
nested queries. reductions are very significant — for example, Q8 reduces
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by 87% (31 to 4), 84% (25 to 4) and 86% (38 to 5), for ilarities in their feature vectors. This is because the cluster
OptA, OptB and OptC, respectively. On average over denseegionsinherentlycoarsen the plan diagram granularity.
queries, the reductions are of the order of 60% across all

three optimizers, with OptC going over 70%. Also note that . .

these reductions areonservativebecause when the grid 4 Relationship to PQO

granularity is increased — from 100 x 100 to, say, 1000 Xa rich body of literature exists oparametric query opti-
1000 —the new_plans.that emerge tend to be very small a”H\ization(PQO) [1,2,5,6,7,8,12, 13, 14]. The goal here is
are therefore highly likely to be subsequently swallowed.q apriori identify the optimal set of plans for the entire re-
In a nutshell, the following thumb rule emerges from our|4tigna| selectivity space at compile time, and subsequently
results: “two-thirds of the plans in a dense plan diagram 4 yse at run time the actual selectivity parameter settings to
are liable to be eliminated through plan swallowing”. identify the best plan — the expectation is that this would be
In Table 2, we have also shown theeragepercentage  mych faster than optimizing the query from scratch. Most

increase in the costs of swallowed query points, as well agt thjs work is based on assuming cost functions that would
themaximunrcost increase suffered across all query pointsyagyit in one or more of the following:

Note that, although the threshold is set to 10%,abtual

average cost increase is rather low — less than 2%, whicp|gn Convexity: If a plan P is optimal at point A and at

means that most of the swallowed query pofmsdly suf- point B, then it is optimal at all points on the line join-
fer on account of the replacement by an alternative plan.  jnq the two points;

In fact, even the maximum increase does not always reach

the threshold setting. Further, note that these averages apg,, Uniqueness: An optimal plan P appears at only one
maxima areupper boundsand the real cost estimates of contiguous region in the entire space:

the replacement plans at the swallowed points may be even

lower in practice. Overall, our observation is that there ap
pears to be significant potential tirastically reduce the
complexity of plan diagrams without materially affecting

the query prqces_sing quality o However, we find thahone of the threeassumptions
A key implication of the above observation is the follow- 4 true, even approximately, in the plan diagrams pro-

ing: Suppose it were possible to simplify current optimizersy ,cqq by the commercial optimizers. For example, in Fig-

to produce only reduced plan diagrams, then the considery, .o 2(), plan convexity is severely violated by the regions

able computational overheads typically associated with the.,\ ered by plans P12 (dark green) and P16 (light gray).
query optimization process may also pe subs'tantially low-rpe plan Uniqueness property is violated by plan P4 (ma-
ered We suggest that this may be an interesting avenue 10, \yhich appears in two non-contiguous locations in the
be explored by the database research community. top left quadrant, while plan P18 appears in finely-chopped

pieces. Finally, plan homogeneity is violated by the small
3.2 Plan Reductions Optimization Levels (brown) rectangle of plan P14, close to coordinates (60,30),

As mentioned earlier, optimizers typically have multiple n thﬁ (Ilght-pl!nk) optimality rer?lon c|>f plan .PS' hi
optimization levels that trade off plan quality versus opti- 1 he Prior literature [6, 14] had also estimated thigh
mization time, and at first glance, our plan reduction techP2n densitiesre to be expected only along the selectivity
nique may appear equivalent to choosing a coarser optEX€S — thatis, where one or both base relations in the plan
mization level. However, the two concepts are completelydi2gram are extremely selective, providing only a few tu-
different because the optimal plan sets chosen at differerf€S: However, we have found that high plan densities can
levels by the optimizer may be vastly dissimilar. A strik- P€ Present elsewhere in the selectivity space also —for ex-
ing example is Q8, whereoneof the 68 plans chosen by 2MPle, see the region between plans PS (dark brown) and
OptA at the highest level are present among the 8 plan§11 (0range) in Figure 2(a). This is also the reason for
chosen at the lowest level. Further, going to a coarser levélu’ choosing a uniform .dlstr_|bu.t|on. of the query instances,
of optimization does nobecessarilyresult in lower plan instead of the exponential distribution towards lower selec-
cardinalities — a case in point is OptA on Q2, producingVity values used in [6]. , o

