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Abstract

Spreadsheets, and MS Excel in particular, are
established analysis tools. They offer an attractive user
interface, provide an easy to use computational model,
and offer substantial interactivity for what-if analysis.
However, as opposed to RDBMS, spreadsheets do not
provide a central repository hence they do not provide
shareability of models built in Excel and lead to
proliferation of multiple copies of the same spreadsheet.
Furthermore, spreadsheets do not offer scalable
computation, for example, they lack parallelization. To
address the shareability, and scalability problems, we
propose to automatically translate Excel computation
into SQL. An analyst can import the data from a
relational system, define computation over it using
familiar Excel formulas and then translate and store it as
a relational SQL view over the imported data. The Excel
computation is then performed by the relational system.
To edit the model, the analyst can bring the model back
to Excel, modify it in Excel and store it back as an SQL
View. We refer to this system asQuery by Excel, QBX
in short.

1 Introduction

Spreadsheets, MS Excel [5],[6] in particular, are
established business and personal analysis tools. They offer
an attractive user interface with graphs and customizable
menus, provide an easy to use computational model, and
offer very substantial interactivity for “what-if” analysis.
Spreadsheets offer many financial, statistical, engineering
and mathematical functions as well as data transformation
services like pivot, aggregation, lookups, etc.

Spreadsheets as computational machines, however, have
serious shortcomings. They lack a well defined algebra and
their computation is cryptic. A scalability problem exists
when the data set is large. Also, spreadsheets offer a
fragmented, unconsolidated picture of a business with data
residing in separate sources, like RDBMS, and formulas
describing the business in a spreadsheet.

On the other hand, there are existing computation
engines without scalability or fragmentation problems an
with a well-defined computational algebra, for exampl
OLAP [7], [8], Statistical [12] and Relational engines. The
are, however, at a disadvantage in interactivity, graphic
presentation and popularity of the computational language

This paper discusses a system that combines
presentational and interactive modeling power of Excel a
the computational power and scalability of an establish
Relational Engine with Analytical Extensions. This syste
is called Query By Excel (QBX) and has these features:
• Analysts build and edit their model using familiar Exce

formulas. The model is then automatically translated
into SQL and stored as a set of publicly available
relational views.

• Analysts designate areas in the spreadsheet that are
relational sources, calledRTables. The area contains an
image of (a sample of) a relational table. An RTable ca
be transformed into another RTable using Excel
operations corresponding to Outer Join, Selection,
Projection and Aggregation. Hence, users can perform
Relational operations with Excel without writing a SQL.

• The analyst writes Excel formulas on samples of table
that fit in an Excel spreadsheet. However, when
operations are translated to SQL they operate on enti
tables, hence applying the scalability of the RDBMS (in
size and parallelism) to Excel models.

• To import relational data to Excel, users currently use
Relational Query Builders [10], [11] that require some
knowledge of SQL. QBX disposes of them as query
building is done entirely with Excel formulas.

• Business Reporting tools [9] can access the Relationa
Views of translated Excel spreadsheets. Excel
consolidation becomes as easy as combining these
views using SQL operations like Join, Union, etc.

This paper was motivated by new SQL Analyti
Extensions: SQL Model [1],[2] and SQL Pivot Operator [3
which provide language bindings to express Excel formul
in efficient SQL.

This paper is organized as follows. Section 2 briefl
describes SQL extensions used for Excel translation. Sect
3 describes the high level architecture and relation
schemas. Section 4 discusses translation of Excel formu
to SQL and Section 5 presents its optimizations. Section
shows performance of our translated models. Section
concludes and suggests topics for further research.
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2 SQL Extensions

This section briefly describes the SQL Model [1] [2]
extension (available in Oracle 10g Release) used in our
Excel to SQL Translation. Our examples are based on a star
schema with three dimension tables:time_dim, prod_dim,
region_dimand a fact tablef(t, r, p, s, c). f is dimensioned by
time (t), region (r), and product (p) columns and has two
measures: sales (s) and cost (c).

[1] introduced an SQL extension for analytical processing
called SQL Spreadsheet Clause, later renamed SQL Model.
This extension allows users to view a relation as a
multidimensional array and specify multiple formulas over
it. The SQL Model clause identifies partition, dimension and
measure columns within the query result. The partition
(PBY) columns divide the relation into disjoint subsets. The
dimension (DBY) columns uniquely identify rows within
each partition, calledcells. The measure (MEA) columns are
expressions computed by the model. A sequence of formulas
describing computation on cells, follows the PBY, DBY and
MEA definitions. The structure of the SQL Model is:

<existing parts of a query block>
MODEL PBY (cols) DBY (cols) MEA (cols) <options>
(
  <formula>, <formula>,.., <formula>
)

Cells are referenced using an array notation with
dimension columns qualified by predicates, for example
s[p=’dvd’, t=2002] or s[‘dvd’, 2002] for short. A formula
represents an assignment of expressions over measures to the
target cells. For example:

SELECT r, p, t, s FROM f
MODEL PBY(r) DBY (p, t) MEA (s)
( s[’vcr’,2002] = s[‘vcr’,2000] + s[’vcr’,2001],
  s[’tv’, 2002] = avg(s)[’tv’,1992<t<2002]
)

partitions tablef by region r and defines that within each
region, sales of ’vcr’ in 2002 will be the sum of sales in 2000
and 2001, and sales of ’tv’ will be the average for years
between 1992 and 2002. The left side of a formula can define
a range of cells and the new functioncv()carries the value of
a dimension from the left side to the right side thus serving
as a join between the right and left sides. For example:

MODEL DBY (r, p, t) MEA (s)
(
  s[’west’,*,t>2001]=1.2*s[cv(r),cv(p),cv(t)-1]
)

states that sales of every product in the ’west’ region for
year > 2001 will be 20% higher than sales of the same
product in the preceding year.

[1] also introduces read-only Reference Models which are
n-dimensional arrays defined over other query blocks. They
are used as lookup tables in the main SQL Model clause. For
example, assume a budget tablebudget(r,p) containing
predictionsp for the sales increase for each regionr. The
following query predicts sales in 2002 in region ‘west’
scaling them using prediction p from thebudget table.

SELECT r, t, s FROM f GROUP by r, t

MODEL
  REFERENCE budget ON (SELECT r, p FROM budget)
  DBY(r) MEA(p)
DBY (r, t) MEA (sum(s) s)
(
  s[’west’,2002]=budget.p[’west’]*s[’west’,2001]
)

The evaluation of formulas can be done in the order
their dependencies or in the lexicographical order of the
specification referred to as AUTOMATIC or SEQUENTIAL
order, respectively. Consider the following SQL Mode
clause:

MODEL PBY(r) DBY (p,t) MEA (s) AUTOMATIC ORDER
( s[’dvd’,2002] = s[’dvd’,2000] + s[’dvd’,2001]
  s[’dvd’,2001] = 1000
)

Here, the first formula depends on the second a
consequently we will evaluate the second one first. SQ
Model also provides iterative execution of rules wit
termination conditions, and options to treat NULL values
numeric expressions as 0, etc., which are used in QBX.

