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Abstract 

Many enterprise applications prefer to store 
XML data as a rich data type, i.e. a sequence of 
bytes, in a relational database system to avoid the 
complexity of decomposing the data into a large 
number of tables and the cost of reassembling the 
XML data. The upcoming release of Microsoft’s 
SQL Server supports XQuery as the query 
language over such XML data using its relational 
infrastructure.  
XQuery is an emerging W3C recommendation 
for querying XML data. It provides a set of 
language constructs (FLWOR), the ability to 
dynamically shape the query result, and a large 
set of functions and operators. It includes the 
emerging W3C recommendation XPath 2.0 for 
path-based navigational access.  XQuery’s type 
system is compatible with that of XML Schema 
and allows static type checking. 
This paper describes the experiences and the 
challenges in implementing XQuery in 
Microsoft’s SQL Server 2005. XQuery language 
constructs are compiled into an enhanced set of 
relational operators while preserving the 
semantics of XQuery. The query tree is 
optimized using relational optimization 
techniques, such as cost-based decisions, and 
rewrite rules based on XML schemas. Novel 
techniques are used for efficiently managing 
document order and XML hierarchy. 

1. Introduction 

Enterprise applications use XML [3] for modelling semi-
structured and markup data in scenarios such as document 
management and object property management [13]. 
Powerful applications can be developed to retrieve 
documents based on document content, to query for 
partial contents such as sections whose title contains the 
word "background", to aggregate fragments from different 
documents, and to find all the phone numbers of a person.  
Storing XML data as a sequence of bytes representing 

a rich data type has several advantages. XML schemas for 
real-life applications are complex so that decomposing 
XML data conforming to those schemas into the relational 
data model results in a large number of tables. This makes 
the decomposition logic complex, the re-assembly cost 
high, and the queries very complicated. Furthermore, 
changes to the XML schema require a significant amount 
of maintenance of the database schema and the 
application. XML as a rich data type also permits 
structural characteristics of the XML data, such as 
document order and recursive structures, to be preserved 
more faithfully. 
The upcoming release of Microsoft’s SQL Server 

2005 [10] allows storage of XML data in a new, rich data 
type called XML [1][8][13]. This data type stores both 
rooted XML trees and XML fragments in a binary 
representation (“binary XML”). The query language on 
XML data type is a subset of XQuery [15][16][22], an 
emerging W3C recommendation (currently in Last Call) 
that includes the navigational language XPath 2.0 [20]. It 
is supported using the relational query processing 
framework with some enhancements. SQL Server 2005 
also supports a data modification language on XML data 
type for incremental updates, which is not discussed 
further in this paper [1][13]. 
This paper discusses the XQuery processing 

architecture in SQL Server 2005 and how XQuery 
expressions are compiled into query trees containing 
relational operators and a small number of new operators 
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introduced for the purpose of XQuery processing. An 
XQuery expression is parsed and compiled into an 
internal structure called the XML algebra tree on which 
rule-based optimizations are applied. This is followed by 
a transformation of the XML algebra tree into the 
relational operator tree. This paper describes some of the 
interesting aspects of the implementation instead of being 
a comprehensive manual on the subject. 
XML as a richly structured data type introduces new 

challenges for query processing, data modification and 
indexing. Query processing must retain document order, 
perform structural navigation, provide sequence 
operation, and support dynamically constructed XML 
nodes. These requirements are not supported by a 
relational query processor and appropriate extensions to it 
are necessary.  
At runtime, the XML data (“XML blob”) must be 

available in a parsed state (the so-called XQuery Data 
Model [23]) to evaluate an XQuery expression. The data 
may be parsed multiple times to evaluate several XQuery 
expressions on the same data, or to evaluate complex 
XQuery expressions using a streaming parser, such as the 
XmlReader in the .NET framework [9], to avoid the 
overhead of keeping the data in memory (e.g. DOM). 
Runtime parsing is costly and often fails to meet the 
performance requirements of enterprise applications. For 
better query performance, SQL Server 2005 provides a 
mechanism for indexing the XML data [12] based on its 
Data Model content [2]. An XML index retains structural 
fidelity of the data, such as document order and 
hierarchical relationships among the XML nodes, and 
speeds up different classes of queries on the XML data. 
XQuery compilation produces a query tree that uses 