only 4 plans at the highest level, but as many as 22 plans at N the following section, more detailed statistics about

a lower level. Again, there is zero overlap between the twdhe Vviolations of the above assumptions are presented, as
optimal plan sets. part of a discussion on interesting plan diagram patterns.

In contrast, with plan reduction by swallowing, only
a subset of theoriginal plans chosen by the optimizer g Interesting Plan Diagram Patterns
are used to cover the entire plan space. In fact, plan
reduction fits in perfectly with the query clustering ap- We now move on to presenting representative instances of
proach previously proposed in our Plastic plan recyclinga variety of interesting patterns that emerged in the plan
tool [3, 16, 18, 24], where queries that are expected to havdiagrams across the various queries and optimizers that we
identical plan templates are grouped together based on sinevaluated in our study.

Plan Homogeneity: An optimal plan P is optimal within
the entire region enclosed by its plan boundaries.
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OptA OptB OptC
TPC-H Percent  Average Maximum || Percent Average Maximum || Percent Average Maximum
Query Card Cost Cost Card Cost Cost Card Cost Cost
Number Decrease Increase Increase|| Decrease Increase Increase|| Decrease Increase Increase
2 59.2 1.0 4.4 64.2 0.6 5.9 77.1 3.2 6.4
5 67.3 2.6 8.1 42.9 0.1 0.6 61.1 0.2 8.1
7 46.1 0.1 9.5 16.6 0.4 0.7 54.5 1.1 9.5
8 87.6 0.4 9.4 84 0.9 9.1 86.8 1.2 8.4
9 84.4 1.6 8.6 36.4 14 8.9 80.5 21 8.3
10 67.6 0.8 4.4 44.4 0.5 6.1 62.5 0.4 2.4
18 40.0 0.1 0.5 46.2 3.7 9.6 0 0 0
21 59.8 0.0 0.2 66.7 0.9 25 68.2 0.7 6.9
Avg(dense) 67.4 0.9 6.4 56.9 0.7 6.1 71.4 1.4 7.9

Table 2: Plan Cardinality Reduction by Swallowing

5.1 Plan Duplicates and Plan Islands

In several plan diagrams, we noticed that a given optimal ® ”
plan may haveduplicatesin that it may appear in several
different disjoint locations. Further, these duplicates may p 1
also be spatially quite separated. For example, consider th
plan diagram for Q10 with OptA in Figure 5. Here, we

see that plan P3 (dark pink) is present twice, being presen® s
both in the center, as well as along the right boundary of I
the plan space. An even more extreme example is plan P g

(dark green), which is present around the 20% and 95%, >

markers on theusTOMERSelectivity axis.

A different kind of duplicate pattern is seen for Q5
with OptC, shown in Figure 6, where plan P7 (magenta) is
present in three different locations, all within the confines o
of the region occupied by plan P1 (dark orange). When
plans P7 and P1 are compared, we find that the former uses
a nested-loops join between the small relationgATION
and REGION, whereas the latter employssart-merge-

join instead.
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Figure 5:Duplicates and Islands (Query 10, OptA)
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Figure 6:Duplicates and Islands (Query 5, OptC)

enclosed by another. For example, plan P18 is a (magenta)
island in the optimality region of the (dark green) plan P6
in the lower left quadrant of Figure 5. Investigating the
internals of these plans, we find that plan P18 hhash-

join betweercusToMERaNANATION followed by ahash-

join with a sub-tree whose root isreested-loop join. The

only difference in plan P6 is that it first hash-joins thes-
TOMER relation with the sub-tree, and then performs the
hash-join withNATION.

