An Efficient SQL-based RDF Querying Scheme

Eugene Inseok Chong Souripriya Das George Eadon Jagannathan Srinivasan

Oracle
One Oracle Drive, Nashua, NH 03062, USA

Abstract

Devising a scheme for efficient and scalable
querying of Resource Description Framework
(RDF) data has been an active area of current
research. However, most approaches define new
languages for querying RDF data, which has the
following shortcomings: 1) They are difficult to
integrate with SQL queries used in database
applications, and 2) They incur inefficiency as
data has to be transformed from SQL to the
corresponding language data format. This paper
proposes a SQL based scheme that avoids these
problems. Specifically, it introduces a SQL table
function RDF_MATCH to query RDF data. The
results of RDF_MATCH table function can be
further processed by SQL's rich querying
capabiliies and seamlessly combined with
queries on traditional relational data.
Furthermore, the RDF_MATCH table function
invocation is rewritten as a SQL query, thereby
avoiding run-time table function procedural
overheads. It also enables optimization of
rewritten query in conjunction with the rest of the
guery. The resulting query is executed efficiently
by making use of B-tree indexes as well as
specialized subject-property materialized views.
This paper describes the functionality of the
RDF_MATCH table function for querying RDF
data, which can optionally include user-defined
rulebases, and discusses its implementation in
Oracle RDBMS. It also presents an experimental
study characterizing the overhead eliminated by
avoiding  procedural code at runtime,

80 million RDF triples from UniProt protein and
annotation data.

1. Introduction

Resource Description Framework (RDF) [1] is a laage
for representing information (metadata) about reseslin
the World Wide Web. The resources are not limited t
web pages but can also include things that can be
identified on web. The specification of metadatatime
generic RDF format makes it suitable for automatic
consumption by a diverse set of applications.

The RDF data represented as a collection of <sipjec
property, object> triples, can easily be stored an
relational database. The paper addresses the isbue
efficiently querying such RDF data. For querying RD
data, most approaches define yet another queryulzge;
which in turn issues SQL to process user requelsts.
contrast, this paper proposes a SQL-based scheme fo
querying RDF data. Specifically,it proposes an
RDF_MATCH table function with the following
functionality:

e The ability to search for an arbitrary pattern agsi
the RDF data including inferencing based on RDFS
[3] rules, and

e The ability to include a collection of user-defined
rules as an optional data source.
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Figure 1: RDF data for reviewers model

To illustrate the basic functionality, consider Rid&ta
about research paper reviewers. The RDF classeshend
triple instances are shown in Figure 1. Assuming RDF
data is stored in the database as the model 'rer&ywuser
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can issue the following query to find reviewers whe
students with age less than 25:
SELECT t.r reviewer
FROM TABLE(RDF_MATCH(
‘(?r ReviewerOf ?c)
(?r rdf:itype Student)
(?r Age ?a)’,
RDFModels('reviewers'),
NULL, NULL)) t
WHERE t.a < 25;

The various arguments to RDF_MATCH are as follows:

e« The first argument captures the graph pattern to
search for. It uses SPARQL-like syntax [13] and
variables are prefixed with a ‘?’ character.

 The second argument specifies the model(s) to be
queried. *

e The third argument specifies the rulebases (if any)
Here the NULL argument indicates absence of
rulebases.

* The fourth argument specifies user-defined
namespace aliases (if any). Here the NULL argument
indicates that no user-defined aliases are used,
however default aliases such as rdf: are always
available.

By processing RDF data using SQL the regular databa *

tables can be queried in a single query along VRIDF

data. For example, a user can join results of RDIEry
with a traditionalemployees table say to find themailid

of the faculty reviewers:

SELECT t.r reviewer, e.emailid emailid
FROM TABLE(RDF_MATCH(
‘(?r ReviewerOf ?c)
(?r rdf:itype Faculty),
RDFModels(‘reviewers'),
NULL, NULL)) t, employees e
WHERE t.r = e.name;

Providing RDF querying capability in SQL would edab
applications to easily process domain-specific s#ina
stored as RDF data in a relational database. Teiomes
even more important especially in the context ahaatic
web applications, since RDF is an important buitgin
block of the semantic web [4]. Also, in future, tifie vast
amount of data stored in relational databases islena
available as RDF triples [1], then the RDF_MATCH
function can be used to query such data. Furtheemor
applications that need to handle large volumes of,
metadata such as portals and e-marketplaces can als
benefit from this functionality.

The proposed SQL-based RDF querying scheme
involving the RDF_MATCH table function has been
designed to meet most of the requirements idetifie

The RDF_MATCH functionality is introduced as a
SQL table function. Although this avoids kernel
changes, the approach is not suitable for class of
queries that return large result sets, where the
overhead of returning result via the RDBMS table
function infrastructure tends to dominate the query
costs (see Section 4.1 for details). To circumvért
problem an extension to RDBMS table function
infrastructure is implemented, which allows a réar

of table function with a SQL query. With this
extension, processing of RDF_MATCH table
function query does not require any additional
language run-time system other than the SQL engine.
The RDF data triples are stored after normalization
two tables, namely IdTriples (triples in the iddigr
format) and UriMap (uri to identifier mapping). Ggh
storage organizations are possible but are not
considered in this paper. This would be addressed i
future work. The storage representation supports
handling literal of multiple datatypes as well as
supports multiple representations of same literal
value.

The core implementation of RDF_MATCH query
translates to a self-join query on IdTriples tabla
efficiently execute this query, a set of B-tree éxas
and materialized views are defined on the IdTriples
and UriMap Tables.

A class of materialized views calleslibject-property
matrix materialized join views (SPMJVs) is
introduced to avoid the inefficiency resulting from
storing heterogenous data in the canonical triple
format table. Also, the statistics collected on gbe
SPMJVs serve as statistics for the corresponding
portions of the triple table.

Our approach relies on the RDBMS cost-based
optimizer for optimizing the resulting query (thes,
after rewrite of table function invocation). This
approach has the advantage that RDBMS optimizer is
leveraged. However, a shortcoming is that optimizer
can generate sub-optimal plans. We plan to address
this problem in future by enhancing the optimizer t
better handle the class of self-join queries.