3 Architecture of QBX

Our system, Query By Excel, aims at making Exce
Spreadsheet a front end to Relational Databases. Figur
shows the system’s components and their interactions. T
QBX Schema stores a representation of a spreadsheet’s d
formulas, layout, and RTables. The RDBMS interaction an
modeling component allows the user to manage RTabl
The Persistence component stores information about
spreadsheet to the QBX schema. The Excel to SQ
Translation translates a spreadsheet into an SQL view. Th
are two categories of users in this system: the Excel ana
uses Excel to design models on the underlying transactio
data; RDBMS users and applications consume the mod
created by the Excel analyst.

Figure 1Architecture of QBX

The Database Schema Componentstores Excel two-
dimensional grid and relational objects represented in a
of relational tables:

Excels(eid, name, owner, ExcelBinary, SQLView)records
accounting information about stored Excel spreadshe
including their name, internal Excel id (eid), owner, and the
Excel xls file in a lob column (ExcelBinary). It also stores
the name of the SQL View containing SQL translation o
Excel inSQLView column. This view is available to public.

Cells(eid, sheet, row, col, x, f)stores cells of an Excel
spreadsheet. It records a cell’s coordinates (sheet, row, col),

Excel->SQL
TranslationTranslation

RDBMS

Excel
Analyst

RDBMS
User

QBX
generated
SQL objects

Application

EXCEL

Persistence

QBX
Database

Schema

RDBMS
Interaction
& Modeling
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and either its value (x), or its formula (f). Cells that are not
populated are not stored. We store values as strings and rely
on SQL for implicit type conversion.

RTables (eid, RTable, sheet, row, col, sample, RTableView,
..) stores, for each Excel, the name of each RTable imported
into Excel (RTable), its location within Excel(sheet, row,
column), parameters (e.g.samplesize), name of the SQL
View representing the RTable (RTableView), and other
accounting information like column types. The SQL Text
representing RTable is stored in the public catalog.

To illustrate, consider the following Excel spreadsheet

Figure 2Example1

When this Excel spreadsheet is persisted, we create a
single entry in theExcelstable, and then store five cells C1,
C2, C3, D1 and D3 to theCellstable with their Excel <sheet,
row, col> coordinates. Cells C1, C2, C3, D1 have constants
(in the Cells.x column) and cell D3 has a formula (in the
Cells.f column). This Excel spreadsheet does not contain
RTables, hence RTables is empty.Excelsalso contains the
name of an SQL view, which represents computations done
by this spreadsheet.

QBX generated SQL Objectsstore views representing
Excel computation in public dictionary. For the example
above, we store the following view:

Q1
CREATE VIEW Example1 AS
SELECT sheet, row, col, x FROM cells
MODEL DBY (sheet,row,col) MEA (x) AUTOMATIC ORDER
(
  x[1,3,4] = x[1,3,3] - x[1,2,3]  -- D3 = C3-C2
)

The RDBMS Interaction and Modeling component is
an Excel add-on written in VBA. This component exposes a
menu-driven interface; a main menu called QBX allows us to
manage RTables and to store, translate and load Excel to and
from the database. It has two major sub-menus:
1. QBX->RTables menu manages RTables. It allows us to

load a relational table (menu itemLoadTable), add and
drop columns from it (Add Column/Drop Column), save
a transformed RTable as a relational view (SaveTable),
and save regions of Excel spreadsheets as Relational
Views (SaveRegion).

2. QBX->Spreadsheet menu.Store translates an Excel
spreadsheet into SQL and stores it in the database to-
gether with the original Excel spreadsheet.Loadloads a
previously stored Excel spreadsheet for editing.

This component invokes the Translation and Persistence
components for the bulk of its work.

The Persistence Componentpersists information about
RTables, their locations in Excel, SQL views representing
them, populated cell values and formulas in the RDBMS.
This component is implemented as a VBA Excel add-on,
using Objects for OLE. These steps are followed to persist
an Excel spreadsheet:

1. A new Excel ID (eid) is created and the Excel xls file i
stored in theExcels table together with its name, etc.

2. The location, and the formula or the value of each pop
lated cell that does not belong to an RTable is stored 
theCells table.

3. The location of each RTable is stored. The SQL view
representing the RTable is also stored.

4. The Excel to SQL translator (described in Section 4) 
invoked and the resulting relational view, representing
the Excel computation, is stored in the RDBMS public
catalog. Its name is recorded inExcels table.

The Translation Component performs two types of
translations: it translates Excel formulas into an SQL vie
over the Cells table; and over views representing RTabl
The component runs in the RDBMS as a Java stor
procedure. The translation is described in detail in Section

4 Excel to SQL Translation

In QBX we try to minimize extensions to Excel. We use
advanced Excel capabilities, like pivot functions, advanc
filters and operations on named ranges, to simulate relatio
operations like aggregation, selections, and set functio
respectively.

We recognized that Excel supports functions not y
represented in SQL, like financial functions, and decided n
to translate Excel spreadsheets containing them. Our g
was to translate a subset of Excel functions which ha
correspondents in SQL. Many Excel functions could b
implemented as simple SQL row functions using PL/SQ
Others, like SUMPRODUCT that takes a variable number
ranges, could be translated to SQL using aggregates
collections, and these are left for future extensions.

We distinguish three types of Excel to SQL translation
Fixed frame translation (Section 4.1) handles self-contain
Excel computation, i.e., formulas operating on embedd
(i.e., non-imported) Excel data. The Table Translatio
(Section 4.2) uses Excel operations on imported relation
tables to simulate parts of relational algebra. The Unifie
translation allows Excel computations on RTables (Secti
4.3 and Section 4.4).

4.1 Fix Frame Translation.

The fix frame translationis based on the observation tha
Excel formulas operate on a fixed grid dimensioned by she
row, and col(umn). Within this grid, the formulas comput
cells as functions of other cells or cell regions using Exc
expressions and functions. The fix frame computatio
translates well into the SQL Model as it can define SQ
formulas on an array dimensioned by Excel grid: (sheet, ro
col). A few exceptions are noted below.

Each cell in Excel is stored in theCellstable, which keeps
the location, the value, and the formula of every populat
cell. The Excel spreadsheet is then represented by an S
view over theCellstable that computes the value of the cells
The view contains an SQL Model dimensioned by Exc
coordinates: (sheet, row, col) with measure x represent
the value of the cells. Excel coordinates are expressed

A B C D

1  sale  diff

2 10.00

3 12.00 =C3-C2
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array indexes, e.g, Sheet1!A1 has (1,1,1) coordinates. For
cells containing formulas, SQL Model’s update rule
computes their values.

For example, consider the following Excel:

When the Excel spreadsheet is persisted, four cells A1,
B2, B1 & B2 are stored in theCells table. Constants A1 and
A2 do not generate update rules; B1 and B2 are represented
with two update rules:

SELECT sheet, row, col FROM cells
MODEL DBY (sheet,row,col) MEA (x) AUTOMATIC ORDER
(    x[1,1,2] = x[1,1,1] + x[1,2,1],-- B1=A1+A2
     x[1,2,2] = x[1,3,1] + 1        -- B2=A3+1
)

Observe that SQL Model uses the AUTOMATIC ORDER
option, which guarantees that formulas are processed in their
dependency order, similar to Excel. We do not show this
option and the sheet coordinate in the following examples
for brevity.