The number of such duplicates and islands for each opti-
mizer, over all dense queries of the benchmark, is presented
in Table 3 (Original columns). We see here that all three op-
timizers generate a significant number of duplicates; OptA
also generates a large number of islands, whereas OptB and
OptC have relatively few islands.

In general, the reason for the occurrence of such du-
plicates and islands is that two or more competing plans
have fairly close costs in that area. So, the optimizer due
to its extremely fine grained plan choices, obtains plan dia-
grams with these features. This is confirmed from Table 3
(Reduced columns), where after application of the plan re-

Apart from duplicates, we also see that there are in-duction algorithm, a significant decrease is observed in the
stances oplan islands where a plan region is completely number of islands and duplicates. This also means that
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Databases # Duplicates # Islands
Original Reduced || Original Reduced
3 P a0

21.55 Pl
16.89 P2

OptA 130 13 38 9.35 p3
OptB 80 15 1 0 2 80 g.50 [ o1
5.00 PS5

OptC 55 7 8 3 R0 oy
m 60 3.44 P7

. 3.34 P8

Table 3: Duplicates and Islands g 2o N ..

50

PQO, which, as mentioned in the previous section, appear T
ill-suited to directly capture the complexities of modern op- ¥
timizers, may turn out to be a more viable proposition in the

space of reduced plan diagrams. 20

10

5.2 Plan Switch Points

In several plan diagrams, we find lines parallel to the axes
that run through theentire selectivity space, with a plan
shift occurring forall plans bordering the line, when we
move across the line. We will hereafter refer to such lines
as “plan switch-points”.

In the plan diagram of Figure 7, obtained with Q9 on
OptA, an example switch-point appears at approximately oo
30% selectivity of thesupPLIERrelation. Here, we found
acommon changia all plans across the switch-point — the Y o
hash-join sequenc®ARTSUPPI SUPPLIERX PART is al- 8o
tered tOPARTSUPP1 PART X SUPPLIER suggestinganin- ¢,
tersection of the cost function of the two sequences at this
switch-point. =
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Figure 8:Venetian Blinds Pattern (Query 9, OptB)
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5.3 Footprint Pattern
Figure 7:Plan Switch-Point (Query 9, OptA)

join across theNATION, SUPPLIER and LINEITEM rela-
.25 [ e1s tions. Both variations have almost equal estimated cost,
0.38 [ p16 and their cost-models are perhaps discretized in a step-
=5 0.35 Wl P17 function manner, resulting in the observed blinds.

A curious pattern, similar to footprints on the beach, shows

For the same Q9 query, an even more interesting switchdp in Figure 9, obtained with Q7 on the OptA optimizer,
point example is obtained with OptB, shown in Figure 8.where we see plan P7 exhibiting a thin (cadet-blue) bro-
Here we observe, between 10% and 35% orstbhePLIER  ken curved pattern in the middle of plan P2’s (orange) re-
axis, six planssimultaneously changing with rapid alterna- gion. The reason for this behavior is that both plans are of
tions to produce a “Venetian blinds” effect. Specifically, roughly equal cost, with the difference being that in plan
the optimizer changes from P6 to P1, P16 to P4, P25 t¢2, thesuPPLIERTelation participates in aort-merge-
P23, P7 to P18, P8 to P9, and P42 to P47, from one verticgbin at the top of the plan tree, whereas in P7,liash-join
strip to the next. operator is used instead at the same location. This is con-

The reason for this behavior is that the optimizer alter-firmed in the corresponding reduced plan diagram where
nates betweenlaft-deephash join and aright-deephash  the footprints disappear.
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ing input cardinalities are known to occur — for example,
when one of the relations in a join ceases to fit completely
within the available memory — however, what is surprising
in the above is the step-function calcreaseat the 26%
switch-point. We conjecture that such disruptive cost be-
havior may arise either due to the presence of rules in the
optimizer, or due to parameterized changes in the search

" space evaluated by the optimizer.