relational operators, such as SELECT and JOIN, on the 
primary XML index [12], if one exists, on an XML 
column. For non-indexed XML columns, the query plan 
contains operators to parse each XML blob, locate nodes 
matching simple path expressions, and generate rows 
resembling XML index entries that represent the subtrees 
rooted at those nodes. From this point onward, the 
processing for both the XML indexed and the XML blob 
cases is largely the same – multiple rowsets are 
manipulated using relational operators to yield the query 
result. The queries that return XML results aggregate the 
rows representing the resulting XML sequence into the 
binary XML form as the final processing step.  
The XQuery compiler performs static type inference 

by annotating operator-nodes in the query tree with type 
information.  Type incompatibility between the inferred 
type and the expected type raises static errors. This fits 
well with the static type guarantees in the SQL language 
and the relational query processor’s ability to optimize 
query plans using statically known constraints.  As a 
result, many runtime checks are avoided.  
The compiled query plan is optimized using well-

known relational optimization techniques such as costing 
functions and histograms of data distributions.  Query 

compilation produces a single query plan for both 
relational and XML data accesses, and the overall query 
tree is optimized as a whole. SQL Server 2005 also 
introduces optimizations for document order (by 
eliminating sort operations on ordered sets) and document 
hierarchy, and query tree rewrites using XML schema 
information.   
Relational query optimization, however, impacts 

XQuery semantics and introduces new challenges. The 
query optimizer shuffles operators around in the query 
tree to produce a faster execution plan, which may 
evaluate different parts of the query plan in any order 
considered to be correct from the relational viewpoint. 
Consequently, path expression based navigational 
accesses are not guaranteed to be executed top-down and 
may be evaluated bottom-up. This may yield dynamic 
errors, such as type cast errors, when none would occur 
with top-down evaluation. For this reason, SQL Server 
2005 currently converts dynamic errors to empty 
sequences. In most contexts this yields correct results, but 
not always (e.g., in the presence of negation). 
A significant number of XQuery functions and 

operators are supported in the system. Wherever possible, 
these functions and operators are compiled into the 
analogous SQL functions and operators for efficient 
execution. In all other cases, additional code in the server 
executes the XQuery function or operator while 
preserving XQuery semantics.  
The rest of the paper is organized as follows. Section 2 

provides background material on the native XML support 
in SQL Server 2005. Section 3 introduces the query 
processing architecture and provides an overview of the 
XML algebra operators used in the server. Section 4 
discusses the transformation of XML algebra trees for 
XPath and XQuery expressions into relational operator 
trees. Section 5 deals with the type inference mechanism 
employed by the XQuery compiler and Section 6 
discusses optimizations on the query trees yielding the 
execution plan for the queries. Related work is discussed 
in Section 7 while concluding remarks appear in Section 
8. 

2. XML Support in SQL Server 2005 

This section provides a look into some of the XML 
features of SQL Server 2005 necessary for the discussions 
in this paper. Detailed information and be found in the 
product’s documentation [10] as well as MSDN 
whitepapers [13][14]. 