Basic Fix Frame Translation. Figure 3 lists the rewrite
rules for our translation. A recursive rewrite functionR takes
an Excel formula and converts it to an SQL Model formula.
We use these rewrite rules:
• cref- translates a cell reference e.g. R(Sheet1!A1) = x[1,

1, 1].
• crange andcrange_in_list - translates a cell range

argument of an Excel function. For an Excel aggregate,
we translate the Excel range into a relational range. For
example, R(sum(A1:A10)) = sum(x)[1, 1<=row<=10,
1]. In some cases, the range is expanded into a list of
cells (e.g. "A1:A3" expands to "A1,A2,A3").

There are three rewrite rules for Excel functions:
• faggregate: an Excel aggregate is translated to an SQL

aggregate over a set of rows.
• fscalar: an Excel scalar function is translated to its SQL

correspondent.
• foperator: some Excel functions are translated to infix

SQL operators, for instance, PRODUCT() translates to
the infix *.

Unfortunately, Excel has functions that are not available in
SQL and these terminate translation with a failure.

The following helper functions are used in rewrite rules:
• sqlFcn(excelFcn) - translates Excel to SQL function.
• op(excelFcn) - translates Excel function to

corresponding SQL infix operator.
• sheet(c), row(c), col(c) - translates Excel coordinates of

a cellc to 1-based offsets.

Figure 3Rewrite Rules for Fix Frame Translation
R( e 1 op e 2 ) = R(e 1) op R(e 2)   -- operator

R( const ) = const  -- constant

R( cell ) =
  s[sheet(cell), row(cell), col(cell)] -- cref

R( cell 1 : cell 2 ) =
  s[ sheet(cell 1),
     row(cell 1)<=row<=row(cell 2),
     col(cell 1)<=col<=col(cell 2) ] -- crange

R( fcnAgg ( cell 1 : cell 2 ) ) =
  sqlFcn(fcnAgg) (s) [ sheet(cell 1),
     row(cell 1)<=row<=row(cell 2),
     col(cell 1)<=col<=col(cell 2) ] -- faggregate

R( fcnOp ( e 1 , e 2 ,  ) ) =
  R( e 1’ ) op(fcnOp) R( e 2’ ) op(fcnOp)
  where R( e 1, e 2,  ) = (e 1’, e 2’, )-- foperator

R( fcn ( exprList ) ) =
    sqlFcn(fcn) ( R( exprList ) -- fscalar

R( e1, e2,.. ) = L(e1), L(e2),.. -- exprList

L( cell 1 : cell 2 ) = -- L is a routine for lists
   s [ cell 1 ],..,s [ cell 2 ] -- crange_in_list

L( e ) = R( e ) , where e is not a cell range
-- other_expr_in_list

For example the following Excel spreadsheet

is translated as:
SELECT row,col, x FROM cells
MODEL DBY (row,col) MEA (x) AUTOMATIC ORDER
( x[1,2]= SUM(x)[1<=row<=4, 1<=col<=1],
                            -- B1=SUM(A1:A4)
  x[2,2]= x[1,1] * x[2,1],  -- B2=PRODUCT(A1,A2)
  x[3,2]= ln(x[1,1])        -- B3=LN(A1)
)

Note that theCells table will contain 8 cells when
persisted: constants in cells representing A1,A2,A3 a
formulas in B1,B2,B3.

Vlookups and HLookups. These are frequently used
Excel lookup functions.Vlookup(key, range, col)supports
content-addressable lookup tables. A user specifies akey to
match against, arangeof cells, and whichcolumnto lookup
within the range. Thekey is matched againstrange’s first
column, and the corresponding value in the lookupcolumnis
returned. There is no simple translation ofvlookup() to a
SQL function in the basic fix frame translation. Howeve
vlookup()is very similar to SQL reference Model clause tha
implements lookup tables.

Informally, our translation of vlookups works as follows
For any formula containing a vlookup, we translate th
formula to a reference model containing the key column
its dimension, and the lookup column as its measure. Th
in the main MODEL clause, the reference model is used a
lookup table. More formally, assume that vlookup’s range
defined by the left-upper corner <rs, cs> and right lower
corner <re, ce> Excel positions. The translation of a
Vlookup(key, (<rs, cs>, <re, ce>), col) results in the following
SQL reference Model:

Q2
REFERENCE vlookup_ref ON
(  SELECT k.x key, v.x value
   FROM cells k, cells v
   WHERE k.col= cs & v.col= cs+col-1

& k.row >= rs & k.row <= re & v.row=k.row )
DBY (key) MEA (value)

Thekeyis in the first column of the range (cs), thevalueis
in the lookup column, thekeyandvalueare in the same row,

A B C

1 1 =A1+A2

2 2 =A3+1

A B

1 1 =sum(A1:A4)

2 2 =product(A1,A2)

3 3 =ln(A1)
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and that row is in the specified range (rs to re). This reference
model creates a mapping fromkeys(first column values) to
values(lookup column values). A vlookup over the specified
range, on the specified lookup column, with key value K is
translated to:

vlookup_ref.value[K]

For example, vlookup(A1, A2:D4, 2) in cell A3 is
translated as:

SELECT row, col, x FROM cells
MODEL
  REFERENCE vlookup_ref ON

(SELECT k.x key,v.x value FROM cells k,cells v
    WHERE k.col = 1 & v.col = 2

& k.row >= 0 & k.row <= 4 & v.row = k.row)
  DBY(key) MEA(value)
DBY (row, col) MEA (s)
(   s[3,1] = vlookup_ref.value[ s[1,1] ]   )

If an Excel spreadsheet has multiple vlookups referring to
the same region, we construct a single SQL reference model
for all of them. For example, vlookup(A1, A2:D4, 2) and
vlookup(A1, A2:D4, 3) are satisfied with a single reference
model.

We should mention that our vlookup() translation is based
on finding an exact match of the specified key, whereas in
Excel, vlookup() searches a column for a given key value
and finds the row which has the largest value that is less than
or equal to the specified value. However, equality matches
are the most used and we implemented these.

Excel’sHLookup() function is translated in a similar way.
This translation only works for vlookup’s on constant

data. In our formulation, thekey and value are the values
from the Excel cells and disregard the formulas stored there.
To account for these, our SQL Reference clause would have
to pull in the SQL rules corresponding to those formulas and
any dependent cells. This is left for future work.

4.2 Table Translation.

The table translation creates named, rectangular,
protected regions within Excel, calledRTables, representing
relational tables or views. A fundamental principle behind
RTables and their Excel transformations is our ability to map
them to SQL views. This mapping allows us to translate
Excel operations over RTables to SQL to persist Excel
computation in RDBMS.

An RTable has a header specifying the table and column
names followed by the rows representing the data. Within
Excel’s RTable structures, we remember the associated
metadata like the data types of the columns, PK and PK-FK
constraints of the base tables, etc.

A region occupied by an RTable is visibly marked by an
outline and is protected similar to the Excel Pivot Table, i.e.,
it cannot be split by adding new Excel columns or rows. We
protect the shape of RTables to preserve and track their
mapping to relational sources and other RTables.