P2 The above example showed non-monotonic behavior
arising out of a plan-switch. However, more surprisingly,
we have also encountered situations where a plan shows
non-monotonic behavidnternal to its optimality region.

A specific example is shown in Figure 12 obtained for Q21
with OptA. Here, the plans P1, P3, P4 and P6, show a re-

o 10 20 30 40 50 6 70 80 ob 1m0 duction in their estimated costs with increasing input and

result cardinalities. An investigation of these plans showed

that all of them feature aested-loops join, whose esti-
Figure 10:Speckle Pattern (Query 17, OptA) mated C(_)sdecrea_sesvith increasin_g cardinalitit_es of its in-
put relations — this may perhaps indicate an inconsistency

5.4 Speckle Pattern in the associated cost model. Further, such instances of

non-monotonic behavior were observed with all three opti-

Operating Picasso with Q17 on OptA results in Figure 10.mizers.

We see here that the entire plan diagram is divided into just

two plans, F_’l and P2, occupying nearly equal areas, but th@t Related Work

plan P1 (bright green) also appears as speckles sprinkled in

P2’s (red) area. To the best of our knowledge, there has been no prior work

The only difference between the two plans is that an adon the analysis of plan diagrams with regardeal-world
ditional sORT operation is present in P1 on therT rela-  industrial-strengthquery optimizers. However, similar is-
tion. However, the cost of this sort is very low, and there-sues have been studied in the parametric query optimization
fore we find intermixing of plans due to the close and per-(PQO) literature in the context of simplified self-crafted op-
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haps discretized cost models. timizers. Specifically, in [1, 13, 14], an optimizer mod-
eled along the lines of the original System R optimizer [17]
55 Non-Monotonic Cost Behavior is used, with the search space restricted to left-deep join

trees, and the workload comprised of pure SPJ queries with
The example switch-points shown earlier, wereaabt-  “star” or “linear” join-graphs. The metrics considered in-
based switch-points, where plans were switched to de-clude the cardinality and spatial distribution of the set of
rive lower execution costs. Yet another example of suctoptimal plans — while [1] considered only single-relation
a switch-point is seen in Figure 11(a), obtained with queryselectivities, [13, 14] evaluated two-dimensional relational
Q2 on OptA, at 97% selectivity of taRT relation. Here,  selectivity spaces, similar to those considered in this pa-
the common change in all plans across the switch-point iper. Their results in the 2-D case indicate that for linear
that thehash-join between relationSART andPARTSUPP  queries, the average number of optimal plans is linear in the
is replaced by gort-merge-join. number of join relations, while for star queries, this num-
But, in the same picture, there are switch-points occurber is almost quadratic. Also, the optimal plans are found
ring at 26% and 50% in theaRTSUPPselectivity range, to be densely packed close to the origin and the selectiv-
that result in a counter-intuitiveon-monotonicost behav- ity axes. An analysis of plan reduction possibilities in [1],
ior, as shown in the corresponding cost diagram of Fig-given a plan optimality tolerance threshold, indicates that
ure 11(b). Here, we see that although the result cardia larger fraction of plans can be removed with increasing
nalities are monotonically increasing, the estimated costguery complexity. In [5, 6], an optimizer modeled along
for producing these results show a marked non-monotonithe lines of the Volcano query optimizer [4] is used, and
step-down behavior in the middle section. Specifically,they find the cardinality of the optimal plan set for queries
at the 26% switch-point, an addition&ort’ operator  with two, three and four-dimensional relational selectivi-
(on ps _supplycost ) is added, which substantially de- ties. They also present efficient techniques for approximat-
creases the overall cost — for example, in moving from plaring the optimal plan set. Finally, a complexity analysis of
P2 to P3 at 50%PART selectivity, the estimated cost de- the optimal plan set cardinality is made in [7] for the spe-
creases by a factor of 50! Conversely, in moving from P3cific case of linear (affine) cost functions in two parameters.
to P1 at the 50% switch-point, the cost of the optimal plan  While the above efforts do provide important insights,
jumps up by a factor of 70 at 50¥RT selectivity. the results presented in this paper indicate that plan dia-
Step-function upward jumps in the cost with increas-grams with sophisticated real-world optimizers and queries
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Figure 11:Plan-Switch Non-Monotonic Costs (Query 2, OptA)

