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Abstract

As a simple XML query language but with
enough expressive power, XPath has become
very popular. To expedite evaluation of
XPath queries, we consider the problem of
rewriting XPath queries using materialized
XPath views. This problem is very important
and arises not only from query optimization in
server side but also from semantic caching in
client side. We consider the problem of decid-
ing whether there exists a rewriting of a query
using XPath views and the problem of finding
minimal rewritings. We first consider those
two problems for a very practical XPath frag-
ment containing the descendent, child, wild-
card and branch features. We show that the
rewriting existence problem is coNP-hard and
the problem of finding minimal rewritings is
Σp

3. We also consider those two rewriting
problems for three subclasses of this XPath
fragment, each of which contains child feature
and two of descendent, wildcard and branch
features, and show that both rewriting prob-
lems can be polynomially solved. Finally, we
give an algorithm for finding minimal rewrit-
ings, which is sound for the XPath fragment,
but is also complete and runs in polynomial
time for its three subclasses.

1 Introduction

Recently, more and more data are represented and ex-
changed as XML documents over Internet. XPath
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[11], recommended by W3C, is a simple but pop-
ular language to navigate XML documents and ex-
tract information from them. XPath is also used as
sub-languages of other XML query languages such as
XQuery [5] and XSLT [12].

Since this language is popular, there has been a lot
of work done to speedup evaluation of XPath queries,
for example: index techniques [10, 29], structural join
algorithms [1, 6] and minimization of XPath queries
[2, 30, 28, 15]. More recently, the problem of rewriting
queries using materialized XML views has begun to
attract more attention.

This rewriting problem has been first discussed for
semantic caching because semantic caching can im-
prove performance significantly in traditional client-
server databases and Web-based information systems.
Hence, [9, 32] intuitively consider using cached XML
views to answer XML queries and have obtained no-
ticeable advantage on performance. Moreover, authors
in [3] also consider this problem but in XML query
processing using materialized XPath views. It points
out that most of new proposed indexing schemes can
be modelled as materialized views such that the rewrit-
ing problem could be essential to efficient evaluation of
XPath queries. In this paper, we consider this problem
in formal theoretical aspects, which is not exploited in
previous works to best of our knowledge.

We begin by giving some examples to describe the
motivation of studying this problem. Consider the fol-
lowing XML document t stored in an XML server,
which partially describes enzyme information of a bi-
ological pathway:

<Pathway name = “PA1”>

<Reaction name = “RE1”>

<Enzymes>
<Protein name = “PR1” EC# =“1.0.0.1”/>

<RNA name = “RN1”/>

</Enzymes>
</Reaction>

<Reaction name = “RE2”>

<Enzymes>
<RNA name = “RN2”>

</Enzymes>
</Reaction>

</Pathway>
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Let’s assume that a client issues to the server an XPath
query v :

/Reaction/Enzymes

which retrieves Enzymes subelements of all Reac-

tion elements. The server evaluates this query and
sends back to the client its result as follows:

<Enzymes>
<Protein name = “PR1” EC# =“1.0.0.1”/>

<RNA name = “RN1”/>

</Enzymes>
<Enzymes>

<RNA name = “RN2”>

</Enzymes>

Suppose the client caches the above result. When the
client issues another XPath query p1 :

/Reaction/Enzymes[/Protein]

which retrieves all Reaction elements’ Enzymes

subelements that have at least a Protein subelement.
It’s obvious that the result of p1 is a subset of the
cached result and we can issue an XPath query p′1 :

Enzymes[/protein]

which retrieves Enzymes elements having at least a
Protein subelement, over the result of query v to com-
pute the result of p1 without sending p1 to the server.
We say that p′1 together with query v is a rewriting of
p1, and p′1 is a compensation query of p using v.

Let’s consider another XPath query p2 :

/Reaction/Enzymes/Protein

which retrieves all Protein subelements of Enzymes

subelements of Reaction elements. The result of p2

is not a subset of the cached result of query v. But,
because of nested structures of XML documents, each
Protein element in the result of p2 is a subelement of
an Enzymes element in the cached result of v. We
still can issue an XPath query p′2 :

Enzymes/Protein

which retrieves all Protein subelements of Enzymes

elements, over the cached result to compute the result
of p2.

However, for some XPath queries, we can’t com-
pute their results by using the cached result even if
we know their results are a subset or subelements of
the cached result. For example, consider the following
XPath query p3 :

/Reaction[@name = “RN2 ”]/Enzymes

which only retrieves Enzymes subelements of all Re-

action elements with name “RN2”. We know the re-
sult of p3 is a subset of the cached result. But, we
don’t know which Enzymes element in the cached re-
sult should be included in p3’s result. Thus, there is
no rewriting of p3 using v, i.e., we can’t issue a query
over the result of v to answer p3.

In general, given an XPath query(view) v which is
materialized (i.e., its result is pre-computed or cached)
and a new XPath query p to be answered, the first

problem studied in this paper is the rewriting exis-
tence problem, i.e., whether a compensation query of
p using v exists such that we can evaluate the compen-
sation query over the pre-computed or cached result of
v to answer p. In case there are multiple compensation
queries, we are interested in the compensation query
which needs minimum cost to evaluate. According to
the theoretical analysis of [16, 17], the evaluation ef-
ficiency of XPath queries greatly depends on the size
of them. Same to [30, 15, 2], we also consider the size
of XPath queries as a measure for their costs. Hence,
the second problem studied in this paper is to find the
compensation query with minimum size(also called as
finding minimal rewritings problem).

The rest of this paper is organized as follows. In
Section 2, we introduce basic notations and definitions
about tree patterns which are simple XPath queries
but used frequently in practice. Two rewriting prob-
lems are formulated in Section 3. Section 4 and 5
discuss the complexities of those two rewriting prob-
lems for tree patterns, and give an algorithm to find
minimal rewritings. Finally, we describe related work
in Section 6 and give the conclusion in Section 7.

2 Preliminaries

2.1 Trees and Tree Patterns

Generally, an XML database consists of a set of XML
documents. We model each XML document as an un-
ordered rooted node-labelled tree (called XML tree)
over an infinite alphabet Σ, where the label of each
internal node corresponds to an XML element, an at-
tribute name or a data value. We denote all possible
XML trees over Σ as TΣ.

Definition 2.1 An XML document is a tree
t〈Vt, Et, rt〉 over Σ called XML tree, where

• Vt is the node set and Et is the edge set;
• rt ∈ Vt is the root of t;
• Each node n in Vt has a label from Σ(denoted as

n.label).

Given an XML tree t〈Vt, Et, rt〉, we say that
t′〈Vt′ , Et′ , rt′〉 is a subtree of t if Vt′ ⊆ Vt and
Et′ = (Vt′ × Vt′) ∩ Et. For any node n in t, we de-
note the subtree rooted at n and exactly containing
all its descendants as (t)n

sub. We let n be the root of
(t)n

sub, such that (t)n
sub can also be seen as an XML

tree. For instance, Fig. 1(c) shows the subtree rooted
at ‘d’-labelled node of an XML tree t, which is shown
in Fig. 1(a).