An RTable can directly represent an RDBMS table or a
view (direct RTable), or be derived from other RTables using
a small set of Excel operations corresponding to the
fundamental relational operators like join, aggregation, and

inter-column computation (derived RTable).
A direct RTable is created from an RDBMS table or

view using our Add-On Excel menu, “QBX->RTable-
>LoadTable”, similar to the “Data->Import External Data
menu available with Excel. Users have an option
importing the entire table, its schema only, or its sample. F
the last case, the number N of imported rows must be giv
and we create a region with N rows even if the source h
smaller cardinality. We provide random sampling (usin
ANSI SQL SAMPLE clause) or repeatable sampling fo
tables. The latter returns top N records ordered by t
primary key of the table. A direct RTable by default inherit
the name of its relational source and we require uniquen
of RTable names.

The data in RTables is always sorted for uniqueness
positioning within Excel. Sorting is done by either the PK o
the source tables or by a user specified unique order. T
latter is requested by standard Excel “Data->Sort” men
The sort order is remembered by QBX. When an RTable
created on a relational table T, we will create a view To over
T which in addition to T’s columns has an integer column
rn, representing the ordering as a sequence of consecu
integers, 1,2... Column rn is calculated using the ANSI SQ
function

row_number() over (order by <ordering cols>)

For example, Figure 4 shows RTablesfact (A2:D10),
time_d (I2:J4), prod_d (I6:J8), region_d (I10:J12)
corresponding to our electronic warehouse. The us
imported samples of the underlying relational tables.

Figure 4Electronic warehouse RTables in Excel

In the RDBMS,fact table will have a viewfacto with the
following column in addition to all columns of fact:

row_number() over (order by city, month, prod) rn

Similarly for the dimension tables,time_d, etc.
We provide a small set of operators on RTables (in me

and function form) to create derived RTables, emulatin
relational inter-column calculation, projection, join
aggregation and selection.

Inter-column calculations. Users add a new (calculated
column to an RTable with two steps.
1. The RTable is extended by a column and given a na

via our “QBX->RTable->AddColumn” menu. This new
column is initially populated with NULLs.

A B C D ..... I J

1 fact time_d

2 city prod month sale month year

3 LA tv m1.00 10.00 m1.00 y.00

4 LA radio m2.00 12.00 m2.00 y.00

5 LA tv m1.01 14.00 prod_d

6 LA radio m2.01 16.00 prod categ

7 Boston tv m1.00 20.00 tv video

8 Boston radio m2.00 22.00 radio audio

9 Boston tv m1.01 24.00 region_d

10 Boston radio m2.01 26.00 city state

11 LA CA

12 Boston ma
1208
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2. A calculation is added to the column. It is an Excel for-
mula which references either constants or other columns
from thesame row in the RTable. The formula must be
replicated in the entire column of the RTable.

Projection. Users can delete (i.e., project in relational
terms) an RTable column via “QBX->RTable-
>DeleteColumn” menu. The menu acts similar to the
standard “Edit-Cut” menu except that PK columns or the
ordering columns of the RTable cannot be deleted, as they
are required in order to preserve correspondence to relational
sources and the uniqueness of their presentation.

Joining of RTables.Joining of two RTables R1 and R2 is
non-trivial as Excel doesn’t provide a natural correspondent
of relational inner-join. The closest Excel operation,
HLOOKUP or VLOOKUP, is similar to relational outer join,
and this is what we implemented. The R1 LEFT OUTER
JOIN R2 operation is similar to adding a calculated column
and proceeds in two steps:
1. A new column is added to the left table of the outer join,

R1
2. The column is populated with VLOOKUP(R1.col1, R2,

R2.col2), which left outer joins R1to R2 and projects the
R2.col2.

Figure 5Join of fact to its dimension tables

Figure 5 shows a join of the fact table with the dimension
tables. We have extended thefact RTable with three columns
(state, categ, year) and placed the Excel vlookup functions
joining to the dimensions. For example, cell F3 contains
vlookup(C3, I3:J4, 2) that looks up the year of ‘m1.00’ in the
time_d RTable and returns ‘y.00’. Region I3:J4 corresponds
to the dimension table time_d from Figure 4. Cells E3:E10,
representing year, have analogous vlookup functions. Cell
E3 contains vlookup(B3, I7:J8, 2), which looks up the
category of ‘tv’ in prod_d, resulting in ‘video’, etc.

The inner join is not supported by our translator, which is
quite limiting. We plan to simulate it with a menu driven
version of the join, similar to the Pivot Table and provide its
evaluation support in Excel. However, since we remember
the integrity constraints on RTables, if there is an enforced
Foreign key constraint between join columns, outer join is
converted to inner join.

Aggregating an RTable.Excel provides multiple ways to
aggregate data, for example aggregation of named regions,

the “Data->Subtotal” and the “Data->PivotTable
aggregations. We have selected the latter two as the m
general and most similar to relational algebra. Bo
operations accept regions of data (hence the resemblanc
relational algebra), which in our case are RTables, and b
produce multiple aggregations. They are easily simulat
with SQL GROUPING SETS functionality. The SQL query
must have an ORDER BY to preserve the ordering genera
by Excel aggregation, see examples in Q3 and Q4.

“Data->PivotTable” aggregation can also pivot the da
using an additional SQL GROUP BY operator or with th
proposed SQL pivot operator [3]. For example, consid
applying a PivotTable operation to the RTable from Figure
We will pivot region D3:G10. It can be aggregated using
PivotTable without pivoting as shown in Figure 6, or with
pivoting as shown in Figure 7. Aggregation in Figure 6 us
Excel PivotTable option “Grand Total For Rows”; in Figure
7 uses “Grand Total for Rows” and “Grand Total fo
Columns” The corresponding SQL expressions are given
Q3 and Q4, respectively.

Figure 6Aggregation using PivotTable without Pivoting Q3

Q3 - without pivoting and “Grand total for rows” option
SELECT state, year, sum(amt) amt,
  row_number() over (order by state,year) rn
FROM
 fact f outer join time_d t on f.month=t.month
        outer join prod_d p on f.prod = p.prod
        outer join geog_d g on f.city = g.city
GROUP BY GROUPING SETS ((state,year),(state))
ORDER BY state NULLS LAST, year NULLS LAST;

If there are Foreign key constraints between join column
outer joins in Q3 and Q4 are replaced with inner joins.

Query Q4 can be expressed more elegantly using PIVO
[3] operation.