Rulebases are in general handled by generating SQL
queries, which may optionally involve table
functions. Also we support the notion of indexing
rulebases, which allows pre-computing and storing
the data derived by applying rulebases to specified
RDF models.

[5], including RDF Graph pattern matching, limiting This scheme has been implemented in Oracle RDBMS

resulting subgraphs, and returning results that o@yain - sing Oracle’s table function infrastructure. Indtibn,

subgraphs from the graph entailed by input RDF 98t {he “implementation uses Oracle’s B-tree indexes,
also handles RDFS and user-defined rules in a sl {,4ction-based indexes, and materialized views.

manner along with the models.
With regards to implementation, the key aspectswf
approach are as follows:

Performance experiments conducted using RDF data
for WordNet, the lexical database for English laaga
[8], and UniProt protein and annotation data [14]idate

1217



the feasibility of this scheme and demonstrate thiat WordNet and UniProt. Section 6 concludes with a
scales well for large data sets. summary and future work.
The key contributions of the paper are: 2. Key Concepts

e A SQL-based scheme for querying RDF data. No
changes are made to SQL. Instead, RDF_MATCH
table function is introduced. User can leverageodll
the SQL capability to process the result of the
RDF_MATCH table function.

«  An efficient and scalable SQL based implementation2-1 Terminology
of RDF_MATCH table function, including querying RDF can be used to capture domain semantics. Thie ba
on data derived by applying rulebases.. unit of information is afact expressed as a <subject,

« An extension to RDBMS table function infrastructure property (predicate), objectriple. For example, the fact,
that eliminates bulk of the runtime overheads for‘Johris age is 24’, can be represented by <‘John’, ‘age’,
class of table functions that can be expressed as @4'> triple. A collection of triples, typically pgaining to
SQL query. a domain or sub-domain, constitutesRBF model

e A study characterizing RDF query performance as Triples in a model can be classified sshematriples
well as identifying overheads in various components and data triples. Schema triples, specified using RDFS,

1.1 Related Work describe the schema-related information (for examnpl

E g RDF d b ¢ | <'age’, ‘rdfs:domain’, ‘Person’>), whereas datdptes
or querying ata, a number of query languagegyeqeripe the instance data. Note that a triplelgjestt and

have been developed. This includes RDQL [9], RDFQL 0 :

[10], ROL [11], SPAROL[13], SquishQL [1], and RSQL I;i)trgrg?.rty are always URIs while its object can b&Rl or
[15]. _Th_esg-are declarative query languages Withleqa An RDF model is also referred to @&&DF graph
fe.W S|m|Iar|t|§s to SQL. However, the sch_eme p“_’@“”‘“ where each triple forms a <property> edge that et
this paper differs from all of the above in thataﬂows the <subject> node to the <object> node.

SQL itself tp be used to.query RDF data by.|ntroxd1gca An RDF data set can optionally include one or more
table f“r,‘c“o"‘- .The main advgntage (?f this SQ_L-knhse rulebases each containing a collection afiles A rule
scheme is th.a.t it allows Ieygragmg the r'Ch. quO.UJIty_Of when applied to a model yields additional triplesAn
SQL and efficiently combining graph queries witheyies RDF model augmented with a rulebase is equivaleihé

against traditional database tables. original set of triples plus the triples inferreq bpplyin
With respect to handling rulebases, our schemauiteq thegrulebase to tﬁe m(r)JdeI P ¢ Bpplying

similar to RDFQL where one or more data sources or )
rulebases can be specified. 2.2 A SQL based RDF Querying Scheme

With regards to implementation, query languageshsuc A table function is introduced to SQL as descrilizlow
as RQL and SquishQL try to push as much of theto satisfy most of the requirements described ihlj% a
functionality as possible to underlying database bySQL-based RDF querying scheme.

formulating SQL queries against tables storing Ri¥fa.  gpE MATCH Table Function: For data stored in a
Our approach for implementing the RDF_MATCH table yatapase, an RDF_MATCH table function is introduced
function is somewhat similar. However, it is tightl \yith the ability to search for an arbitrary graplatern
integrated with the SQL engine and with the tahladtion against the RDF data, including inferencing based o

SQL rewrite functionality further optimization isogsible  RpEs and user-defined rules. The sighature of tiset
such as filter condition pushdown. Our approacesus ;nction is as follows:

materialized views to speed up queries on RDF dBliés

This section gives the terminology used in the rafsthe
paper, outlines the requirements for querying RC#ad

and describes how the SQL based RDF querying scheme
meets these requirements.

RDF_MATCH (

is in addition to the typical database indexes aran Pattern VARCHAR,

define on the tables storing RDF data. Models RDFModels,
) ) RuleBases RDFRules

1.2 Organization of the Paper Aliases RDFAliases,

Section 2 describes key concepts of supporting R)ETURNS AnyDataSet;
RDF_MATCH based queries. Section 3 discusses th
design and implementation of the RDF_MATCH function
on top of Oracle RDBMS. Section 4 discusses an
RDBMS table function infrastructure enhancementt tha
can eliminate bulk. of the _mapping over_head foralwaysstartwith = character.
RDF_MATCH queries. Section 5 describes the

¢ ) q d using RDF d ¢ Among the remaining parameters, the first two sfyeci
performance experiments conducted using ata 10, |ist of RDF models and (optional) rulebases, whic

&he first parameter captures the graph pattern ¢ b
matched. It is specified as a collection of one more
<Subject, Property, Object> triple patterns. Tyfiica
each triple pattern contains some variables. Vaemb
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together constitute the RDF data to be queried. THs®¢ ORDER BY clause, and limiting the results by usithg
parameter specifies aliases for namespaces. ROWNUM clause. Also, the SQL set operations can be

The result returned by RDF_MATCH is a table of used to combine result sets of two or more invamadi of
rows. Each resulting row contains values (bindin®) RDF_MATCH. With the table function SQL rewrite
the variables used in the graph pattern. Substiguthe  functionality discussed in Section 4.2 the optinnizeill
values in the graph pattern would identify the be able to optimize the whole SQL query includirlbef
corresponding matching subgraph. condition pushdown.