show much more variability with regard to both plan setOur study shows that many of the queries result in highly
cardinalities and spatial distributions, as compared to thosmtricate diagrams, with several tens of plans covering the
anticipated from the PQO literature. For example, as menspace. Further, there is heavy skew in the relative coverage
tioned earlier, we find that plan densities can be high evermwf the plans, with 80 percent of the space typically covered
in regions far from the plan diagram axes, and that theby 20 percent or less of the plans. We showed that through a
optimality region geometries can have extremely irregulamprocess of plan reduction where the query points associated
boundaries. with a small-sized plan are swallowed by a larger plan, it is
There has also been work on characterizing the senspossible to significantly bring down the cardinality of the
tivity of query optimization to storage access cost parameplan diagram, without materially affecting the query cost.

ters [15], but this work focuses on the robustness of optimal  \ye also demonstrated that a variety of complex and in-

plan choices to inaccuracies in_the optimizer input paramegicate patterns are produced in the diagrams, which may
ters, and when suboptimal choices are made, the impact @fg 5 verkill given the coarseness of the underlying cost

these errors. So, the focus is on piprality, not quantity of  gpace These patterns also indicate that the basic assump-
spatial distribution. Further, their analysis shows that Whe;g

Il tabl dind inale dovi > ions of parametric query optimization literature do not
alltables and indexes are on a single device (as in our casgjo|q i practice. However, with reduced plan diagrams, the
the optimizer proved relatively insensitive to inaccurate re

) i : gap between theory and practice is considerably narrowed.
source costs in terms of plan choices — however, we fin

strong sensitivity with regard teelectivity valuesFurther, ~ Not being privy to the internals of optimizers, our work
many of the queries for which they did find some degree ofS perforce speculquve in nature. However, we hope that it
sensitivity also feature in our list of “dense” queries. may serve as a stimulus to the database research commu-

Cost-based attempts to reduce the optimizer's searchity to investigat_e mechanisms for pruning the plan search
space include a “pilot-pass” approach [11], where a comSPace so as to d|rectly generate re(_juced plan (_j|agram_s, a_nd
plete plan is initially computed and the cost of this plan isthereby perhaps achieve substantial savings in the signif-
used to prune the subsequent dynamic programming endeant .overheads normally associated with the query opti-
meration by removing all subplans whose costs exceed th&fiZation process.
of the complete plan. But, it has been reported [9] that In the future, we would like to conduct a deeper inves-
such pruning has only marginal impact in real-world envi-tigation into the kinds of queries that result in dense plan
ronments. Finally, a preliminary study of a sampling-baseddiagrams, such as, for example, the presence of dynamic
approach to find acceptable quality plans, evaluated on base relations. Also, a major limitation of our current work
commercial optimizer, is discussed in [10], but its impactis its restriction to 1-D and 2-D plan diagrams — in practice,

on theoptimalplan set cardinality is an open issue. there may be many more schema and system dimensions
) affecting plan choices. Therefore, we intend to investigate
7 Conclusions higher dimensional plan diagrams in our future research.

In this paper, we have attempted to analyze the behavior ofcknowledgments. This work was supported in part by a Swar-
(1-D and 2-D) plan and cost diagrams produced by modnajayanti Fellowship from the Dept. of Science & Technology,
ern optimizers on queries based on the TPC-H benchmarlGovt. of India.
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