Figure 7Aggregation using PivotTable with Pivoting Q4

Q4 - with pivoting on time column
SELECT state,
  sum(case when year = ’y00’ then amt end) y00,
  sum(case when year = ’y01’ then amt end) y01,

sum(case when year is null then amt end) total,

A B C D E F G

1 fact

2 city prod month state categ year sale

3 LA tv m1.00 ca videoa

a. =vlookup(B3, I7:J8, 2)

y.00b

b. =vlookup(C3, I3:J4, 2)

10.00

4 LA radio m2.00 ca audio y.00 12.00

5 LA tv m1.01 ca video y.01 14.00

6 LA radio m2.01 ca audio y.01 16.00

7 Boston tv m1.00 ma video y.00 20.00

8 Boston radio m2.00 ma audio y.00 22.00

9 Boston tv m1.01 ma video y.01 24.00

10 Boston radio m2.01 ma audio y.01 26.00

L M N

1 PivotQ3

2 state year total

3 ca y.00 22.00

4 y.01 30.00

5 ca total 52.00

6 ma y.00 42.00

7 y.01 50.00

8 ma total 92.00

L M N O

1 PivotQ4

2 prod audio

3

4 state y00 y01 total

5 ca 12.00 16.00 28.00

6 ma 22.00 26.00 48.00

7 total 34.00 42.00 76.00
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row_number() over (order by state nulls last)rn
FROM
( SELECT state, year, sum(amt) amt
  FROM

fact f outer join time_d t on f.month=t.month
outer join prod_d p on f.prod = p.prod
outer join geog_d g on f.city = g.city

WHERE prod = ‘audio’ -- <a predicate on prod>
  GROUP BY cube(state,year))
)
GROUP BY state ORDER BY state NULLS LAST;

Selecting data from an RTable. Excel provides an
advanced filtering facility “Data->Filter->AdvancedFilter”.
It filters entire rows from Excel regions and hence is very
suitable for filtering of RTables. This operation on RTables
corresponds to the WHERE clause of an SQL query block
and this is how our tool translates it to SQL.

Composition of RTable Transformations. QBX tracks
the above operations on RTables. Any RTable can be a
subject to Aggregation, Outer Join or Selection and this will
create another RTable. We can track back the operation to the
direct RTables (i.e., ones with direct relational tables) and re-
create a corresponding SQL view over the relational tables.
For example, aggregation on Figure 6, can be expressed in
terms of relational tables as Q3.

Persisting of RTables in RDBMS.A user can persist a
derived RTable in the RDBMS either as a view, or a
materialized view (MV) using our menu “QBX->RTable-
>SaveTable”. The view is expressed using a set of SQL
transformations on the direct RTables. Note that when a user
creates a direct RTable in Excel, he/she may request only a
sample of the data from the underlying relational table.
However, when we persist a derived RTable, we create the
view on entire relational tables, not their samples. Hence the
views corresponding to RTables operate on the entire
underlying relational tables. For example, aggregation on
Figure 6 is stored as a view on entire relational tables, see
Q3, even though the RTables on Figure 4 contained only
samples of data. Samples were imported into Excel just to
provide example data which fits in a limited space.

In addition to storing an RTable as an RDBMS object
(view or an MV), we record the position within Excel of the
RTable so it can be later restored into the same place.

Refreshing a derived RTable from the RDBMS.Once a
relational view representing an RTable has been created, the
RTable can be restored back to Excel. This gives users the
desirable capability to design a series of relational operations
in Excel on a sample of the relational tables which fits in a
limited Excel sheet, store this as a relational view, compute it
in the RDBMS using scalable and parallel execution, and
bring the final results back to Excel. It is very likely that the
final result, due to aggregation, will be small enough to fit
into Excel even though the original relational inputs would
not. Refreshing is done using the same menu as loading,
“QBX->RTable->LoadTable”.

4.3 Translation of Fix Frame Operations on RTables

Frequently, an Excel application loads pre-processed data
from external sources like relational tables, places them in

Excel contiguous regions, and analyzes them further us
Excel formulas. With RTables, we provide analysts a tool
perform the pre-processing of the relational data directly
Excel and represent it as a derived RTable. Ideally, we wou
like to represent the subsequent Excel computation o
RTables as further SQL transformations, which is difficult t
express using standard ANSI SQL as users can specify
arbitrary formula for every row of an RTable, eac
referencing arbitrary cells.

To support arbitrary Excel calculations on RTables, w
linearize them as 2-D arrays with Excel (row, col
coordinates. Consider an RTable R(c1, c2, ..., cn) with
rows whose left-upper corner is rooted at Excel at <r s, cs>
position, and right-lower corner is at <r s+M, cs+N>. There is
a relational view To corresponding to R with the same
columns (c1,... cn), as well as an integer column, r
representing unique ordering of rows for placement of To’s
data within Excel. Note that R represents all rows in T (i.e
R is built on the entire data set of T), otherwise linearizatio
would depend on the size of the sample.

We experimented with two linearization techniques. Firs
called Assignment Linearization, represents To as a SQL
Reference Model dimensioned by Excel coordinates (ro
col). The transformation is based on stacking column ci on
the previous column ci-1 with a UNION ALL operator. For
example, the first column, c1, of To is represented as

SELECT rn+r s AS row, c s+1 AS col, c1 AS x FROM T o,

the second column, c2, as

UNION ALL
SELECT rn+r s AS row, c s+2 AS col, c2 AS x FROM T o

etc. In the Main SQL Model, it assigns the reference valu
to corresponding Excel cells in the (<r s, cs>, <r s+M, cs+N>)
region. The SQL formulation is:

Q5
SELECT row,col, x FROM cells
MODEL
  REFERENCE ref_t ON

(SELECT rn+r s rn, c s+1 c, c1 x FROM t o UNION ALL
SELECT rn+r s rn, c s+2 c, c2 x FROM t o UNION ALL

     ..
   SELECT rn+r s rn, c s+M c, cn x FROM t o)
  DBY (rn, c) MEA (x)
MAIN DBY (row, col) MEA (x)
( x[r s<=row<=r s+M, 1] = ref_t.x[cv(row)],
  x[r s<=row<=r s+M, 2] = ref_t.x[cv(row)],
  ..
  x[r s<=row<=r s+M, N] = ref_t.x[cv(row)],
  -- followed by translated Excel formulas
)

This linearization assumes that columns of different da
types are first converted to a common type, such as
character type.

The second linearization, calledReference Linearization,
directly translates references to cells occupied by RTable
to references to a reference model as shown below:

  REFERENCE ref_t ON
  (    SELECT rn, c1, c2, .., cn x FROM t o  )
  DBY (rn) MEA ( c1, c2, ... cn)

In this case, since the RTable is rooted at <rs, cs>, and
extends N columns to the right and M columns dow
1210
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references to a cell <rs+x, cs+y> in this region is expressed
by SQL model reference

Q6 ref_t.c y[x]

As an example, consider RTable from Figure 6, and the
following fragment of Excel which calculates, per each state,
ratio of sales in individual year to total sales in all years.