2.1 XML Data Type 

Microsoft’s SQL Server 2005 [10] introduces native 
storage for XML data as a new, rich data type called 
XML. A table may contain one or more columns of type 
XML wherein both rooted XML trees and XML 
fragments can be stored. Variable and parameters of type 
XML are also allowed. XML parsing occurs either 
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implicitly or explicitly during assignments of either string 
or binary SQL values to XML columns, variables and 
parameters. 
XML values are stored in an internal format as large 

binary objects (“XML blob”) in order to support the XML 
data model characteristics more faithfully such as 
document order and recursive structures. 
The following statement creates a table DOCS with an 

integer, primary key column PK and an XML column 
XDOC: 
 

CREATE TABLE DOCS ( 

PK INT PRIMARY KEY, XDOC XML) 

2.2 XML Schema Support 

SQL Server 2005 provides XML schema collections as a 
mechanism for managing W3C XML schema documents 
[21] as metadata. XML data type can be associated with 
an XML schema collection to have XML schema 
constraints enforced on XML instances. Such XML data 
types are called “typed XML”. Non-XML schema bound 
XML data type is referred to as “untyped XML”.  
Both typed and untyped XML are supported within a 

single framework, the XML data model is preserved, and 
query processing enforces XQuery semantics. The 
underlying relational infrastructure is used extensively for 
this purpose.  

2.3 Querying XML Data 

XML instances can be retrieved using the SQL SELECT 
statement. Four built-in methods on the XML data type, 
namely query(), value(), exist() and nodes(), are available 
for fine-grained querying. A fifth built-in method modify() 
allows fine-grained modification of XML instances but is 
not discussed further in this paper.  
The query methods on XML data type accept the 

XQuery language [15][16][22], which is an emerging 
W3C recommendation (currently in Last Call), and 
includes the navigational language XPath 2.0 [20]. 
Together with a large set of functions, XQuery provides 
rich support for manipulating XML data. The supported 
features of the XQuery language are shown below: 
  

• XQuery clauses “for”, “where”, “return” and 
“order by”. 

• XPath axes child, descendant, parent, attribute, 
self and descendant-or-self. 

• Functions – numeric, string, Boolean, nodes, 
context, sequences, aggregate, constructor, data 
accessor, and SQL Server extension functions to 
access SQL variable and column data within 
XQuery. 

• Numeric operators (+, -, *, div, mod). 

• Value comparison operators (eq, ne, lt, gt, le, 
ge). 

• General comparison operators (=, !=, <, >, <=, 
>=). 

 
The following is an example of a query in which 

section titles are retrieved from books and wrapped in 
new <topic> elements: 
 
SELECT PK, XDOC.query(' 

    for $s in /BOOK/SECTION 

    return <topic> 

     {data($s/TITLE)}  

        </topic>')    

FROM DOCS 

 
The query execution is tuple-oriented – the SELECT 

list is evaluated on each row of the DOCS table, the 
query() method is processed on the XDOC column in 
each row, and the result is a two-column rowset where the 
column types are integer (for PK) and untyped XML (for 
the XML result). The query methods are evaluated on 
single XML instances, so that XQuery evaluation over 
multiple XML documents is currently not supported by 
the syntax but is allowed by the architecture. Scalar value-
based joins over XML instances are possible.  

2.4 Indexing XML Data 

Query execution processes each XML instance at runtime; 
this becomes expensive whenever the XML blob is large 
in size, the query is evaluated on a large number of rows 
in a table, or a single SQL query executes multiple 
XQuery expressions requiring the XML blob to be parsed 
multiple times. Consequently, a mechanism for indexing 
XML columns is supported in SQL Server 2005 to speed 
up queries. 
A primary XML index [12] on an XML column creates 

a B+tree index on the data model content of the XML 
nodes, and adds a column Path_ID for the reversed, 
encoded path from each XML node to the root of the 
XML tree.  
The structural properties of the XML instance, such as 

relative order of nodes and document hierarchy, are 
captured in the OrdPath column for each node [11]. The 
primary XML index is clustered on the OrdPath value of 
each XML instance in the XML column. The other 
noteworthy columns are the name, type and the value of a 
node. 
XML indexes provide efficient evaluation of queries 