In this paper, we discuss a fragment of XPath
queries, first studied in [23]. This fragment con-
sists of label tests, child axes(/), descendant axes(//),
branches([]) and wildcards(*). It can be recursively
represented by the following grammar:

xp→ l| ∗ |xp/xp|xp//xp|xp[xp]
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where l is a node label from Σ. We denote this frag-
ment as XP {/,//,∗,[]}. Three subclasses of XP {/,//,∗,[]}

are also specially discussed: XP {/,//,[]}, XP {/,∗,[]} and
XP {/,//,∗}, which only use two of the three features:
‘//’, ‘[]’ and ‘*’ in addition to ‘/’.

As said in [23], any XPath query from XP {/,//,∗,[]}

can be trivially represented as a labelled tree(called
tree pattern) with the same semantics.

Definition 2.2 A tree pattern p is a tree
〈Vp, Ep, rp, op〉 over Σ ∪ {‘*’}, where Vp is the
node set and Ep is the edge set, and:

• Each node n in Vp has a label from Σ ∪ {‘*’},
denoted as n.label;

• Each edge e in Ep has a label from {‘/’,‘//’}, de-
noted as e.label. The edge with label / is called
child edge, otherwise called descendent edge;

• rp, op ∈ Vp are the root and output node of p re-
spectively.

For example, an XPath query a[∗/b]/c//d is repre-
sented as a tree pattern shown in Fig. 1(b), where
the dark node is the output node. The size of a tree
pattern, written as ‖p‖, is defined as the number of
its nodes. Without loss of generality, we refer to tree
patterns as patterns in the rest of this paper.

Given a pattern p〈Vp, Ep, rp, op〉, we say that
p′〈Vp′ , Ep′ , rp′ , op′〉 is a subpattern of p if the follow-
ing conditions hold: (1)Vp′ ⊆ Vp; (2)Ep′ = (Vp′×Vp′)∩
Ep; (3)If the node op ∈ Vp′ , then op is also the out-
put node of p′. For any node n in p, we denote as
(p)n

sub the subpattern with n as the root and exactly
containing all its descendants. As an example, the pat-
tern p = a[// ∗ /d]/b[∗][//d] is shown in (1) of Fig. 6.
Let n∗ be the ‘*’-labelled node which is a child of p’s
root. The subpattern (p)n∗

sub is given in (2).
We now define an embedding(also called pattern

match) from a pattern to an XML tree as follows:

Definition 2.3 Given an XML tree t〈Vt, Et, rt〉 and
a pattern p〈Vp, Ep, rp, op〉, an embedding from p to t
is a function e : Vp → Vt, with following properties:

• Root preserving: e(rp) = rt;
• Label preserving: ∀n ∈ Vp, if n.label 6= ‘*’,

n.label = e(n).label;
• Structure preserving: ∀e = (n1, n2) ∈ Ep, if

e.label = ‘/’, e(n2) is a child of e(n1) in t; other-
wise, e(n2) is a descendent of e(n1) in t.

The embedding maps the output node op of p to a
node n in t. We say that the subtree (t)n

sub of t is the
result of this embedding. As an example, dashed lines
between Fig. 1(a) and (b) shows an embedding, and
its result is shown in Fig. 1(c). Actually, there could
be more than one embedding from p to t. We define
the result of p over t, denoted as p(t), as the union of
results of all embeddings, i.e.,

∪e∈EB{(t)
e(op)
sub }

Figure 1: (a)An XML tree t; (b)A pattern p; and (c)A
subtree of t

where EB is the set including all embeddings from p
to t, and e(op) is a node of t, mapped by the output
node op of p through an embedding e.

In addition, we define an empty pattern denoted
as ε: the result of evaluating ε over any XML tree is
empty.

2.2 Containment and Minimization of Pat-

terns

For any two patterns p1 and p2, p1 is said to be con-
tained in p2(p1 v p2) iff ∀t ∈ TΣ p1(t) ⊆ p2(t), and
p1 is said to be equivalent to p2 (denoted as p1 ≡ p2)
iff ∀t ∈ TΣ p1(t) = p2(t). Obviously, the equivalence
problem can be seen as a two-way containment prob-
lem because p1 ≡ p2 iff p1 v p2 and p2 v p1.

The complexity of the pattern containment problem
has been well studied for XP {/,//,[],∗} and also for its
three subclasses. The problem is in coNP-complete
[23] for XP {/,//,[],∗} and in P for its three subclasses
[2, 30, 25].

Minimizing a pattern p is to find an equivalent pat-
tern p′(≡ p) with minimum size, i.e., no other equiv-
alent pattern p′′(≡ p) having ‖p′′‖ < ‖p′‖ exists. As
shown in [15], the minimization problem is coNP-hard.
However, a pattern can be minimized in polynomial
time in the case of XP {/,//,[]} [2] and XP {/,∗,[]} [30].
Any pattern from XP {/,//,∗} is already minimized.

3 Problem Formulation

Let t be an XML tree. We use v to denote a mate-
rialized pattern whose result v(t) is pre-computed or
cached, and we use p to denote a pattern to be an-
swered. Our goal is to find a pattern p′ such that we
can answer p by evaluating p′ over the result of v, i.e.,
p′(v(t)) is equal to p(t). Note that v(t) may include a
set of subtrees of t, and p′(v(t)) is defined as the union
of results of evaluating p′ over all subtrees in v(t).

By observation, for any XML tree t, the result of
evaluating a pattern p′ over v(t) can be viewed as the
result of directly evaluating a pattern over t. Actually,
this pattern can be obtained from p′ and v.
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Figure 2: (a)p′; (b) v and (c)p′ ⊕ v.

We define an asymmetric concatenation operator,
denoted as ⊕, between two patterns as below: given
two patterns p′〈Vp′ , Ep′ , rp′ , op′〉 and v〈Vv, Ev, rv, ov〉,
the concatenation from p′ to v is a pattern, denoted as
p′ ⊕ v, which is constructed from p′ and v by merging
rp′(the root of p′) and ov(the output node of v) into
one node. rv and op′ are the root and output node
of p′ ⊕ v respectively. The merged node is denoted
as np′⊕v, and it has both the children of rv in v and
the children of op′ in p′ as its children. When the two
nodes rp′ and ov have different labels, we choose the
more “restrictive” one as the label of np′⊕v. That is,
the label of merged node np′⊕v is chosen as

• rp′ .label if rp′ .label = ov.label;
• rp′ .label if ov.label = ∗ and rp′ .label is from Σ;
• ov.label if rp′ .label = ∗ and ov.label is from Σ.

If both of the two labels are from Σ and different, then
we let p′ ⊕ v = ε, i.e., the concatenation is an empty
pattern.

Example 3.1 Fig. 2 shows an example: we can get
pattern p′⊕v = a[c]//b[f ][e]//f(shown in (c)) by con-
catenating p′ = ∗[e]//f(shown in (a)) to v = a[c]//b[f ]
(shown in (b)). The root of p′ has label *, and the out-
put node of v has label ‘b’. The merged node of the
above two nodes has label ‘b’. p′ is a subpattern of
p′ ⊕ v under ‘b’-labelled node.