The exact definition of the result table, that ike set Rule and RulebasesA rule is identified by a hame and
of columns and their data types, varies dependipgnu the rulebase to which it belongs. A rule consistsadeft
the graph pattern used in an RDF_MATCH invocation. hand side (LHS) pattern for the antecedents, afioopt
(Use of theAnyDataset data type allows us to define filter condition that further restricts the subghap
RDF_MATCH with this ﬂEX|b|||ty) SPECiﬁca”y, foreach matched by the LHS, an 0ptiona| list of namespace
variable in a given graph pattern, the result tabkes a  gliases, and a right hand side (RHS) pattern foe th
column with the same name as the variable (Wltl’tblﬂ!t Consequentg_ For examp|e' the rule that “Chairmm a

starting*> ). These columns are used for returning theconference is also a reviewer of the conference” is
lexical values for the corresponding variablesatidition,  represented as follows:

the result table has additional columns (of form  (rp, - rulebase name

<variable>$type ) for returning data type information for :Q)hagﬁersgnRuleaf ool rull_eHgamfit

each variable that may be bound to literals as wetite lEl'UrLL, airpersonOf Zc).~ LHS pattemn

that based upon current RDF restrictions (that sctgj NULL, -- aliases

and predicates in triples must be URIs and notréits), ‘(?r ReviewerOf ?c)) -- RHS pattern

only those variables that do not appear as subject The following query will return bothiohn and Mary as
predicate components of triples in a graph patan be  reviewers. The latter is implicitly inferred by algng
bound to literal values. rulebaseb to thereviewers model.

Example: Consider the following query (from Section 1) ~ SELECT t.r reviewer
FROM TABLE(RDF_MATCH(

to find student reviewers who are less than 25 yedr ‘(> Reviewerof?c),
SELECT t.r reviewer, t.c conf, t.a age RDFModels (‘reviewers’),
FROM TABLE(RDF_MATCH( RDFRules(rb’), NULL)) t;
E’;; g;&’gﬁer;%’ge”‘) A user can create rulebases and add rules by usiig.
({)r Age f;a)v, Once the rulebases are created and populated ctirepe
RDFModels (‘reviewers’), specified in a RDF_MATCH query. Note that the RDFS
\A,;l#élliiz’\:ng_)z)st; rulebase (nameddfs ) is created by the system and is

. . _ implicitly available for users.
The RDF_MATCH invocation returns the following tabl

; c dStype 2 astjpe 3. Design and Implementation

John IDBC2005 URI 24 xsdint This section describes the design and implementadio

the SQL-based RDF Querying Scheme. This scheme is

implemented on top of Oracle RDBMS. Although the
no need for an additional column to return its diage. description here assumes Oracle RDBMS, the schame ¢

SQL constructs may be used to extend the abové)e supp_orteo! "_1 any RDBMS that sgpports table fiomt,
query, to do aggregation, grouping, and orderings f materialized join views, and B-tree indexes.

Note that, since variabte appears as subject component,
the value of column is always a URI and hence there is

example: 3.1 RDF Data Storage and Multiple Data Type

SELECT t.c conf, Hanlding

FR(;:N? #’,L“QQ&’VDVEC;’A“,L‘%@’(‘EF‘_??_3;%—6‘96 The RDF data must be stored compactly and the
GROUPBYtc storage format should be suitable for efficient gue

ORDER BY avg_age; _ processing. In our scheme, RDF data is stored rfafte
Though the above examples show querying RDF datgyormalization) in two tables:idTriples (ModeliD,
only, users can also query the associated RDF sahfan SubjectlD, PropertylD, ObjectiD, ...) and UriMap

example, to obtain domains and ranges for a propert (,p yrivaie, ... This normalization is critical

Thus, the key benefits of using a table functiorr fo pecayse URIs (or literals) are typically repeataso, it
querying RDF data is that the standard SQL con$$ruc gnaples efficient query processing due to the carhpa

can be used for further processing of the resulisis  ¢i;e Given an RDF triple, its three URIs (or lidds) are
includes iterating over the results, constrainihg tesults g mapped to corresponding identifiers using léab
using WHERE clause predicates, grouping the reSU“?JriMap. If no mapping is found for a URI (or litefa a

using GROUP BY clause, sorting the results using,ey unique UrilD is generated and the new mappisg i
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inserted into the UriMap table. A tuple comprisitige
ModellD (for the RDF model) and the three UrilDs is
then stored into the IdTriples table.

A user view is created on the underlying tablesding
RDF data, which presents only selective portions (a
model granularity) of the RDF data to the usersdshen
their privileges. Also, the RDF_MATCH function is
executed with invoker's privileges. Thus, this soiee
limits each invoker's access via RDF_MATCH query to
only the appropriate portion of the RDF data.

Typed literals are stored in the UriMap table witieir
type. To support matching between multiple
representations for the same value, such as tlegént123

and the float 12.3E+1, each literal is mapped to a

canonical literal. Literals that represent the sawmadue
will map to the same canonical literal, and a litemay be
its own canonical literal. The canonical literal I@hich
is used when joining on the object column) and éxact
literal ID (which is used when returning the objdotthe
user) are both stored in IdTriples. For simplicityeries
in this paper are written as if there was a singlgectID
column in IdTriples.

The first literal entered for a value becomes the
canonical literal. To support mapping other equieal
literals to this canonical literal, there is a flag UriMap
to indicate that the literal is a canonical liter&urther,
the pre-defined datatypes are partitioned into fesj
where all types in a family are associated withiagke
value space. For example, float and integer typethb
belong to the numeric family. For each type familgere
is a function to convert the UriMap lexical represations
into a canonical form, such as a native databape.th

function-based index for this purpose is defined on

UriMap, so a canonical form can efficiently be magito
the corresponding canonical literal during querying

3.2 RDF_MATCH Table Function

The RDF_MATCH functionality is implemented as a
SQL table function using Oracle’s table function
interfaces [6].