on XML data, and reassembly of the XML result from the 
B+tree. These use the relational infrastructure while 
preserving document order and document structure. 
OrdPath encodes the parent-child relationship of XML 
nodes by extending the parent’s OrdPath with a labelling 
component for the child. This allows efficient 
determination of parent-child and ancestor-descendant 
relationships. Furthermore, the subtree of any XML node 
N can be retrieved from the primary XML index using a 
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range scan over the OrdPath values of N and the 
descendant limit of N. The latter value can be determined 
from N’s OrdPath alone, which makes OrdPath a very 
simple yet efficient node labelling scheme. 
Secondary XML indexes can be created on an XML 

column to speed up different classes of commonly 
occurring queries: PATH index for path-based queries, 
PROPERTY index for property bag scenarios, and 
VALUE index for value-based queries are currently 
provided.  
Statistics are created on the key columns of the 

primary and secondary XML indexes. These are used for 
cost-based selection of the secondary XML indexes. 
Choice of the primary XML index is currently a static 
decision.  
The next section describes the architecture for query 

processing on XML data. 

3. XML Query Processing Architecture 

As outlined in the previous section, the XML data is 
persisted in the relational store to leverage the existing 
relational infrastructure. An XQuery expression is 
compiled into a query tree that can be optimized and 
executed by the relational query processor. The 
hierarchical nature of the XML data is modelled as 
parent-child relationship using the OrdPath node labelling 
scheme [11] instead of developing a new, hierarchical 
store. Query processing for ordered, hierarchical data 
model requires more work than for the flat relational 
model.  For this reason, the set of relational operators is 
extended with additional operators for XML processing. 
This enhancement yields “relational+” operators.  
XQuery compilation is performed in multiple stages, 

starting with the parsing of XQuery expressions and 
resulting in the generation of the query plan containing 
the enhanced set of relational operators. The overall 
architecture is shown in Figure 1. The main steps consist 
of an XQuery Compiler, which includes XQuery parsing, 
and an XML Operator Mapper.  
The XML algebra tree is an intermediate 

representation on which rule-based (as opposed to cost-
based) optimizations are applied. One such optimization 
is path collapsing described in Section 6. Rewrites using 
XML schema information are also applied to the XML 
algebra tree. The output of the XQuery Compiler step is 
an XML algebra tree that is highly optimized for XML 
processing. 
Using the appropriate XML and relational type 

information, the XML Operator Mapper converts the 
XML operators in the XML algebra tree into a relational 
operator tree that includes the enhanced set of relational 
operators. This mapping is discussed in more details in 
Section 4.  

 
Figure 1. Architecture for XQuery compilation. 
 
XML Operator Mapper recursively traverses the XML 

algebra tree.  For each XML operator in the XML algebra 
tree, a relational operator sub-tree is generated, which 
includes enhanced relational operators.  The relational 
operator sub-trees are then inserted into the overall 
relational operator tree for the XQuery expression.  
The mapping of each XML operator to a relational 

operator subtree depends upon the existence of a primary 
XML index on the XML column being queried. If it 
exists, then the query plan is generated to access columns 
in the primary XML index. If it does not exist, then the 
query plan is produced to evaluate path expressions 
without branching on the XML blob and to generate a set 
of rows representing the subtree of the matching nodes in 
document order. These rows contain most of the columns 
of the primary XML index except notably the primary key 
columns from the base table (used in back join from the 
primary XML index to the base table) and the Path_ID 
column that contains the reversed, encoded path from an 
XML node to the root of the XML tree.  
The rest of the query plan is the same if the primary 

key and Path_ID columns are not needed. Otherwise, it 
continues to differ.  
The relational operator tree for the XQuery expression 

is grafted into the main query tree for the whole SQL 
query. Thus, a single query tree is produced, and the 
query optimizer can optimize the full query plan 
containing both relational and XML accesses. This also 
supports interoperability between relational and XML 
data at the server, making way for richer application 
development. 
The next subsection describes some of the XML 

operators used in the XML algebra tree. 