We have the following result for the ⊕ operator.

Lemma 3.2 Let p′ and v be two patterns. (p′ ⊕ v)(t)
is equal to p′(v(t)) for any XML tree t ∈ TΣ.

Obviously, the fragment XP {/,//,∗,[]} is closed un-
der concatenation. Notice that the construction of
p′ ⊕ v based on p′ and v doesn’t introduce new wild-
cards or descendant edges. Hence, two subclasses
XP {/,//,[]} and XP {/,∗,[]} are also closed under con-
catenation. Moreover, if p′ and v are from XP {/,//,∗},
p′ and v are linear patterns with their leaves as output
nodes. It’s obvious that p′ ⊕ v is in XP {/,//,∗}.

Lemma 3.3 The fragment XP {/,//,∗,[]} and its three
subclasses are closed under concatenation.

In addition, it’s straightforward to show that the
concatenation operator ⊕, considered as a binary op-
erator, satisfies that given three patterns v, p′ and p′′,

1. p′′ ⊕ v v (or ≡)p′ ⊕ v if p′′ v (or ≡)p′, and
2. (p′′⊕ p′)⊕ v ≡ p′′⊕ (p′⊕ v) (i.e., ⊕ is associative)

Based on the concatenation operator and Lemma
3.2, we formally define (minimal) compensation pat-

terns and (minimal) rewritings as follows:

Definition 3.4 Let v be a materialized view and p be
a pattern. We say that a pattern p′ is a compensa-

tion pattern and p′ ⊕ v is a rewriting of p using v
if p′ ⊕ v is equivalent to p. We also say that p′ is a
minimal compensation pattern, and p′⊕v is a minimal
rewriting of p using v if there is no other compensation
pattern p′′ of p using v such that the size of p′′ is less
than that of p′.

The two problems studied in this paper can now be
restated as follows:
Rewriting Existence Problem: Given a pattern v
and a pattern p, we check whether there exists a com-
pensation pattern p′ such that p′ ⊕ v ≡ p or not; and
Finding Minimal Rewritings Problem: If a
rewriting of p using v exists, find the minimal com-
pensation pattern p′ such that p′ ⊕ v ≡ p.

4 Rewriting Existence Problem

We discuss the complexity of rewriting existence prob-
lem in the case of XP {/,//,∗,[]} in this section. Our
first observation is that the rewriting existence prob-
lem is closely related to the pattern containment prob-
lem. More specifically, our next result shows that for
patterns with their roots as output nodes, these two
problems are equivalent.

Lemma 4.1 Let p and v be two patterns with output
nodes as roots, p v v iff there exists a rewriting of p
using v.

Hence, in the rest of this section, we first de-
scribe current techniques on containment of patterns
and then discuss the complexity of rewriting existence
problem.

4.1 Techniques on Containment of Patterns

Many techniques have been used to obtain the com-
plexity results of the pattern containment problem,
like homomorphisms [8], canonical models [23] and so
on.

The homomorphism technique is first used in the
containment problem of conjunctive queries [8]. The
existence of a homomorphism between two patterns
implies the containment relationship between them.
That is, for two patterns p1 and p2, p2 v p1 if a ho-
momorphism from p1 to p2 exists.

Definition 4.2 Given two patterns
p1〈Vp1

, Ep1
, rp1

, op1
〉 and p2〈Vp2

, Ep2
, rp2

, op2
〉, a

homomorphism is a function h: Vp1
→ Vp2

, with
following properties:
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• Root and output node preserving: h(rp1
) = rp2

,
and h(op1

) = op2
;

• Label preserving: ∀n ∈ Vp1
n.label = ‘*’, or

n.label = h(n).label;
• Structure preserving: ∀e = (n1, n2) ∈ Ep1

, if e
is a child edge, (h(n1), h(n2)) is also a child edge
in Ep2

; otherwise, (h(n1), h(n2)) is a path in p2

including at least a child or descendent edge.

As an example, dashed lines in Fig. 3 represent
a homomorphism from p1 = a[//b]/ ∗ //d to p2 =
a[∗/b]/c//d.

The containment of two patterns can also imply the
homomorphism existence between them in the case of
XP {/,//,[]} and XP {/,∗,[]}, but unfortunately not in
the case of XP {/,//,∗,[]}.

For the case of XP {/,//,∗}, [25, 23] propose a
method to rewrite patterns in XP {/,//,∗} to a new rep-
resentation such that this implication still holds. For
the convenience to discuss our rewriting problems, we
describe this method as below but with small change,
and also call it as pattern standardization.

The standardization works as follows. For any path
consisting a chain of nodes in a pattern p of XP {/,//,∗}:
(v1, v2, ..., vn), we replace the label of edge (vi, vi+1)
with ‘//’ for i = 1, ..., n− 1 if the following conditions
are satisfied: (1)v1 is the root or its label is from Σ;
vn is the leaf(output node) or its label is from Σ; (2)
The label of vi for i = 2, 3, ..., n − 1 is ‘*’ (3)∃i, the
label of edge (vi, vi+1) is ‘//’. For example, a pattern
p is a// ∗ / ∗ /b// ∗ /∗. Two paths a// ∗ / ∗ /b and
b// ∗ /∗ of p satisfy the above conditions such that p
is standardized to a// ∗ // ∗ //b// ∗ //∗. Obviously,
a pattern standardization can be done in linear time.
A pattern p after standardization is denoted as std(p).
The following properties [25, 23] hold:

Lemma 4.3 (1)For a pattern p in XP {/,//,∗}, p ≡
std(p); (2)For two patterns p1 and p2 in XP {/,//,∗},
if p2 v p1, a homomorphism exists from std(p1) to p2.

Finding a homomorphism between two patterns p1

and p2 can be done in polynomial time, specifically
in O(‖p1‖ ·‖p2‖) [24]. Hence, the pattern containment
problem is in P for the three subclasses of XP {/,//,∗,[]}.

However, the containment problem is not in P for
the whole fragment XP {/,//,∗,[]}. [23] proposes the
canonical model method to obtain its complexity. This
method first introduces boolean patterns, which are
patterns without specifying output nodes. Given an
XML tree t and a boolean pattern q, we say q(t) is
true if an embedding exists between them; otherwise
false. For two boolean patterns q1 and q2, we say
that q1 v q2 iff ∀t ∈ TΣ, q1(t) implies q2(t). Then,
this method translates the containment problem of two
patterns to that of two boolean patterns. Finally, it
shows the boolean pattern containment problem is in
coNP-complete for XP {/,//,∗,[]}.

Figure 3: A homomorphism from p1(a) to p2(b)

4.2 Complexity

In Lemma 4.1, we have shown that the rewriting exis-
tence problem is equivalent to the pattern containment
problem for patterns with their roots as output nodes.
However, this special pattern containment problem is
still in coNP-complete, as shown below.