RDF Query Processing

- Compile Time Processing At compile time, the form
of the table result, namely the set of columns is
determined. The kernel passes information regardtlirg
columns referenced in the outer SQL query to tHalea
function. This allows for optimization of table fation

(discussed in Section 4.2). Due to overheads wité t
procedural implementation, RDF_MATCH function uses
the rewrite-based implementation.

SQL Query involving RDF_MATCH table function
RDF_MATCH Table function

SQL Query 1 (URF Internal ID mapping)

SQL Query 2 (the self-join query,
including Internal ID=> URI mapping)

Figure 2: RDF_MATCH Implementation Overview

Consider as an example use of the RDF_MATCH table
function in the following SQL query:

SELECT t.r reviewer, t.c conf, t.a age
FROM TABLE(RDF_MATCH(

‘(?r ReviewerOf ?c)

(?r rdfitype Student)

(?r Age ?a)’,

First, aliases specified (if any) are substitutedhwthe
namespaces to expand all alias-encoded URIs. Niet,
URIs and literals, such as 'ReviewerOf, 'rdf:tymae
converted into UrilDs using lookups on the UriMabte:
FROM IdTriples t1, IdTriples t2. IdTriples t3
WHERE t1.PropertylD = 14 AND t2.PropertylD = 11
AND 12.0bjectlD =4 AND t3.PropertylD = 29
Then a self-join query is generated based on matchi
variables across triples (e.g. '?r') in the pattern

WHERE ... t1.SubjectID = t2.SubjectiD AND

t2.SubjectID = t3.Subject|D

Next, the internal IDs are joined with the UriMaaltle to
generate the join result in the URI (and literadyrat:

SELECT ul.UriValue r, u2.UriValue c,
u2.Type c$type, u3.UriValue a,
u3.Type a$type

FROM UriMap ul, UriMap u2, UriMap u3

WHERE t1.SubjectID = ul.UrilD AND

t1.0bjectID = u2.UrilD AND
t3.0bjectID = u3.UrilD

Note that ' is a URI, so there is no type associated,
whereas ¢’ and ‘a’ have a date typecftype, astype )
associated.

The models argument is used to restrict the IdEspl
table based on the corresponding model identifierthe
above self-join SQL query. After the transformation
phase, the generated single SQL query is optimized

queries based on columns referenced in the SQLygueraxecuted to obtain results.

containing table function invocation.

- Execution Time Processing Based on the input
arguments, namely, pattern, models, rules, andediaa
SQL query is generated against the IdTriples anid/idp

tables. Figure 2 shows the various layers

implementation. There are two types of implemeiatati
conventional procedural processing (discussed itiGe
4.1) and a new declarative rewrite-based processin

In addition to the table function arguments, kernel
implicitly provides information regarding the colums
(which correspond to the variables in the graphtqrad
referenced elsewhere in the original SQL query. The

ofRDF_MATCH implementation has been optimized to

compute values only for these columns. This avoids
additional joins with UriMap table to get the
gorresponding UriValue. In general, a query witlriple
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pattern and m variables will result in a query w{thitm-1)  ChairpersonRule given in Section 2.2 would traresiato
joins, assuming m variables are projected (hencins  SQL as follows:
with UriMap table). Experiment IV (Section 5.6) SELECT..

. . FROM
demonstrates the performance benefits of this_ (o C%airpersonof 2¢) => (?x ReviewerOf 2c)
optimization. SELECT t1.SubjectID, 14 PropertylD, t1.0bjectiD

; ; FROM IdTriples t1
The rulgs argument contallns' a |.ISt of rulebasedeo |\ o c t1.PropertylD = 56
applied to infer new triples. This is discusseddyel UNION

- -- explicit ReviewerOf triples
Rule' Processing: To handle rules, the 'RDF_I\'/IATCH SELECT t1.SubjectlD, 1. PropertyID, t1.0bjectiD
function replaces references to the IdTriples tahlehe FROM IdTriples t1
generated SQL with subqueries or table functionat th WHEREt1.PropertylD =14

yield the relevant explicit and inferred triplesul®jueries )t_l; . ) . o
are used whenever the required inferencing can dreed Simple recursive rules involving transitivity angrsmetry

conveniently within a SQL query (i.e., without eigitty ~ ¢an be evaluated as follows. Symmetry can be easily
materializing intermediate results). These subgeri Nandled with a simple SQL query. However, handling
generally take the form of a SQL UNION with one transitivity with a single SQL query requires somype of

UNION component for each rule that yields a relevan Niérarchical query (e.g., using the START WITH and
triple, plus one component to select the expliciples. CONNECT BY NOCYCLE clauses in Oracle RDBMS),

Table functions will be used when the subquery apgh ~ as in the case of transitive RDFS rules.
is not feasible. Suppose the user's query is:

To support the RDFS inference rules, we must rRpr MATCH(
compute a transitive closure for the two transitRBFS (?a rdf:type  Male)
properties:  rdfs:subClassOf ~ (rule  rdfsil) and (?a AncestorOf by,
rdfs:subPropertyOf (rule rdfs5). In Oracle RDBM8ese  There is a user-defined rule to make AncestorOf
transjtive plosures can be computed using hieraathi ansitive, and for simplicity we assume that th®F5
queries with the START WITH and CONNECT BY yjepase is not used. So after translation we hayein
NOCYCLE clauses. Note that CONNECT BY pepyeen IdTriples (for the rdf:type triple) and absjuery

NOCYCLE queries can handle graphs that contain&ycl \yhich computes the transitive closure using CONNECT
by generating the row in spite of the loop in usieta. The gy (for AncestorOf):

remaining RDFS rules can be implemented with simplesg, gct
SQL queries. FROM IdTriples t1, (
i i i SELECT DISTINCT
. To ensure that RDFS |nfe'renC|ng. can be done yvlthln CONNECT._BY_ROOT(t1.SubjectiD) SubjectiD,
single SQL query, the user is prohibited from extigy t1.PropertylD, t1.ObjectID

the built-in RDFS vocabulary. This means, for exdenp g?g&ﬂTl%fTiﬂetslté D = 43
. .PropertyID =
that there cannot be a property that is a sub-prypef CONNECT BY NOCYCLE t1.PropertylD = 43 AND

the rdfs:subPropertyOf property, nor can there heser- PRIOR ObjectID = SubjectiD
defined rule that yields rdfs:domain triples. ) 12

i - WHERE t1.PropertyID = 11 AND t1.ObjectID = 17
User-defined rules can be classified as followseoias ANDtl.SubE)ecttIyD=t2.SubjectID; )

upon the extent of recursion, if any, in the rule: The third class of rules involving arbitrary recims is the