XQuery expression 

XQuery Compiler 

XML algebra tree (XmlOp operators) 

Relational Operator Tree  
(relational+ operators) 

   Relational Query Processor 

XML Operator Mapper 
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3.1 XML Operators 

The XQuery Compiler parses an XQuery expression and 
produces an XML algebra tree that includes XML 
operators.   This section describes a handful of the XML 
operators introduced in SQL Server 2005, some of which 
are used further in this paper. This list is representative 
but not exhaustive; detailed descriptions are beyond the 
scope of this paper. 
Each XML operator may accept input such as an 

ordered XML node list, an unordered XML node set, a 
Boolean condition, an ordinal condition, a node list 
condition, and other scalar input. 

3.1.1 XmlOp_Select 

The XmlOp_Select operator takes a list of items, 
including ordered XML nodes, as a left child and a 
condition as right child. It returns the input items in their 
input order which satisfy the given condition.   

3.1.2 XmlOp_Path 

The XmlOp_Path operator is used for simple paths 
without predicates and produces the eligible XML nodes. 
This operator also uses a path context to collapse paths 
(see Section 6 for more information). 

3.1.3 XmlOp_Apply 

The XmlOp_Apply operator takes two item lists as input, 
and returns one item list. It has an “apply name” property 
whose value is the variable name bound by the 
corresponding “for” clause in XQuery. The variable is 
bound to each of the items in a first item list. The second 
item list typically contains references to this variable, and 
is evaluated using the variable binding with the items in 
the first list.  
The XmlOp_Apply operator also takes a “where” and 

an “order-by” child. It is a complex operator that the 
XML Operator Mapper translates to a relational operator 
tree for evaluating the “for”, “where” and “order-by” 
clauses with the appropriate XQuery semantics. 

3.1.4 XmlOp_Compare 

This is a comparison operator with a field indicating the 
type of the comparison.  

3.1.5 XmlOp_Constant 

This operator represents a constant, which can be a literal 
or the result of constant folding. Constant folding is the 
static optimization that evaluates constant expressions 
during query compilation to avoid runtime execution costs 
and to allow more query optimizations. 

3.1.6 XmlOp_Construct 

The XmlOp_Construct operator creates all the XML node 
types: elements, attributes, processing instructions, 

comments, and text nodes.  For element construction, the 
operator takes as input the sub-nodes (attributes and/or 
children), otherwise the value of the constructed node.   

3.1.7 Scalar Operators 

The XmlOp_Function operator represents a built in 
function that returns a scalar or XML nodes. The inputs 
are the parameters of the function and the output is the 
result of the function. 
The next section describes the mapping of the XML 

operators for XPath and XQuery expressions to relational 
operators.  

4. XML Operator Mapping 

The XML Operator Mapper transforms an XML algebra 
tree into a relational operator tree.  Conventional 
relational algebraic operators are inadequate to process 
the hierarchical XML data model in an efficient way.  
Consequently, the set of relational operators is enhanced 
with new operators for the purpose of XQuery processing, 
yielding the relational+ algebra. The relational operator 
tree is submitted to the query processor for optimization 
and execution.  
We describe the mapping of the XML algebra tree to 

the relational operator tree in the following subsections. 
For convenience, we subdivide the discussion into the 
following categories: 
 

• Mapping of XPath expressions 

• Mapping of XQuery expressions 

• Mapping of XQuery built-in functions 
 

4.1  XPath Expressions 

The XmlOp_Path operator representing a path is mapped 
to a relational operator in a different way for XML blob 
than for a primary XML index on an XML column. Each 
of these scenarios is further subdivided into two cases –  
 

• Simple path expressions without branching in 
which the full paths from the root of the XML 
trees are known after path collapsing (“exact 
paths”) 

• Paths expressions without branching in which 
the full paths are not known (“inexact paths”).  