Notice that for a pattern p whose output node is its
root, if there is an embedding from p to an XML tree
t, p(t) = {t}; otherwise p(t) = φ. Obviously, patterns,
with roots as output nodes, have the similar behavior
as boolean patterns. Not surprisingly, we have the
following complexity result by reducing the boolean
pattern containment problem:

Lemma 4.4 In case of XP {/,//,∗,[]}, the containment
problem of two patterns with roots as output nodes is
coNP-complete.

Since a special case of the rewriting existence prob-
lem is coNP-complete, we have:

Theorem 4.5 The rewriting existence problem is
coNP-hard in case of XP {/,//,∗,[]}.

4.3 Tractable Results

In this subsection, we show the rewriting existence
problem can be solved in polynomial time for the three
subclasses of XP {/,//,∗,[]}. Our idea is based on the
fact that the existence of a homomorphism is sufficient
and necessary for containment of two patterns in the
case of XP {/,//,∗,[]}’s three subclasses.

We first consider the subclass XP {/,//,[]}. The fol-
lowing example illustrates our intention about how to
check whether a rewriting exists or not.

Example 4.6 Consider two patterns v =
a[//f ]/b[c/e] and p = a/b[c/e]/f . There is a
compensation pattern p′ = b[//e]/f of p using v such
that p′ ⊕ v = a[//f ]/b[c/e][//e]/f , which is equivalent
to p. p′, v, p′ ⊕ v and p are shown in (a), (b), (c) and
(d) of Fig. 4 respectively. The ‘b’-labelled node in
p′ ⊕ v shown in (c) is the merged node of p′ and v,
which is denoted as np′⊕v. Because p′ ⊕ v ≡ p, there
is a homomorphism h1 from p to p′ ⊕ v, represented
by dashed lines between (c) and (d). h1 maps a
‘b’-labelled node in p, denoted as np, to np′⊕v. We
show next that the subpattern (p)

np

sub rooted at np of
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Figure 4: Constructing homomorphisms in case of XP {/,//,[]}

p, shown in (e), is also a compensation pattern of p
using v, i.e., (p)

np

sub ⊕ v ≡ p′ ⊕ v ≡ p.
First, based on h1 (refer to Fig. 4), we can construct

a homomorphism h′
1 from (p)

np

sub⊕v (g) to p′⊕v (f) as
follows: h′

1 maps each node from v part of (p)
np

sub ⊕ v
to the same node from v part of p′⊕ v, represented by
dotted lines from (g) to (f); h′

1 maps the rest nodes
from (p)

np

sub part of (p)
np

sub ⊕ v, to corresponding nodes
of p′ ⊕ v as h1 does, represented by dashed lines from
(g) to (f). Hence, we have that p′ ⊕ v v (p)

np

sub ⊕ v.
Second, because p′⊕v ≡ p, there is also a homomor-

phism h2 from p′⊕ v to p, represented by dashed lines
from p′ ⊕ v (h) to p (i) in Fig. 4. We denote the node
mapped by the merged node np′⊕v under h2 as n′

p. In
our example, n′

p and np are the same node in p(‘b’-
labelled node). Then, based on h2, we can construct a
homomorphism h′

2 from p′ ⊕ v (j) to (p)
np

sub ⊕ v (k) as
follows: h′

2 maps each node from v part of p′⊕v to the
same node from v part of (p)

np

sub⊕v, represented by dot-
ted lines from (j) to (k); h′

2 maps the rest nodes from
p′ part of p′ ⊕ v, to corresponding nodes of (p)

np

sub ⊕ v
as h2 does, represented by dashed lines from (j) to (k).
Hence, we have that (p)

np

sub ⊕ v v p′ ⊕ v.
In summary, we can construct two homomorphisms

between (p)
np

sub ⊕ v and p′ ⊕ v in both ways. Hence,
(p)

np

sub ⊕ v ≡ p′ ⊕ v ≡ p, i.e., (p)
np

sub is a compensation
pattern of p using v. �

The above example shows us that if a compensation
pattern of p using v exists, there is a subpattern of p
which is also a compensation pattern of p using v. Is
this always true for any possible patterns p and v? The
answer is yes. In the above example, we can construct
a homomorphism from (p)

np

sub ⊕ v to p′ ⊕ v if there is
a node np of p mapped by a homomorphism(from p
to p′ ⊕ v) to the merged node of p′ ⊕ v. We can also

construct a homomorphism from p′ ⊕ v to (p)
np

sub ⊕ v
if the node n′

p of p mapped from the merged node of
p′⊕v by a homomorphism(from p′⊕v to p) is the node
np. Our next discussion and result can guarantee that
np always exists and np′ must be np.

We say that the path from a pattern p’s root to
output node is the selection path of p. Notice that
a homomorphism between two patterns always maps
one pattern’s root and output node to the other’s root
and output node respectively. We show that if two pat-
terns are equivalent, the sizes of their selection paths
are the same.(Note that this result not only holds for
XP {/,//,[]} but also for XP {/,//,∗,[]}.)

Lemma 4.7 Let p1 and p2 be two equivalent patterns.
If p1 ≡ p2, the selection path of p1 has the same size
as that of p2 in case of XP {/,//,∗,[]}.

Since two equivalent patterns’ selection paths have
the same size, any homomorphism between them must
map nodes in the selection path of one pattern to nodes
in that of the other pattern sequentially one by one.
Let two patterns be p and v and there is a pattern p′

such that p′⊕ v is a rewriting of p using v. Obviously,
the merged node np′⊕v of p′⊕v is in the selection path
of p′ ⊕ v. There is a unique node np in the selection
path of p such that any homomorphism from p to p′⊕
v(or p′ ⊕ v to p) maps np to np′⊕v(or np′⊕v to np).
Moreover, np has the same position in the selection
path of p as the merged node np′⊕v in that of p′ ⊕ v,
i.e., if np′⊕v is the i-th node in the selection path of
p′ ⊕ v starting from the root, then np is also the i-th
node in that of p starting from the root. Since np′⊕v

is merged from the output node of v and the root of
p′, then np also has the same position as the output
node of v. We have the following conclusion for the
subclass XP {/,//,[]}.
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Lemma 4.8 Let v and p be two patterns, and let np

be the node in the selection path of p with the same
position as the output node of v in that of v. If a com-
pensation pattern p′ of p using v exists, the subpattern
(p)

np

sub of p is a compensation pattern of p using v.

The above lemma directly implies that we only need
to consider one compensation pattern candidate (p)

np

sub
to check whether a rewriting of p using v exists, be-
cause no compensation pattern of p using v exists if
(p)

np

sub is not.

Now, we discuss two other subclasses XP {/,//,∗}

and XP {/,∗,[]}. Notice that the existence of homomor-
phisms in both ways between p′ ⊕ v and p is the only
condition to make the above lemma work. Hence, the
above lemma can easily apply to XP {/,∗,[]}, and the
following result holds:

Corollary 4.9 Lemma 4.8 holds for XP {/,∗,[]}.

However, in the case of XP {/,//,∗}, p′ ⊕ v is maybe
not standardized such that there is no homomorphism
from p′ ⊕ v to p even if p′ and v are standardized and
p′ ⊕ v ≡ p. For example, let p′ = a/∗ and v = ∗//b,
but p′ ⊕ v = a/ ∗ //b is not standardized.