Figure 8Example-2. Ratio yearly sales to total sales per state

It is translated using the Assignment Linearization
method as:

SELECT row, col, x FROM cells
MODEL
  REFERENCE ref_t ON

( SELECT rn+2, 1 c, state x FROM t o UNION ALL
SELECT rn+2, 2 c, time x FROM t o UNION ALL

    SELECT rn+2, 3 c  total x  FROM t o )
  DBY (rn, c) MEA (x)
MAIN DBY (row, col) MEA (x)
( x[3<=row<=8, 12] = ref_t.x[cv(row)],-- column L

x[3<=row<=8, 13] = ref_t.x[cv(row)],-- column M
x[3<=row<=8, 14] = ref_t.x[cv(row)],-- column N

  x[3, 15] = x[3, 14] / x[5, 14],  -- =N3/N5
  x[4, 15] = x[4, 14] / x[5, 14],  -- =N4/N5
  x[5, 15] = x[5, 14] / x[5, 14],  -- =N5/N5
  x[6, 15] = x[6, 14] / x[8, 14],  -- =N6/N5
  x[7, 15] = x[7, 14] / x[8, 14],  -- =N6/N5
  x[8, 15] = x[8, 14] / x[8, 14]   -- =N8/N5
)

The Reference Linearization is:

Q7
SELECT row, col, x FROM cells
MODEL
  REFERENCE r ON
  ( SELECT rn, state, time, total  FROM t o  )
  DBY (rn) MEA (state, time, total)
MAIN DBY (row, col) MEA (x)
( x[3, 15] = r.total[1] / r.total[3],  -- =N3/N5
  x[4, 15] = r.total[2] / r.total[3],  -- =N4/N5
  x[5, 15] = r.total[3] / r.total[3],  -- =N5/N5
  x[6, 15] = r.total[4] / r.total[6],  -- =N6/N5
  x[7, 15] = r.total[5] / r.total[6],  -- =N6/N5
  x[8, 15] = r.total[6] / r.total[6]   -- =N8/N5
)

In the above translations, table to corresponds to the
PivotQ3 table - see Q3.

Observe that with Assignment Linearization, translation
of an Excel formula referencing the RTable region (<r s, cs>,
<r s+M, cs+N>) can be done as the fix frame translation of
Section 4.1, since the SQL Main Model populates the cells
corresponding to the RTable before executing rules which
reference the RTable. This applies to any Excel function
except the lookup functions, likevlookup(),which reference
portions of the RTable. These functions are translated

directly using the SQL Reference Model of Q5.
The Reference Linearization avoids assignment to t

Excel cells using SQL Model rules and uses direct referenc
to the SQL Reference Model instead. This requires us
verify that a reference to a cell falls within an RTable regio
during formula translation (see Figure 3), and if so, use t
translation of Q6.

For reference linearization, range arguments to Exc
functions have to be translated to lists of cells. For examp
consider a cell containing the formula SUM(N3:N4) in
Figure 8. The formula must be translated first t
SUM(N3,N4), then to the infix notation N3+N4, which
finally can be translated to SQL as:

r.total[1]+r.total[2]

Rules of Figure 3 perform this translation for Exce
functions except lookup-functions likevlookup(). A lookup
function on an RTable R is translated by constructing a SQ
Reference Model which is dimensioned by the column of
serving as a lookup key and whose measure is the looked
column. For example, considervlookup(key,M3:N4, 2)in the
spreadsheet of Figure 8. M3:N4 represents a region with
the RTable with columntimeserving as the lookup key, and
columntotal as the looked up column hence the formulatio

 REFERENCE ref_lookup ON
  (    SELECT time, total FROM t o WHERE rn<=2 )
  DBY (time) MEA (total)

vlookup(key,M3:N4, 2) is then translated as a reference t

Q8 ref_lookup.total[key]

Observe that the SQL Reference Model contains
WHERE predicate (rn <= 2) restricting the underlying tab
to the rows present in RTable. Our translation of looku
functions on RTables assumes that the range of the funct
doesn’t extend beyond the RTable.

The Reference Linearization avoids assignment to t
Excel cells using SQL Model rules and multiple scans of th
relational table corresponding to the RTable to in Q5. So it is
likely to be more efficient than Assignment Linearization
Section 6 compares performance of the two methods.

In many cases, OLAP in particular, the RTable represe
a relatively small cube or small aggregation where th
number of rows in the corresponding relational table fits
an Excel sheet and does not change often. In such case
may be useful to store fixed frame computations on t
RTable as a new column. For example, consider Figure
Assuming that PivotQ3 represents all data (i.e, RDBM
stores only CA and MA states and years y.00 and y.00),
could make columnratio (Excel column O), a calculated
column of RTable. The new columnratio will be calculated
using SQL Model rules. Our translator will construct th
following query:

Q9
SELECT rn, state, year, total, ratio FROM PivotQ3
MODEL
  REFERENCE r ON
  ( SELECT rn, total  FROM PivotQ3  )
  DBY (rn) MEA (total)
MAIN DBY (rn) MEA (state, year, total, 0 ratio)

L M N O

1 PivotQ3

2 state year total ratio

3 ca y.00 22.00 =N3/N5

4 y.01 30.00 =N4/N5

5 ca total 52.00 =N5/N5

6 ma y.00 42.00 =N6/N8

7 y.01 50.00 =N7/N8

8 ma total 92.00 =N8/N8
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( ratio[1] = r.total[1] / r.total[3],  -- =N3/N5
  ratio[2] = r.total[2] / r.total[3],  -- =N4/N5
  ratio[3] = r.total[3] / r.total[3],  -- =N5/N5
  ratio[4] = r.total[4] / r.total[6],  -- =N6/N5
  ratio[5] = r.total[5] / r.total[6],  -- =N6/N5
  ratio[6] = r.total[6] / r.total[6]   -- =N8/N5
)
ORDER BY rn

Observe that we reference the PivotQ3 view twice in Q9.
The first reference is in the main query block and the second
in the Reference Model clause. Values of theratio column
are computed using fixed frame computation on the
reference model “r”. Our translator verifies that Excel
formulas reference only cells within the RTable. We refer to
this translation, where an RTable has a column that is
calculated using translated Excel formulas, asRTable
Reference Linearization. This also works when the
calculated column references other RTables. These tables
will be added to the list of reference models in the SQL
query block calculating the column.

4.4 Relative referencing to RTables

Section 4.3 showed how to add a calculated column to an
RTable based on fixed frame Excel computation - see for
example Q9. The method, although computationally general
as it translates any Excel formula, is limited to RTables that
are based on a full data set and do not change after
translation occurred. We need a method which is
computationally rich and can operate on samples of RTables
like the methods discussed in Section 4.2.

As noted before, we remember an RTable’s primary key
(PK) in its metadata. For example, the PK of RTablePivotQ3
from Figure 6 is (state, year). To support referencing values
from RTables, we have implemented a new Excel lookup
function rtlookup(rtregion, col, pkeys)using VBA. Given a
region of RTable (rtregion), its primary key values (pkeys)
and its column number (col), it returns the value of that
column at the primary key. For example, in Figure 9:

rtlookup(L2:N8, 3, ’ca’, ’y.01’)

retrieves the value of column #3, i.e., thetotal column, for
key ‘ca’ and ‘y.01’, which is 30. Users can also use the
symbolic name of the RTable (instead of its range) and the
name of the referenced column (instead of its relative
number) as shown below:

rtlookup(PivotQ3, total, ’ca’, ’y.01’)

The rtlookup() function can be used to populate a new
column in an RTable. If the calculations in every row of the
new column are the same except for relative references, our
translator will convertrtlookup into a rule in SQL Model
clause.