 
As described later in Section 6, segments of simple paths 
may be concatenated together to produce a longer simple 
path using the path collapsing technique.  
Inexact paths occur in the XML algebra tree when 

segments of the path cannot be collapsed or a path is split 
into multiple segments. It occurs most commonly for 
paths containing wildcard steps, the //-operator, self and 
parent axes.  
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The resulting four mappings are discussed below 
using the path expression /BOOK/SECTION as example. 
Predicate and ordinal evaluations are discussed later in 
this section. 

4.1.1 Non-indexed XML, Exact Path   

 The XmlOp_Path operator is mapped to an XML_Reader 
operator for parsing the XML blob. XML_Reader is a 
streaming, pull-model XML parser, similar to the 
XmlReader in the .NET framework [9]. It is chosen for its 
efficiency in parsing XML data and its relatively low 
memory requirements, compared to a non-streaming 
XML parser such as for DOM, for handling large XML 
instances. 
The path /BOOK/SECTION is an argument to the 

XML_Reader operator and is applied during runtime 
parsing of the XML blob. The result is a set of rows 
representing the subtrees of the qualifying <SECTION> 
nodes and retaining the structural properties of those 
subtrees using their OrdPath values. 
The XmlOp_Path operator can occur at the top-level 

of the XML algebra tree when the path expression occurs 
within the query() method, i.e. XDOC.query 
(‘/BOOK/SECTION’). In this case, rows representing the 
subtree of each <SECTION> node are reassembled into 
an XML data type result using an XML_Serialize 
operator. This step is referred to as XML Serialization in 
the rest of the paper. The overall mapping is shown in 
Figure 2. 

4.1.2 Non-indexed XML, Inexact Path  

The path, such as /BOOK/SECTION//TITLE, is used by 
XML_Reader during XML blob parsing to filter the 
eligible nodes. Thus, the relational operator tree is similar 
to the one in Figure 2 with the appropriate path as input to 
the XML_Reader operator. 
 

 
Figure 2. Relational operator tree for the exact path query 
XDOC.query (‘/BOOK/SECTION’) in the non-indexed 
case. 
 

4.1.3 Indexed XML, Exact Path 

The XmlOp_Path operator with the exact path is mapped 
to a relational SELECT operator that filters primary XML 

index rows (GET(PXI)) by matching the supplied path 
/BOOK/SECTION with the value in the Path_ID column. 
The Path_ID column stores the reversed path in an 
encoded form. The XML Operator Mapper uses a 
function PATH_ID (/BOOK/SECTION) over the path to 
generate the search value for the Path_ID column. For 
simplicity, the result of this function is depicted as 
#SECTION#BOOK. The resulting relational operator tree 
is shown in Figure 3.  
Top-level XmlOp_Path requires the XML_Serialize 

operator that receives rows corresponding to the subtree 
of each <SECTION> node and produces the XML result. 
The APPLY operator [6] in the relational operator tree is 
a correlated join between the <SECTION> rows and the 
right child of the APPLY operator. 
 

 
Figure 3. Relational operator tree for the exact path query 
XDOC.query (‘/BOOK/SECTION’) for the indexed case 
 
Retrieval of each <SECTION> node’s subtree utilizes 

the OrdPath property for generating the subtree – nodes 
belonging to the subtree are chosen (SELECT operator in 
the right child of APPLY) with the OrdPath value in 
between those of the <SECTION> node and its 
descendant limit (DL). This is executed efficiently using a 
range scan over the primary XML index. 

4.1.4 Indexed XML, Inexact Paths 

Inexact paths are matched on the Path_ID value using the 
LIKE operator. For example, rows for the <TITLE> 
nodes in the path expression /BOOK/SECTION//TITLE 
are found from the primary XML index using the 
predicate Path_ID LIKE #TITLE%#SECTION#BOOK. 
Finally, the subtree under each <TITLE> node is 
serialized in the result. The relational operator tree for this 
example is shown in Figure 4. 
The path expression /BOOK/SECTION/../@id 

containing the parent axis is split into the evaluation of 
the paths /BOOK/SECTION and //@id, and then ensuring 
that the parent of the <SECTION> element is the same as 
that of the @id attribute. The inexact path //@id is 
evaluated using the expression Path_ID LIKE #@id%, 
and benefits from the use of XML indexes. This technique 
can be used for any path for which the tail end of the path 
is known.  