We still can construct a homomorphism from
(p)

np

sub ⊕ v to p′ ⊕ v because a homomorphism exists
from p to p′ ⊕ v, and we can’t construct a homomor-
phism from p′ ⊕ v to (p)

np

sub ⊕ v. But, in the following
example, we show that a homomorphism can be con-
structed from p to (p)

np

sub ⊕ v such that (p)
np

sub ⊕ v is
still equivalent to p, i.e., (p)

np

sub still is a compensation
pattern of p using v.

Example 4.10 Let two patterns v = a/∗ and p =
a// ∗ // ∗ //b. There is a pattern p′ = ∗// ∗ /b such
that p′ ⊕ v ≡ p, where p′ ⊕ v = a// ∗ // ∗ //b. p is
standardized, so there is a homomorphism h from p
to p′⊕ v, represented by dashed lines between (d) and
(f). The node np′⊕v in (d) is the merged node of p′

and v. h maps a ‘*’-labelled node in p, denoted as np,
to np′⊕v. We show next that the subpattern (p)

np

sub
rooted at np of p, shown in (c), is also a compensation
pattern of p using v, i.e., (p)

np

sub ⊕ v ≡ p. (p)
np

sub ⊕ v is
shown in (e).

First, we also can construct a homomorphism h′

from (p)np ⊕ v to p′ ⊕ v based on h in the same way
as Example 4.6. Hence, p′ ⊕ v v (p)

np

sub ⊕ v.
Second, instead of constructing a homomorphism

from p′⊕v to (p)
np

sub⊕v like Example 4.6, we construct a
homomorphism h′′ from p to (p)

np

sub⊕v in the following
way: h′′ maps each node from (p)

np

sub part of p to the
same node from (p)

np

sub part of (p)
np

sub ⊕ v, represented
by dotted lines from (f) to (e); h′′ maps the rest nodes
of p to nodes from v part of (p)

np

sub ⊕ v as h does,
represented by dashed lines from (f) to (e). Hence,
(p)

np

sub ⊕ v v p.

Figure 5: Constructing homomorphisms in case of
XP {/,//,∗}

Finally, we have that (p)
np

sub ⊕ v ≡ p′ ⊕ v because
p ≡ p′ ⊕ v, i.e., (p)

np

sub is a compensation pattern of p
using v.�

As illustrated by the the above example, we have:

Corollary 4.11 Lemma 4.8 holds for XP {/,//,∗}

Finally, we have the following complexity result for
the rewriting existence problem in the case of the three
subclasses of XP {/,//,∗,[]} to conclude this subsection.

Theorem 4.12 For three subclasses of XP {/,//,∗,[]},
the rewriting existence problem is in P .

Proof. Directly from Lemma 4.8 and its corollaries,
and the fact that testing equivalence of two patterns
is in P for the three subclasses.

5 Finding Minimal Rewritings Prob-
lem

In this section, we consider the problem of finding min-
imal rewritings, i.e., finding the minimal compensation
pattern of p using v, where p and v are two patterns.
Obviously, this problem is related to minimization of
patterns. In this section, we first introduce the min-
imization algorithm, and then discuss this problem’s
complexity and finally design an algorithm for it.

5.1 Algorithm on Minimization of Patterns

We first introduce several definitions and notations on
patterns.

Given a pattern p〈Vp, Ep, rp, op〉 and any node n in
p, we denote as (p)n the subpattern of p constructed
from (p)n

sub by adding the root of p and connecting it
to n using the same path between them in p. As an
example, the pattern p = a[// ∗ /d]/b[∗][//d] is shown
in (1) of Fig. 6. Let n∗ be the ‘*’-labelled node which
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Figure 6: (1)p; (2)(p)n∗

sub; (3)(p)n∗

; (4)p− n∗ or (p)nb

;
and (5)min(p)

is a child of p’s root. The subpatterns (p)n∗

sub and (p)n∗

are given in (2) and (3) respectively.
Given a pattern p, we define Cp be a node set in-

cluding all children of p’s root. Assume that Cp =
{n1, n2, ..., nm}. We denote a set of subpatterns
{(p)n1 , (p)n2 , ..., (p)nm} as P (p). In Fig. 6, the root
of p shown in (1) has two children with labels ‘*’and
‘b’, denoted as n∗ and nb, respectively. Then, Cp =

{n∗, nb}, and P (p) includes two subpatterns (p)n∗

and

(p)nb

of p shown in (3) and (4) separately.
Given a pattern p and a node n of p, we denote as

p − n the subpattern obtained from p by pruning the
subpattern (p)n

sub rooted at n. Moreover, let N be a
set of nodes of p and we denote as p−N the subpattern
obtained from p by pruning all subpatterns rooted at
nodes in N . For example, p − n∗ is shown in (4) of
Fig. 6.

The above definitions can also be applied to boolean
patterns in general. Using these definitions, the mini-
mization problem is discussed below.

Given a boolean pattern q, [15] shows that for two
nodes ni and nj ∈ Cq, if (q)ni v (q)nj , nj is redundant
in q, because the subpattern q − nj is equivalent to q.
Moreover, [15] also shows that q is not minimized if and
only if a subpattern in P (q) is not minimized or there
exist two subpatterns (q)ni and (q)nj in P (q) having
(q)ni v (q)nj . This result leads to the boolean pattern
minimization algorithm in [15], which works as follows:
For a node nj in Cq, it checks whether nj is redundant,
i.e., whether there exists ni ∈ Cq s.t. (q)ni v (q)nj . If
yes, it prunes (q)

nj

sub and updates q to q − nj . Then,
it continues the above pruning procedure until Cq has
no redundant nodes. Finally, for every node ni in Cq

which isn’t pruned, it recursively minimizes (n)ni

sub.
The above results and minimization algorithm for

boolean patterns can be trivially extended to patterns
in general. As an example, the pattern shown in (1)
of Fig. 6 after minimization is given in (5).

We have the following two results for patterns based
on works in [15], which we will use for the finding min-
imal rewritings problem later.

Lemma 5.1 Let p〈Vp, Ep, rp, op〉 be a pattern and n
be a node in the path from rp to op, (min(p))n

sub is
isomorphic to min((p)n

sub).

Proof. Directly from the minimization algorithm

and the fact that (p)n
sub, who includes the output node

of p, can not be pruned away during minimization.

Lemma 5.2 Let p1 and p2 be two equivalent pat-
terns, and p2 is minimized. Then, for each subpat-
tern (p2)

nj ∈ P (p2), there exists a subpattern (p1)
ni ∈

P (p1) such that (p1)
ni ≡ (p2)

nj .

Proof omitted. Our proof is based on the Lemma
1 of [15]. We restate it by using our notations: let
q1 and q2 be two boolean patterns such that q1 v q2.
Then, for each subpattern (q2)

nj ∈ P (q2), there exists
a subpattern (q1)

ni ∈ P (q1) s.t. (q1)
ni v (q2)

nj . �

5.2 Complexity

Not surprisingly, our first result is that the compensa-
tion pattern doesn’t introduce new labels. That is, if
a pattern p′ is a compensation pattern of a pattern p
using a pattern v, then p′ doesn’t have any label from
Σ which doesn’t appear in p.