« Non-recursive rules: The antecedents cannot benost complicated, and it has not been addresseithen
inferred by the given rule, or any rule that depsmth  current implementation. These rules will be evahdht
the given rule’s consequents. using table functions, because an unknown number of

» Simple recursive rules: These rules are used t@asses over the intermediate results are requiréidd all
associate transitivity and symmetry characteristicsinferred triples.

with user-defined properties. 3.3 Speeding up RDF_MATCH Queries

* Rules that use arbitrary recursion unlike the ottwey . . . o

categories. The speed up is achieved by creating materializsd j

N . defined rul b luatsd views (MJVs) and creating appropriaté-Bee indexes on

ON-recursive user-denined rules can be evalualil - y,em and indexing RDF data and rulebases. Eathesfe
SQL (join) queries by formulating the FROM and is described in detail below

\éV:LEE%I?r cllausest; ba(sjed ;Jhpon the antetcedfet?]ts a‘;d tQ‘?eneric Materialized Join Views: The query generated
clause based on the consequents ot thesa by RDF_MATCH table function involves a self-join of

to return the inferred triples. Note that the taplthat |dTriples table if the same variable is used in @ahan

match the antecedents of a user-defined rule coul%ne triple of the search pattern. Depending on moany
themselves be inferred, so the FROM clause MY riples are specified, a multi-way join needs to be

reference  subqueries to find inferred triples. Theexecuted.Sincethejoin cost is a major portionhaf total
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processing time, materialized join views can beired to
speed up RDF_MATCH processing. The row size of

and retrieving values of variables, 2city , and?a.

Table 1: Student Info RDF Data

IdTriples table is small and hence the materialijenh

view can be a good candidate for reducing the joast. Slﬁ'ﬁﬁt rPJf gg;y S?E('jicr:t
In general, six materialized two-way join views, maly John Enrc;lledAt Univl
joins  between SubjectiD-SubjectiD,  SubjectiD- John Age 24
PropertyID, SubjectID-OpjectlD, PropertyID- ‘ Pan rdftype Student
PropertylD, PropertylD-ObjectIlD , and ObjectID- Pan EnrolledAt Univ2
ObjectiD can be defined as long as the storage Pan Age 22
requirement is met. Most useful materialized joilews Univi UnivName NYL
for typical queries, however, are joins between Univi City New York
SubjectID-SubjectlD,  SubjectlD-ObjectID, and Univ2 City Los Angeles
ObjectiD-ObjectiD . Note that the individual materialized Table 2: Student Matrix
join views could be created for a subset of datadshon . :
the workload characteristics. S‘ﬁ'ﬁf}t S&Z&;e\fgtk /;(le
The materialized join views are incrementally Pan Los Angeles 22

maintained on demand by the user using the

DBMS_MVIEW.REFRESAPI . A procedural API is provided

to analyze IdTriples table to estimate the sizevafious

materialized views, based on which a user can éeéin
subset of materialized views.

Subject-Property Matrix Materialized Join Views: To

minimize the query processing overheads that dnerient

in the canonical triples-based representation of FRD

subject-property matrix based materialized joirwgecan

be used. These materialized views can be desigsetju

the following basic ideas:

« For a group of subjects, choose a set of singleiedl
properties that occur together. These candirect
properties of these subjects nestedproperties. A
property p is a direct property of subject ¥ there is
a triple (%, p1, Xo). A property p, is a nested property
of subject x if there is a set of triples such as, (¥,

X2)y «evy (X Py Xm+1), Where m >1. For example, if
we have a set of triples, (John, address, addrl)
(addrl, zip, 03062), then zip is a nested propeifty

This query will normally require a 4-way self-joion
the IdTriples table (leaving out the conversionvietn
IDs and URIs, for simplicity). However, by using eh
matrix in Table 2, the query can be processed loypsy
selecting all the rows from the materialized joifew.
Thus, self-joins can be completely eliminated irstbase.
This can lead to significant speed-up in query @ssing.

In general, for the type of queries shown aboveuarg
requiring ann-way join could potentially be processed
using a matrix withmproperties withhn —m)  joins.

In typical usage of such matrices, each subjecthim
group will have one value for each of the chosen
properties. Usage may involve sparseness to sotenie
to allow expanding the group of subjects to inclutiese
subjects that may have no values for a few of the
properties in the selected subset.

It may be noted that use of these matrices as
materialized join views for performance gain ne¢dde
évaluated against the workload for potential bewsefi
John versus the space overhead incurred for additiormabge.

: The issue of which views to materialize is depertdgon

: C_reate a (subject-property matn)_() materializedhjoi the search pattern and it is up to the user to deevhich
view each of whose rows contains values of these

properties for a subject in the group. Is frequent search pattern,

) N The problems of obtaining property-specific statist
Query performance can be improved significantiotigh o 4 triple store with heterogeneous data can litigated
the use of such materialized join views because@lver  \itn the use of statistics computed on the matrix
of joins can be eliminated. For example, Tablehbws & materialized views because those can serve astitati
sample RDF data and Table 2 shows a matrix mateed|  ¢o the corresponding portions of the vertical @bl
join view created for subjects who aseudent s with their

) , Finally, Jena2's [12] property tables (clustering
direct propertyage and nested propertsity (named in mtiple properties) are in many ways similar tfect-
the view asstudiesAt

> VIew a to denote the city where hisiher ronerty matrices. The main differences include the
university is located).