For example, consider Figure 9 which represents PivotQ3
RTable from Q3. We added a new column,ratio representing
ratio of yearly sales to total sales per region. The formula in
the column is of the form:

Ni /rtlookup(L2:N2, 3, L i , null)

rtlookup(L2:N2, 3, Li, null) retrieves total sales of every
state. Our translator translates it to SQL Model rule:
 ratio[*,*]=total[CV(),CV()]/total[CV(state),null]

Note that equivalent rules have been collapsed in this

translation, which is an optimization we discuss in Section

Figure 9 Usage of rtlookup

 The RTable PivotQ3 will be translated to SQL as a view

Q10
CREATE VIEW PivotQ3 AS
SELECT state, year, ratio, sum(amt) amt,
  row_number() over () (order by..) rn
FROM
 fact f outer join time_d t on f.month=t.month
        outer join prod_d p on f.prod = p.prod
        outer join geog_d g on f.city = g.city
GROUP BY GROUPING SETS ((state,year),(state))
MODEL DBY (state, year) MEA (total, 0 ratio)
(   ratio[*,*]
      = total[CV(),CV()]/total[CV(state), null]
)
order by state nulls last, year nulls last;

This translation will work well on samples of data as
can be correctly applied to entire tables.

Furthermore, we found that usage ofrtlookup() is quite
general.rtlookup() could reference not only the RTable we
are adding a column to, but other RTables in the spreadsh
These RTables, which can be based on samples, are adde
the reference model of the SQL view. For example, given
RTableyears_dim (year, prev_year)that stores the previous
year for a given year, we can calculate the year-to-ye
(y_diff) sales difference in Figure 10. This would add a ne
reference model and a new rule to the SQL Model of Q10

MODEL
  REFERENCE r ON
  ( SELECT year, prev_year  FROM year_dim  )
  DBY (year) MEA (prev_year)
DBY (state, year) MEA (total, 0 ratio)
(  ratio[*, *] =
       total[CV(),CV()]/total[CV(state), null],
   y_diff[*,*] = total[CV(),CV()] -

total[CV(),r.prev_year[CV(year)]]
)

Observe that this view would operate on entire tables.

Figure 10Usage of rtlookup

L M N O P R

1 PivotQ3

2 state year total ratio

3 ca y.00 22.00 0.42a

a. =N3/rtlookup(L2:N2, 3, L3, null)

4 y.01 30.00 0.58b

b. =N4/rtlookup(L2:N2, 3, L4, null)

5 ca 52.00 1.00

6 ma y.00 44.00 0.48

7 y.01 50.00 0.52

8 ma 94.00 1.00

L M N O P R S T

1 PivotQ3

2 state year total ratio y_diff year_d

3 ca y.00 22.00 0.42a b year prev

4 y.01 30.00 0.58c 0.12d y.00 y.99

5 ca 52.00 1.00 y.01 y.00
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5 Optimizations

In Section 4.3 we described two methods for translation of
fixed frame computation on RTables. In addition to this, we
consider two other optimizations to the translation.

Collapsing of Equivalent Rules. In many cases, Excel
formulas in a row or in a column are identical to each other
except for the relative differences. In this case, they can be
translated as a single SQL Model rule. For example, consider
the following Excel fragment:

Table 1: Example-2. Collapsing of Formulas

This Excel spreadsheet would be translated into a SQL
Model clause with three rules, one per formula. In fact the
three formulas are equivalent given that the cell references
are relative and they can be replaced by a single SQL Model
rule instead:

Q11 x[FOR row FROM 1 to 3 INCREMENT 1,3]=
              s[CV(row),1] + s[CV(row),2]

Our translation uses this optimization to coalesce
equivalent formulas in a contiguous range of cells (in a row
or column). As another example, the SQL Model clause
from Q7 will be simplified to:

MAIN DBY (row, col) MEA (x)
( x[FOR row 3 to 5 INCREMENT 1, 3] =
    total[CV(row) - 2] / total[3],
  x[FOR row 6 to 8 INCREMENT 1, 3] =
    total[CV(row) - 2] / total[6]
)

Fortunately, the Excel Algebra for formulas is a regular
expression, hence finding equivalence amounts to their
recursive traversal and can be done in O(N2) time where N is
the number of Excel formulas.

The optimization significantly reduces SQL Model
compilation time as the compiler deals with fewer rules
when deciding their ordering. It also reduces execution time
as SQL Model uses an efficient run time looping for its FOR
loops or existential rules.

For Loops vs. Existential Form. Our initial fix frame
translation expanded an Excel cell range <r1, c1> : <r2, c2>
reference to

  x[ r 1 <= row <= r 2, c 1 <= col <= c 2 ]

See crange and faggregate transformations in Figure
SQL Model evaluates this rule as a scan of all data, so
some cases the looping construct is more efficient:

  x[ FOR row FROM r 1 TO r 2 INCREMENT 1,
     FOR col FROM c 1 TO c 2 INCREMENT 1]

On the other hand, in the example of Q11, if the enti
column of Excel or RTable is populated with the sam
formulas (except for relative differences), we could use
existential (term of [2]) rule instead of the FOR loop rule:

Q12 x[*, 3]= s[CV(row),1] + s[CV(row),2]
For rules operating on a large data set, this formulation

more efficient than the one of Q11 as it uses a scan rat
than random access of cells. The decision of whic
translation to use (FOR loop or existential rule) should b
cost based and integrated into the SQL Model engine. O
current implementation uses heuristics and applies
existential form to RTables only when a scan is mo
efficient. In the fix frame translation, we always generate t
FOR loop rule.

6 Performance Of Excel Translation

Our experiments are based on an actual Excel spreads
computing two financial measures: increase of sales fro
prior period and ratios of sales between different levels
product dimension.

For experiments with RTables we used a synthetic s
schema from Section 2. Thetime_dimcontained 3 levels
(month, quart, year) for a total of 10 years.region_dim
contained 2 levels (city, state) for 1000 cities in the USA
evenly distributed among states.prod_dimcontained 3 levels
(prod, brand, categ) with 10,000 products in 1000 brands
and 100 categories. The fact table had 10,000,000 rows
was populated so that the aggregated cube starting from
second level of dimensions was dense, i.e., every elemen
(quart X brand X state) is present in cube.

The experiments were conducted on a 12 CPU, 336 M
shared memory machine with a total of 12 GB of memory

Linearization Techniques.We compared fixed frame and
relative RTable translation techniques. In particular, w
chose to compare the fixed frame RTable Referen
Linearization technique with relative reference technique
Section 4.4. We used the above mentioned schema
queries Q9 and Q10 for this experiment assuming Fore
key relationships between join columns (hence outer joi
were inner joins). We varied the size of the RTable an
measured the execution time of the queries.

The relative translation technique outperforms the fixe
frame translation technique in all cases. This is expected
Q10 requires one scan over data whereas Q9 requires
many lookups as there are rows in RTable. SQL MODE
evaluation of Q10 requires us to scan the data and evalu
the rule for each record scanned. Rule evaluation require
lookup operation for the right side and an assignme
operation. However, for Q9, each rule evaluation requir
three lookup operations. The fact that Q9 performance
reasonably close to that of Q10 shows that the MODE

a. =N3/rtlookup(L2:N2, 3, L3, null)
b. =N3 - vlookup(rtlookup(S3:T5, 2, M3), M3:M4, 2)
c. =N4/rtlookup(L2:N2, 3, L4, null)
d. =N4 - vlookup(rtlookup(S3:T5, 2, M4), M3:M4, 2)

The relative translation results in some cases in
parallelizable execution. SQL Model engine promotes
independent dimensions into PBY clause hence creating
partitions which can be executed in parallel. For example,
Q10 is transformed as:

MODEL PBY (state) DBY (year) MEA (total, 0 ratio)
(    ratio[*] = total[CV()]/total[null]   )

and the rule can be executed in parallel for each partition.