Lemma 5.3 Let p and v be two patterns. p′ doesn’t
introduce new labels from Σ if p′ is a compensation
pattern of p using v.

Our second result is that the minimal compensation
pattern doesn’t increase size, i.e., if p′ is a minimal
compensation pattern of p using v, then ‖p′‖ ≤ ‖p‖.

Lemma 5.4 Let p and v be two patterns. If a com-
pensation pattern of p using v exists, the minimal com-
pensation pattern of p using v has at most size ‖p‖.

The proof is based on the following two important
claims which follow from the definitions.

Claim 5.5 Let v be a pattern and ov be its output
node. (v)ov

sub is the subpattern rooted at ov of v. The
concatenation from (v)ov

sub to v, (v)ov

sub⊕v, is equivalent
to v.

Claim 5.6 Let p′ and v be two patterns. Let ov be the
output node of v and np′⊕v be the merged node of p′⊕v.
The concatenation from p′ to (v)ov

sub, i.e., p′⊕(v)ov

sub, is
isomorphic to, the subpattern rooted at np′⊕v of p′⊕v,

i.e., (p′ ⊕ v)
np′⊕v

sub .

Proof. (Lemma 5.4): Assume that p′ is a compen-
sation pattern of p using v. Our idea is that we can
construct a pattern based on p′ such that it is a com-
pensation pattern with size less than ‖p‖.

Let ov be the output node of v and (v)ov

sub is the
subpattern rooted at ov of v. We show that p′⊕ (v)ov

sub
is also a compensation pattern of p using v. For ⊕
is associative, (p′ ⊕ (v)ov

sub) ⊕ v ≡ p′ ⊕ ((v)ov

sub ⊕ v).
(v)ov

sub ⊕ v ≡ v according to Claim 5.5. Thus, (p′ ⊕
(v)ov

sub)⊕ v ≡ p′ ⊕ v ≡ p. It means that p′ ⊕ (v)ov

sub is a
compensation pattern.
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Since p′ ⊕ (v)ov

sub is a compensation pattern, then
min(p′ ⊕ (v)ov

sub) is a compensation pattern too. We
show that the size of min(p′⊕ (v)ov

sub) is less than that
of p. First, p′⊕ (v)ov

sub is isomorphic to the subpattern

(p′⊕v)
np′⊕v

sub rooted at the merged node np′⊕v of p′⊕v
according to Claim 5.6. Thus, the size of min(p′ ⊕

(v)ov

sub) is equal to the size of min((p′ ⊕ v)
np′⊕v

sub ). Sec-

ond, based on Lemma 5.1, min((p′ ⊕ v)
np′⊕v

sub ) is iso-

morphic to (min(p′ ⊕ v))
np′⊕v

sub . Obviously, the size of

(min(p′⊕v))
np′⊕v

sub is less than that of min(p′⊕v) since

(min(p′⊕ v))
np′⊕v

sub is a subpattern of min(p′⊕ v). No-
tice that ‖min(p′ ⊕ v)‖ = ‖min(p)‖ due to p′ ⊕ v ≡ p.
Finally, we have that ‖min(p′⊕ (v)ov

sub)‖ = ‖min((p′⊕

v)
np′⊕v

sub )‖ = ‖(min(p′ ⊕ v))
np′⊕v

sub ‖ ≤ ‖min(p′ ⊕ v)‖ =
‖min(p)‖ ≤ ‖p‖. Hence, min(p′⊕(v)ov

sub) is a compen-
sation pattern with size not greater than ‖p‖. This
implies the minimal compensation pattern of p using
v has size not greater than ‖p‖. �

Based on the above lemmas, we can obtain the fol-
lowing complexity result:

Theorem 5.7 Let p and v be two patterns. The prob-
lem of whether there exists a compensation pattern p′

of p using v such that p′ has size less than k is Σp
3,

where k ≤ ‖p‖.

Proof. We can guess in polynomial time a pattern
p′, which doesn’t introduce new labels and has size less
than k. And, testing p′ ⊕ v ≡ p is in coNP [23] (also
in Σp

2). �

5.3 Tractable Results

In this subsection, we show that the problem of find-
ing minimal rewritings is in P for the three subclasses.
In subsection 4.3, we have already shown that for the
three subclasses of XP {/,//,∗,[]}, if a compensation pat-
tern of Pattern p using Pattern v exists, then there is
a node np of p such that the subpattern (p)

np

sub of p is
also a compensation pattern.

For XP {/,//,∗}, we can easily have that (p)
np

sub is the
minimal compensation pattern based on the fact: any
pattern in XP {/,//,∗} is minimized. Any pattern p′ s.t.
p′ ⊕ v ≡ p must have the same size as (p)

np

sub, because
the size of p′⊕v is equal to that of (p)

np

sub⊕v according
to they are equivalent and minimized.

However, for two other subclasses, (p)
np

sub ⊕ v may
not be minimized even if both (p)

np

sub and v are min-
imized. Hence, there maybe exists another pattern,
which is also a compensation pattern but with less
size than (p)

np

sub. An interesting question arises: can
the minimal compensation pattern be found among
subpatterns of (p)

np

sub?
We first discuss a special case of the problem of

finding minimal rewritings, which restricts the pat-
tern v’s output node to its root, for the whole frag-

Figure 7: Example 5.9: (a)p; (b)p−np; (c)v; (d)p⊕ v;
and (e)(p− np)⊕ v or (p⊕ v)− np.

ment XP {/,//,∗,[]}. In this special case, our next result
shows that p is a compensation pattern if one exists.

Lemma 5.8 Let p be a pattern and v be a pattern
whose output node is its root. If a compensation pat-
tern of p using v exists, then p is also a compensation
pattern.

The following example shows that although p may
not be a minimal compensation pattern, a minimal
compensation pattern can be obtained from p.

Example 5.9 Let p = a[b/c]/d and v = ∗[//d][b/c],
which are shown in Fig. 7 (a) and (c) respectively. p is
a compensation pattern and p⊕ v = a[//d][b/c][b/c]/d
is shown in (d). We denote two ‘b’-labelled nodes in p
and v as np and nv respectively. We see that the sub-
patterns (p⊕v)np and (p⊕v)nv of p⊕v are equivalent.
Hence, np is redundant for p⊕ v. (p⊕ v)− np shown
in (e), obtained from p⊕ v by pruning the (p⊕ v)

np

sub,
is equivalent to p⊕ v. It implies that p− np obtained
from p by pruning (p)

np

sub is also a compensation pat-
tern, because the concatenation from p− np to v(i.e.,
(p−np)⊕v) can be viewed as a pattern obtained from
p⊕ v by pruning np(i.e., (p⊕ v)− np), which is equiv-
alent to p ⊕ v and p. We say that np is a rewriting-
redundant node of p against v. In fact, np is the only
rewriting-redundant node and p−np is a minimal com-
pensation pattern. p− np and (p− np)⊕ v are shown
in (b) and (e) respectively. �

This example gives us motivation to obtain the min-
imal compensation pattern by pruning all rewriting-
redundant nodes of p against v. This motivation leads
to our following definition and the most important
lemma of this work.