: . . . following:
This subject-property matrix can be exploited by an, Subject-property matrix is an auxiliary structuret

RDBMS optimizer to process an RDF query using the a primary storage structure. So, these matricesimeay
following query pattern to retrieve thge andstudiesAt dropped or redefined as necessary without requiging
info for each sident : data re-loading.

(2r rdftype = Studen) e The definition of subject-property matrix allowseis

(?r enrolledAt ?u) -
(?r age ?a) of nested properties and hence allows more ways of

(?u city 2city)’
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creating useful materialized views for optimizing  The choice for indexes may depend on the actual RDF
performance of a variety of queries in aworkload.  data and workload characteristics. We need to explo
Indexing  Rulebases: Rulebases specified in further to see how any algorithm for choosing index
RDF_MATCH query are applied, by default, during que may need to be customizeq to exploit constraintshsas
processing to the specified list of models. Howevgm  row formats used for RDF triples storage and typRBF
rulebase is used frequently then that rulebase ban queries that involve multi-way self joins.
ilncélexgd usingI aLset c]:f APIs é)gogideddf?r tr;is plfspo 4. Minimizing Overheads by an
ndexing a rulebase for an model refers to pre-p Lo 0 ant to RDBMS

computing the triples that can be inferred withpest to ) ; .
the specified model. These pre-computed triples ard his section discusses an enhancement to OracleNRDB

stored in a separate table and are used subsemuenflable function infrastructure that can minimize l&b
during RDF_MATCH query processing to speed up queryfunction processing overheads.
execution. In general, a pre-computing may neeéo 4.1 RDF Query Processing Components

done for a combination of models and rulebases; 12 The RpF query processing time using RDF_MATCH
applying a set of rules from the union of rulebasesa  (5pje function (t,), without the kernel enhancement

triples from the union of a set of RDF models. discussed in Section 4.2, can be represented sl
However, these pre-computed results cannot be used bt tt

directly to process RDF_MATCH queries that referenc
additional rulebases or models. Currently for swelses,

sql2proc proc20anonical+ tcanonicalquI

Here tq represents the core processing time, that is, the

all inferencing must be done at query executionetim C¢0St Of SQL query that performs the self-joins on
IdTriples table and any additional joins with Urida

Notice that inferencing can only add triples to tipeaph, L
so the pre-computed triples are always valid far trger ~ [@PIe. Once the results are computed, they areecbpito
variables of the table function procedureqft.d, and

set of rulebases and models, though the pre-cordpute - ;
results are not necessarily complete. We plan fplare ~ Subsequently it is converted to canonical format
handling these cases by analyzing the rulebases arfdroc2canonicai SO it can be returned to via RDBMS table

models so we can avoid re-computing portions ofjihe- function infrastructure, and finally transformed dka
computed results that are complete. (tcanonicazsg SO it can be consumed by the outer SQL

. ) . . query.
Indexmg RDF Data: As me.ntloned 'egrller, the core The component,ga - teore | iS dependenobn the result
processing mvolvgs perfqrmmg self'-Joms on I(.ﬂep computed by table function (note: not on the ovkral
table. Thus, creating the right set of indexesldfriples result) and hence it will dominate the query coslisen

is critical for performance improvement. There are : L .
typically two types of query pattemns: 1) given eperty the table function result set size is large. The&sment |
joining subject with subject, or object with objeend 2) (described in Section 5.3) demonstrates the ovelhea

given a property, joining subject with object, asomn incurred for varying number of result rows. To adahis
below: ’ ' overhead an enhancement to RDBMS is implemented as

‘(2 Reviewerof 2c) discussed below.

trota = teore

(?r Age ?a)’ 4.2 A New Table Function Interface
or “?r ReviewerOf 2c) The following extension of RDBMS table function
(?c rdfitype  Conference) infrastructure is implemented, that would allow imple
Since property is typically specified as a URI vaJindex  rewrite of table function with a SQL query.
key with property as the first column may allow ping As an alternative to the current TableStart(),

the search space to a single range in the B-treexn TableFetch(), and TableClose() interfaces, RDBMS
Further, having all the three columns (namely should supporta new table function interface:

PropertylD, SubjectiD , and ObjectiD ) as part of the TableRewriteSQL(arg1, ..., argn) RETURNS VARCHAR;

key may allow index-only access provided the additil  This function takes the arguments specified in thble
storage space required for three column indexest®an function and generates a SQL string. For table fiams
accommodated. Based upon these observations, we hadefined using this interface, RDBMS table function
used two three column indexes with the followingsken  infrastructure does the following processing:

all of our performance experiments described int®&c5  «  |nvoke the corresponding routine to generate thé SQ

<PropertylD,  SubjectlD,  ObjectlD > and string,
<PropertyID, ObjectlD, SubjectiD >. Use of .key— « Substitute the generated SQL string into the ordjin
prefix compression in indexes allowed reducing the  gqoL query, and
storage space required for the indexes. «  Reparse and execute the resulting query.
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The net effect is same as if the user typed ingbaerated an rdf:Property. This RDF Schema for WordNet iswho

SQL query in place of the table function. Howevére in Figure 3.

general function mechanism cannot be used hereuseca

of the FROM clause. It has to be the table function \?Jgfjggimry
Suppose the RDF_MATCH table function be defined

using the TableRewriteSQL() interface. Considke t hyponymO

following query: antonymO

SELECT t.a age
FROMTABLE(RDF_MATCH(
‘(?r  Age ?a)’,
RDFModels(‘reviewers'),
NULL, NULL)) t
WHERE t.a < 25;

The resulting query after rewriting the table fuoct is as AdjectiveSateliite
follows:

SELECT t.a age Figure 3: WordNet RDF Schema

FROM(SELECT ul.UriValue a, ul.Type a$type The hyponymOf property is used to denote that the
FROM IdTriples t1, UriMap ul