A B C

1 1 4 A1+B1

2 2 5 A2+B2

3 3 6 A3+B3
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access structure (hash table) lookup operation is efficient.

Figure 11Fixed vs. Relative Translation

The performance of fixed frame translation degrades
drastically (the time taken by Q9 when RTable had 600,000
rows is way off the graph) once data spills to disk. Q10
performs well as it processes data in two stages - first, it
splits data into partitions based onstateand then processes
one partition at a time. It can do that becauseindependent
dimension[2] optimization of SQL Model identifiesstateas
an independent dimension and promotes it as a PBY key. In
Q9, the entire data has to be processed as one partition as
there is no independent dimension. In this case, Q9 requires
random disk accesses and hence performs poorly.

The SQL Model generated by relative RTable translation
can be executed in parallel because of the independent
dimension optimization. SQL MODEL computation of Q10
can be evaluated in parallel by distributing the data (either
range or hash based) across processing elements based on
state.The SQL Model generated by fixed translation of Q9
cannot be executed in parallel.

Figure 12Pushing Predicates Optimization

The SQL Model generated by relative translation enables
further optimization of pushing predicates. Predicates in the
outer query block on columns that are PBY or independent
dimensions of SQL Model can be pushed through the
MODEL clause, SQL analytic functions, and Group-By into
the WHERE clause of the inner query. We have added a
predicate onstateand measured the execution time of the
queries Q9 and Q10 varying the selectivity of the predicate.
Q9 always takes the same time (and is inferior to Q10) as the
predicate was not pushed through the MODEL clause. The
predicate onstategets pushed through the MODEL clause of
Q10 as state is an independent dimension. Q10’s

performance is linear to the selectivity of the predicat
Figure 12 shows this result.

Our experiments show that fixed RTable Referen
Linearization translation, though general, suffers fro
inefficient execution. We leave improvements of SQL Mod
queries generated by this technique as future work.

Rule Pruning. Our Fixed Frame translation stores Exce
computation as an SQL View with schema: (sheet, row, col,
x) over theCells table, for example see Figure 2 and Q1. I
many cases, users may be interested only in a small subsS
of cells of the spreadsheet. This set may be derived from
larger set Sd which is still small in comparison to all
populated cells. In this case, it is beneficial to evaluate on
cells inSd to return setS.

SQL Model [2] includes an optimization called rule
pruning which eliminates rules whose computations a
filtered out by the outer filters (e.g, WHERE clause of a
outer query block). To test it we designed two experiment

In the first experiment Excel formulas depend on a sing
cell only. Odd Excel rows contain data and even row
formulas. Each formula copies the value of the cell above
shown in Figure 13:

Figure 13Example3. Formulas depend on single cell.

In the second experiment, we constructed in Exc
rectangles where formulas form a dependency chain
shown below:

Figure 14Example4. Formulas form dependency chains

In Figure 14 we partitioned the spreadsheet into rectang
with 9 cells. Within each rectangle, the second cell depen
on the first, the third on the second, etc.

In both cases we issued queries against the Excel vi
The queries retrieved a single cell. In the case of Figure 1
this was a cell from an even row. In the case of Figure 1
this was a cell from the right lower corner of a rectangle,
illustrated below:

Q13 SELECT sheet, row, col, x FROM ExcelView
        WHERE sheet=1 AND row=3 AND col=3;

We observed rule pruning using the RDBMS explain pla
facility and internal traces. In case of Figure 13, the SQ
Model engine performs optimal pruning. Rules are pruned
a single rule and we retrieve from theCells table a minimal
set of cells. For example, when the outer filter selects cell
the engine retrieves only B1 and B2 from theCells table.

In the case of chain dependency of Figure 14, the SQ
Model engine performs optimal pruning as well. Rules fro
unreferenced rectangles are pruned away. For example
the case of Q13 we execute only rules from A1:C3 regio
and we select only cells from the A1:C3 region from th
Cells table.

A B C

1 1 2 3

2 =A1 =B1 =C1

A B C D E F

1 1 =A1 =B1 1 =D1 =E1

2 =C1 =A2 =B2 =E1 =D2 =E2

3 =C2 =A3 =B3 =F2 =D3 =E3
1214



nd
to
d
ich
n
l.
ot
er
re
sily

r
te
if

s,
f

ry
th
nt

r,

h

,

Effect of Optimizations of Section 5. The Collapsing of
Equivalent Rules optimization replaces multiple rules with
an equivalent single FOR loop rule or an Existential rule.
Figure 15 shows its effect on the analysis time of SQL
Model as a function of the number of rules. As expected, that
time increases quadratically with increasing the number N of
uncollapsed rules (according to [2] the analysis is O(N2)).
The analysis time becomes negligible when rules are
collapsed into a single rule. This optimization also reduces
the execution time (not shown) about 5% to 10% due to a
more efficient execution mechanism.

Figure 15Collapsing of Rules.

Figure 16FOR loop vs. Existential Rules

As mentioned in Section 5, rules can be collapsed either
into a FOR rule (see Q11) or an Existential Rule (see Q12).
The former implies execution based on random access to
cells via a SQL Model hash table and the latter an execution
with a scan over the data. We compared performance of the
two translations as a function of the percentage of data the
rules access for the case when the SQL Model hash table fits
into memory. Figure 16 depicts the ratio of execution time of
an Existential rule to the equivalent rule with FOR loops. We
had 100,000 cells in the SQL Model access structure when
the rules were evaluated. Evaluation time for the existential
rule does not change significantly with the increased number
of cells that are accessed, although the execution time for the
FOR loop method increases linearly. The graph depicts that
FOR loops are more efficient when less then 30% of cells are
modified (provided that the access structure fits in memory).

When the data spills to disk, both methods degrade very
quickly as both may involve random access to the cells. In
this case, we observed that a scan performs better as it pages

more efficiently.

7 Conclusions

Our goal was to translate Excel computation to SQL a
use natural extensions to Excel formulas and menus
perform Relational Operations on RDBMS tables. We foun
that computation can be specified on samples of data wh
fit in Excel and then applied to entire relations withi
RDBMS. We found that the type of translation is critica
The fix frame translation even though very general was n
as efficient as more restrictive relative translations ov
RTables. The latter resulted in SQL formulations which a
scalable in size and parallelization and, in many cases, ea
optimizable by relational engines.

We found that existing Excel operations, in particula
pivot and advanced filtering, are very suited to simula
Relational Aggregation and selection. We postulate that
Excel had a few more Relational friendly extension
particularly those that simulate joins, allow partitioning o
Excel regions ala SQL window functions [4] and perform
relative computations, it could replace most of que
building and reporting tools. Thousands of analysts wi
Excel expertise could construct scalable and efficie
relational queries without writing SQL. Finally, we found
many essential functions missing from SQL, in particula
financial ones.
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