Definition 5.10 Let p be a pattern and v be a pattern
whose output node is its root. Cp and Cv are two node
sets including all children of the roots of p and v respec-
tively. np ∈ Cp is called to be a rewriting-redundant
node of p against v if there exists a node nv ∈ Cv

s.t. (p ⊕ v)np ≡ (p ⊕ v)nv . The set Rp
v including
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all rewriting-redundant nodes is called the rewriting-
redundant node set of p against v.

Lemma 5.11 Let p be a minimized pattern and v be
a pattern whose output node is its root. Let Rp

v be the
rewriting-redundant node set of p against v. If there
exists a compensation pattern of p using v, then p−Rp

v

is a minimal compensation pattern of p using v.

The proof is based on the following observation.

Claim 5.12 Let p be a pattern and v be a pattern
whose output node is its root. Pattern p′ is a com-
pensation pattern of p using v. Cp′⊕v, Cp′ and Cv are
three node sets including all children of p′ ⊕ v, p′ and
v’s roots respectively. The following results hold:

• the root of p′ ⊕ v has the same label as that of p;
• Cp′⊕v = Cp′ ∪ Cv;
• for a node np′ ∈ Cp′ , (p′)np′ in P (p′) is isomor-

phic to (p′ ⊕ v)np′ in P (p′ ⊕ v).

Proof. (Lemma 5.11): We show that p−Rp
v is also a

compensation pattern. From Lemma 5.8, p is a com-
pensation pattern of p using v exists. The concatena-
tion of p−Rp

v to v, i.e., (p−Rp
v)⊕ v, can be viewed as

the pattern obtained from p ⊕ v by pruning all nodes
in Rp

v, i.e., (p ⊕ v) − Rp
v. According to our rewriting-

redundant node set definition, all nodes in Rp
v are also

redundant for p⊕ v, i.e., (p⊕ v)−Rp
v ≡ p⊕ v. Hence,

p − Rp
v is a compensation pattern. For simplicity, we

denote p−Rp
v as p′ in the rest of this proof.

Now, we prove that p′ is a minimal compensation
pattern by showing that any other compensation pat-
tern p′′ must have size at least as p′. We show first
that for each pattern in P (p′), there exists a pattern
in P (p′′) equivalent to it.

Since p′ ⊕ v and p′′ ⊕ v are equivalent to p which is
minimized, we have the fact that for each pattern in
P (p), both of P (p′ ⊕ v) and P (p′′ ⊕ v) have a pattern
equivalent to it according to Lemma 5.2.

Notice that Cp′ = Cp −Rp
v and p′ is obtained from

p by pruning nodes in Rp
v. Then, for a node np′ ∈

Cp′ , np′ ∈ Cp. We have that (p′)np′ (∈ P (p′)) and
(p)np′ are the same pattern. Because p′′⊕v ≡ p, there
exists a node np′′⊕v in Cp′′⊕v such that (p′′⊕v)np′′⊕v is
equivalent to (p)np′ (i.e., (p′)np′ ) based on the fact. We
show next that (p′′ ⊕ v)np′′⊕v must also be in P (p′′).

Cp′′⊕v = Cp′′ ∪ Cv. This node np′′⊕v is included in
either Cp′′ or Cv. Actually, np′′⊕v must be included
in Cp′′ . If np′′⊕v ∈ Cv, we can have that np′ is a
rewriting-redundant node of p against v. np′ must be
included in Rp

v and should not be included in Cp′ . This
causes a contradiction. We show np′ is a rewriting-
redundant node of p against v as follows: (p′′⊕v)np′′⊕v

is isomorphic to (p ⊕ v)np′′⊕v , because (p′′ ⊕ v)np′′⊕v

and (p⊕v)np′′⊕v are isomorphic to (v)np′′⊕v . Note that,
in some cases, the root of v may have a different label
from roots of (p′′⊕v)np′′⊕v and (p⊕v)np′′⊕v . But, roots

of (p′′⊕v)np′′⊕v and (p⊕v)np′′⊕v have the same label as
the root of p according to Claim 5.12. Hence, the fact
that (p′′ ⊕ v)np′′⊕v is isomorphic to (p ⊕ v)np′′⊕v still
holds. Then, (p⊕v)np′′⊕v is equivalent to (p)np′ . Since
p is also compensation pattern of p using v, (p)np′ is
equivalent to (p⊕v)np′ according to Claim 5.12. Thus,
(p⊕ v)np′′⊕v is equivalent to (p⊕ v)np′ . It means that
np′ is a rewriting-redundant node.

Since np′′⊕v is included in Cp′′ , (p′′⊕v)np′′⊕v is iso-
morphic to (p′′)np′′⊕v according to Claim 5.12. Hence,
we have that (p′′)np′′⊕v ∈ P (p′′) is equivalent to (p)np′ ,
i.e., (p′)np′ (∈ P (p′)). This proves that for each pattern
in P (p′), there exists a pattern in P (p′′) equivalent to
it.

Finally, we show that ‖p′‖ ≤ ‖p′′‖. From the above
discussion, each pattern in P (p′) is equivalent to a cor-
responding pattern P (p′′). Since p′ is minimized, each
pattern in P (p′) is also minimized and has no greater
size than the corresponding pattern in P (p′′). In ad-
dition, no two patterns in P (p′) will be equivalent to
one pattern in P (p′′). Thus, it’s obvious that p′ has
less size than p′′. It comes to our conclusion. �

So far, we only show how to obtain the minimal
compensation pattern in case that v’s output node
is its root for the whole fragment XP {/,//,∗,[]} in the
above lemma. Unfortunately, this lemma can’t be ex-
tended to the general case that v’s root and output
node are not the same one, for XP {/,//,∗,[]}.

However, for two subclasses XP {/,//,[]} and
XP {/,∗,[]}, we can reduce the problem of finding min-
imal rewritings for any two patterns to that for one
pattern and another pattern whose root is its output
node, which is shown in the following result.

Lemma 5.13 Let v be a pattern and ov be its output
node. Let p be a pattern and np in p be the corre-
sponding node with same position to ov. Assume that
a compensation pattern of p using v exists. Then, Pat-
tern p′ is a minimal compensation pattern of p using
v iff p′ is a minimal compensation pattern of (p)

np

sub
using (v)ov

sub, whose output node is its root.

Proof. We only need to show that p′ is a compen-
sation pattern of p using v iff p′ is a compensation
pattern of (p)

np

sub using (v)ov

sub. Since a compensation
pattern of p using v exists, the subpattern (p)

np

sub of p
is a compensation pattern according to Lemma 4.8.