Literal

‘ LexicalConcept
similarTo

WHERE tL.PropertylD = 29 AND tL.ModellD = 1 subject represents a specialization 01_c t.he objdar
AND uZ.UrilD = t1.SubjectiD) t example, skyscraper is a hyponym of building.
WHERE ta < 25; Table 3. Property and Resource Statistics of WordNet
Note that the subquery in bold font is the SQL finaent .
that is returned from TableRewriteSQL() for the &bo Property Count (eprIi?:iStorLcj;'Ctize) Count
RDF_MATCH invocation. Now, the whole SQL query is WordFor :
optimized and executed. For example, the filterditan 174,002 verb 12,127
is pushed inside the subquery for further optinmizat Rdf:type 99,653 Noun 66,025
The advantage of such a scheme is that it avoids th | glossaryEntry 99,642 AdjectiveSatellite 10,911
ovgrhead of copying the. rgsults into table functi_on hyponymof 78,445 Adjective 7.003
yanables, as well as eliminates the table function SimilarTo 21 858 Adverb 3,575
infrastructure overhead of transforming the restdt
canonical form and re-transforming it back to presin Others 26 Others 11
the appropriate datatype format. However, suchtese Total 473,626 Total 99,653

is applicable only when the table function can leined The relevant logical statistics for the experiménta
declaratively using SQL (as is the case forcopfiguration is shown in Table 3. The logical stits
RDF_MATCH). can be computed simply with the RDF_MATCH table

function. For example, to find number of resourtgsed
5. Performance Study as 'verb', a user use RDF_MATCH table function vitib

This section describes the performance experimentﬁattem‘(?w rdftype  wn:verby. This type of
conducted using RDF_MATCH table function. query is expected to run efficiently as it restilisa single
5.1 Experimental Setup table query. For example, the above query took thasi
The experiments are conducted using OradieRelease 0-01 seconds. _ _ _

1 (10.1.0.2.0) on a Red Hat Enterprise Linux ASy8tem The data is stored in the normalized form in twbléss,

with one 3.06GHz Pentium 4 CPU and 2048 MB of main "amely, IdTriples table of size 14 MB and UriMarbta
memory. A database buffer cache of 256 MB, shareal p of size 34 MB. The indexes on IdTriples table and
of 256 MB, and database block size of 8 KB is used.UriMap table are of size 22 MB and 26 MB respectjve

The timings reported below are the mean resultrfro Experiments V and VI use large-scale UniProt data
ten or more trials with warm caches. with 80 million triples (see Section 5.7 for modetails).
5.2 Dataset 5.3 Experiment I: Overhead Estimation

The experiments | through IV are conducted using an! NiS €xperiment characterizes the benefit of the
RDF representation of WordNet [11], a lexical daiab TabIeRevyrlteS_QL() enhancement described in Sedion
for the English language, which organizes Englisorag ~ FOUr configurations are tested: ,
into synonym sets, categorizes these synonym sety) RDF_MATCH with the current table function
according to part of speech (noun, verb, etc.), and Interface  (TableStart(), ~ TableFetch(),  and
enumerates  linguistic  relationships  (antonymOf, TableClose()). Execution time of this table funetio

similarTo, etc.) between these synonym sets. InREé corresponds to the,h term in Section 4.1.
representation, each padf speech is modeled as an 2) SQL query equivalent to RDF_MATCH with the
rdfs:Class, and each linguistic relationship is reled as enhanced interface (TableRewriteSQL()). Execution
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time of this query corresponds to thgdterm in  described in Section 3.3. Figure 5 shows the query
Section 4.1. processing time as the number of triples in therslkea

3) Table function (using the current interface) ttha pattern varies. Note that the number of matchedices
fetches from a SQL query, but does not return anyas the number of triples increase, from 78,445 masdor
rows. The SQL query is simple and its executiondim the one-triple query to 45,619 matches for the tsigle
is negligible. Execution time of this table funatio query.
corresponds to thegprocterm in Section 4.1.

4) Table function (using the current interface) ttha
returns rows, but does not execute any SQL. 1.5 =
Execution time of this table function corresponds t /E7<‘
tproc20anonical+ tcanonicalquin Section 4.1.

Figure 4 shows the query processing time for these 0.5 1

components as the number of rows returned is varied 0

from the bottom, Core SQL, SQL to Proc, Proc to SQL

and Other in that order.

4

Time (seconds)
-

# of Triples in the Pattern

354+— [OCore SQL D SQL to Proc
B Proc to SQL B Other

—B—Without MV —&— With MJV |

34—

Figure 5: RDF_MATCH Performance For Various
Searcheqo < 0.0881)

As expected, processing time increases with the
number of triples due to corresponding increasehe
number of self-joins. The materialized view genbral
improves performance, except for 1-triple and Pl
case. For 1-triple case, no benefit is expected thas

I
n

Time (seconds)
I
o N
M

[N
+

o
3}

0

1000 5000 9000 13000 17000 21000 resulting query does not involve any self-joins.r Foe 5-
Number of Rows Returned triple case, the benefit derived due to usage of
Figure 4: RDF_MATCH Query Processing materialized view is offset because the optimizeoases

Components (standard deviationo < 0.0838) a sub-optimal plan.

The results demonstrate thaksyee and frocscanonca * 5.§ Experlmfantlll.Varymg Fl!ter Condmc_ms
teanonicaizsq@r€ linear in the number of rows returned, and This experiment characterizes the impact of SQL
that these overheads dominate the core SQL praugssi Predicates that filter the results found by RDF_M2H.
time when a large number of rows are returned. The! he following search pattern is used for this expemt:
enhanced table function interface avoids this mev-r ‘(zco wn:wordForm zword)

overhead, and therefore it is preferred over therent E;)zg x:jm:gigiz 73:;;

table function interface. In all of the remaining i ' :

- . ; (?c1 wn:wordForm ?synl)
performance experiments, we run the queries wita th (>c2  wn:wordForm  ?syn2)

enhanced RDF_MATCH table function interface. (?c1  rdf:type wn:Adverb)
5.4 Experiment ll: Varying Number of Triples in the (?c2 rdf:type wn:Verb)'
Search Pattern This query is executed with four different equalftifers