(⇒)p′ is a compensation pattern of p using v, so
p′ ⊕ v ≡ p. We can have two homomorphisms be-
tween p′ ⊕ v and p in both ways. Let np′⊕v be the
merged node of p′ ⊕ v. np′⊕v and np have the same
position in the selection paths of p′ ⊕ v and p. Then,
we can have mappings by these two homomorphisms
between np′⊕v and np in both ways. Hence, we have
homomorphisms in both ways between the subpat-
tern (p′ ⊕ v)

np′⊕v

sub of p′ ⊕ v and the subpattern (p)
np

sub,

i.e., (p′ ⊕ v)
np′⊕v

sub ≡ (p)
np

sub. According to Claim 5.6,
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(p′⊕v)
np′⊕v

sub is isomorphic to p′⊕(v)ov

sub. It means that
p′ is a compensation pattern of (p)

np

sub using (v)ov

sub.
(⇐)p′⊕v is equivalent to p′⊕((v)ov

sub⊕v) according
to Claim 5.5, and is equivalent to (p′⊕(v)ov

sub)⊕v for ⊕
is associative, and is equivalent to (p)

np

sub⊕v because p′

is a compensation pattern of (p)
np

sub using (v)ov

sub, and
is equivalent to p for (p)

np

sub is a compensation pattern
of p using v. Hence, p′ is a compensation pattern of p
using v. �

By combining the above lemmas, we have the fol-
lowing complexity result of finding minimal rewritings
problem:

Theorem 5.14 For the three subclasses of
XP {/,//,∗,[]}, the problem of finding minimal rewrit-
ings is in P .

Proof. We use notations of Lemma 5.13 here. Find-
ing the minimal rewriting of p using v is equivalent to
finding the minimal rewriting (p)

np

sub using (v)ov

sub. Be-
cause (v)ov

sub’s output node is its root, we only need to
compute the rewriting-redundant set of (p)

np

sub against
(v)ov

sub according to Lemma 5.11. Obviously, comput-
ing rewriting-redundant node set can be polynomially
done since checking the equivalence of two patterns is
in P for the subclasses of XP {/,//,∗,[]}. �

5.4 Algorithm for Finding Minimal Rewrit-

ings

In the case of three subclasses, for two patterns p and
v, Lemma 4.8 suggests a way to decide the existence
of a compensation pattern of p using v by testing the
only one compensation pattern candidate, which is a
subpattern of p. Lemma 5.11 and 5.13 directly pro-
pose an algorithm to find the minimal compensation
pattern by pruning rewriting-redundant nodes. The
following algorithm just follows the ideas in those lem-
mas. It’s sound and complete, and also runs in polyno-
mial time for the three subclasses. This algorithm will
run in exponential time for XP {/,//,∗,[]} since checking
equivalence of two patterns and minimizing patterns
are coNP-hard. However, our last result shows that
this algorithm is still sound for XP {/,//,∗,[]}.

Theorem 5.15 The finding minimal rewritings algo-
rithm is sound for XP {/,//,∗,[]}.

Proof. We use notations of Algorithm 1 here. The al-
gorithm checks whether (p)

np

sub is a compensation pat-
tern of p using v. If it is, the algorithm returns the
minimal compensation pattern of (p)

np

sub using (v)ov

sub.
Notice that when (p)

np

sub is a compensation pattern of

p using v, then the fact holds for XP {/,//,∗,[]} that the
minimal compensation pattern of (p)

np

sub using (v)ov

sub
is also the minimal compensation pattern of p using
v. This follows from the proof of the necessary con-
dition of Lemma 5.13. Hence, this algorithm is sound
for XP {/,//,∗,[]}. �

Algorithm 1: Finding minimal rewritings
Input: p and v(are two patterns)
Output: a minimal compensation pattern of p
using v if exists; otherwise null.

1: Minimizing p and v;
2: Let ov be the output node of v;
3: Let np be a node in p has the same position to ov;
4: if (p)

np

sub ⊕ v 6≡ p then

5: return null;
6: end if

7: Rp
v ← Φ;

8: p′ ← (p)
np

sub;
9: v′ ← (v)ov

sub;
10: for Each np′ ∈ Cp′ do

11: for Each nv′ ∈ Cv′ do

12: if (p′ ⊕ v′)np′ ≡ (p′ ⊕ v′)nv′ then

13: Rp′

v′ = Rp′

v′ ∪ {np′};
14: end if

15: end for

16: end for

17: return p′ −Rp′

v′ ;

However, this algorithm isn’t complete for
XP {/,//,∗,[]}, because the fact, that (p)

np

sub is not a
compensation pattern of p using v, doesn’t imply no
compensation pattern of p using v exists.

6 Related Work

The problem of rewriting queries using views has been
studied in depth in the relational model [20, 21]. Re-
cently, this problem has also been exploited in the
semi-structural data model [27] with regular path
queries [7, 19].

Most recently, the problem of rewriting queries us-
ing materialized XML views has attracted moderate
attention. In [9], Chen et al consider in client side
using cached results of previous XQuery queries to an-
swer new queries. In [32], Yang et al consider min-
ing frequent tree patterns to materialize and use them
to answer new queries. In [3], Balmin et al consider
in server side using materialized XPath views, which
can include XML fragments, data values, full paths,
or node references, to speedup processing of XPath
queries. All above works use heuristics to decide the
existence of rewritings, and [3] uses another heuris-
tic to minimize compensation queries. No theoretic
analysis on this problem has been addressed in all of
them. But, a lot of theoretical works have been done
for containment and minimization problems of XPath
queries, which lead to our theoretical research on the
problem of rewriting queries using materialized XPath
views.

The most similar theoretical work to ours is [14].
Authors consider the XQuery reformulation problem
for XML publishing scenario. They reduce the XML
data model into a relational data model under con-
straints such that the XQuery reformulation problem
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can be reduced to the rewriting problem of conjunc-
tive queries under constraints. They show that an
extended Chase and BackChase (C&B) algorithm is
complete for the reformulation problem of a restricted
class of XQueries called Behaved XQueries. The tech-
niques we use and the conclusions we have in this paper
are totally different to theirs.

In addition, other works about XPath queries are
expressive powers [4, 18], satisfiability [22], the time
complexity of query evaluation [16, 17], and the con-
tainment in presence of disjunction, DTDs, existen-
tial variables and SXICs (Simple XPath Integrity Con-
straints) [2, 26, 13, 31].

7 Conclusion

In this paper, we have discussed two problems:
the rewriting existence problem and finding mini-
mal rewritings problem for a fragment of XPath:
XP {/,//,∗,[]} and its three subclasses.

We have shown that the rewriting existence problem
is in coNP-hard and the problem of finding minimal
rewritings is in Σp

3 for XP {/,//,∗,[]}, but both problems

are in P for the three subclasses of XP {/,//,∗,[]}.
Moreover, in case of the three subclasses, we have

shown that a subpattern of Pattern p is sufficient as
the only one compensation pattern candidate for test-
ing whether a rewriting of p using Pattern v exists. We
have also shown that if the subpattern is a compen-
sation pattern, then the minimal compensation pat-
tern can be obtained from it by pruning all rewriting-
redundant nodes. Based on these results, we have
designed an algorithm for finding minimal rewritings,
which is only sound for XP {/,//,∗,[]}. However, this al-
gorithm is complete and also runs in polynomial time
for the three subclasses.
Acknowledgements: This work is supported by NSF
grant DBI-0128061.
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