As the number of triples in the RDF_MATCH search (€-9-, word = ‘clear) and four different rangedits (e.g.,

pattern increases, RDF_MATCH performs an increasingword >= ‘bat’ AND word < ‘bounce’)) to yield
number of self-joins on the Triples table. To chamize ~ aPProximately 350, 1050, 2000, and 3125 matches wit

how the varying number of self-joins impacts each type of filter. Figure 6 shows the query prsgiag

performance, queries are run to find "hyponymOthgaof time for t.hese filters. Note that thjs query find’Q,.885
varying length. For example, the query to find tiviple matches in 8 seconds when there is no filter praicAs

'hyponymOF paths is: e.xpected,. less selectivc_—z filt_ers require greate_mpssing
SELECT AVG(LENGTH(@)) time. No_tlce that gqu_ahty filters are more efhniet_hgn
FROM TABLE(RDF_MATCH( range filters. This is because the equality filtes

‘(?a- wn:hyponymOf  ?b) implemented with a single lookup in the UriMap takib
nggJFMS’CVi';]'S‘{W%”&g)Y ), find the UrilD for the literal given in the filterln contrast,
NULL, NULL)); range predicates require a join between the Id€sm@nd

The queries are run without materialized views, aiith a ~ UriMap table to get the values needed for filter

generic SubjectID-ObjectiD materialized view, as evaluation.
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data (shown in Table 4) are then run against these

0.6
& 05 g & datasets.
g 0.4 e Table 4. Queries adapted from UniProt sample querie
2 03 El/ Description Pattern Projection | Result
&L 0.2 limit
g ' Q1: Display the ranges of| 6 triples 3vars 15000 rows
= 0.1 transmembrane regions | 5 vars
0+—& & % A Q2: List proteins with 5 triples 3vars 10 rows
0 1000 2000 3000 4000 publications by authors | 5 vars
ber of with matching names 1 LIKE pred.
Number of Rows Q3: Count the number of | 3 triples 0 vars 32 rows
|+ Equality Predicate —B—Range Predicate | tlmes_ a publ|ca§|on. bya | 2vars
specific author is cited
Q4: List resources that 3 triples 1var 3000 rows
Figure 6: RDF_MATCH Performance with Filter are related to proteins | 2 vars
. - ) ) annotated with a specific
Conditions (equality: 0 < 0.0029; range:o < 0.0619) keyword
5.6 Experiment v: Varying Projection List Q5: List genes associated 7 triples 3vars 750 rows|
. i i . | with human diseases 5vars
Th|§ experiment 'cha.racterlzes the benefit of theye; List recently 2 triples 2 vars 8000 rows
projection list optimization done by RDF_MATCH. The modified entries 2 vars
following search pattern is used for this experimen 1 range pred.
(?2c0 wn:wordForm  ?word) Each query includes a ROWNUM predicate to limit
(,?,Cg anworgllzorm gsyni) the number of result rows so that the number ofchat
Eégo \r'(vj?:'tv;,'gé Ormwn: A(S,{Qrt),) remains constant even as the dataset size chaAdgss.
(?c1  rdf:itype wn:Adjective)’ aggregate functions are used in the SELECT lisavoid
the overhead of returning multiple rows to the olie
0 0.4 The RDF_MATCH search pattern for Query 1, for
s 031 example, is as follows:
§ 0.2 SELECT AVG(LENGTH(protein)), AVG(LENGTH(begin)),
=01 AVG(LENGTH(end))
g - FROM TABLE(RDF_MATCH(
i O T T T T ‘(?p rdf:type up:Protein)
(?p up:annotation ?a)
0 ! Proi 2 ion Li g 4 5 (?a rdf:type
rojection List Size up:Transmembrane_Annotation)
. . ?a up:range ?range
Figure 7: RDF_-MATCH- Performance For Varying E?range upp:begin ?begm))
Projection Lists (o < 0.0724) (?range  up:end ?end)’

, o : : RDFModels(‘UniProt), NULL, NULL
This search pattern, which involves 4 variables giedds  \yqeRre rown(um <= 15)000; )

1,470 matches, is used in queries with varying sEts Execution times (in seconds) for these queries (Etele
variables referenced in the SELECT list. Figurehdws  5) remain almost the same even as dataset sizegekan

the query processing time as the projection liste a Table 5. RDF_MATCH Performance Scalability

changed. L Lo . _ Q1 Q2 Q3 Q4| o5 ] Q6
The projection list optimization eliminates joinsitiv 10M Triples | 0.86] <001] <001 008 018 046
the UriMap table for variables that are not refesed 20M Triples | 0.95] <0.01 <001 0.08 019 047
outside of RDF_MATCH. It is clear that large |40MTriples | 0.96] <001 <001 003 018 047
performance gains are possible from this optimaati 80MTriples | 103] <00l <003 008 020 049
Maximumo | .054] 0.00z | 0.00z] .011 | .06t | 0.07

5.7 Experiment V: Large-Scale RDF Data This shows that RDF_MATCH based query

This  experiment  characterizes ~ RDF_MATCH performance is scalable, that is, retrieval cost gesult
performance for querying large-scale data. UniProtrow remains almost the same as the dataset sizegeisa
protein and annotation data in RDF format [14] &ed for 5.8 Experiment VI: Subject-Property MJVs

this experiment. To study scalability we createdesal 14 see potential benefits from use of Subject-Prgpe

datasets using varying subsets (from 10 million80  \15vs (SPMJVs), we used the following query pattern
million triples) of the UniProt data. The largesatdset, against the 80M triple UniProt dataset:
corresponding to 5.2 GB of RDF/XML data, occupieS 2 s ypname  2n)

GB for IdTriples table, 1.7 GB for UriMap table, 8GB (?s rdftype  up:Protein)

for IdTriples indexes, and 1.2 GB for UriMap indexe (7S up:curated true)

. . . . . ?s up:created “?cre
Six queries adapted from examples given with théRuot é?s ug:modiﬁed ’?mo)d)’

1226



An SPMJV was created forrdf:type , up:curated materialized join views is critical in generating aptimal
up:created , and up:modified ~ properties. This SPMJV plan. Allowing users to specify hints to influendae
contained 489,695 rows and occupied 39 MB; there wa optimization process will also be explored.
ﬁ;lrégle Btree index on the subject, which occupied 19Acknowledgments
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