XXMMLL__SSeerriiaalliizzee  

AAppppllyy  

SSeelleecctt  (($$bb))  

GGEETT((PPXXII))  

PPaatthh__IIDD==##SSEECCTTIIOONN##BBOOOOKK  

$$bb..OOrrddPPaatthh  ≤≤  

OOrrddPPaatthh  <<  DDLL(($$bb))  
GGEETT((PPXXII))  

SSeelleecctt  
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Figure 4. Relational operator tree for the inexact path 
query XDOC.query (‘/BOOK/SECTION//TITLE’) for the 
indexed case. 
 
As should be apparent from the discussions above, the 

indexed and the non-indexed cases differ mainly in the 
way paths are evaluated on XML blobs or the column 
Path_ID in the primary XML index. The rest of the 
processing is done much the same way on columns 
common to both the primary XML index and the output 
rows of the XML_Reader. For this reason, in the 
remainder of this paper, only the indexed case is 
illustrated for brevity. 

4.1.5 Predicate Evaluation  

Predicate evaluation is performed by comparing the 
search value with that in the value column of the primary 
XML index. The relational operator tree for the path 
expression /BOOK[@id = “123”] is shown in Figure 5. 
The evaluation of the simple paths /BOOK and 

/BOOK/@id proceed as described above using the 
Path_ID column of the primary XML index. The specified 
value “123” is compared with the VALUE column in the 
same row of the primary XML index as the @id attribute. 
Since the two paths are evaluated separately, a check for 
the parent-child relationship is also needed. This is 
depicted in Figure 5 as the Parent_Check() function. The 
check uses the OrdPath property that the parent’s OrdPath 
is a prefix of the child’s OrdPath except for the rightmost 
component. 
The value of a simple-valued, typed element is stored 

in the same row as the element, so that predicates on the 
element are evaluated in the same way as an attribute. 
Predicates on untyped XML are more complicated to 
evaluate since values may need to be aggregated from 
multiple rows, which makes the relational operator tree 
more complex. 
 
 
 
 

 

Figure 5. Relational operator tree for the query 
XDOC.query (‘/BOOK[@id=”123”]’). 
 
The relational operator tree may also contain 

CONVERT operators if the operands need to be 
converted to the appropriate types to perform an 
operation. 

4.1.6 Ordinal Predicate  

Ordinal predicate evaluation such as /BOOK[n] adds a 
ranking column to the rows for <BOOK> elements and 
then retrieves the nth <BOOK> node. A special 
optimization exists for the cases n = 1 and n = last(). The 
ordinal predicate is mapped to TOP 1 ascending and TOP 
1 descending, respectively. TOP n is a relational operator 
that chooses the topmost n values from a rowset. When 
the input set is sorted, such as the rows in the primary 
XML index, this rewrite avoids ranking all the nodes 
before the ordinal predicate is evaluated. 

4.2  XQuery Expressions 

SQL Server 2005 supports the FLWOR clauses “for”, 
“where”, “order-by” and “return”. XML operator 
mapping is described in some detail below for these 
constructs. A formal algorithm for the mapping is not 
presented in this paper for lack of space. However, 
fragments of the algorithm are illustrated below using 
examples. 
The XQuery processing framework described in this 

paper is powerful enough to support “let” but this is not 
discussed further in the paper. 

4.2.1  “for” Iterator 

The XML algebra operator for the “for” iterator in 
XQuery is XmlOp_Apply. It maps to the relational 
APPLY operator, as shown in the example in Figure 6 for 
the query 
 

for $s in /BOOK//SECTION  

where $s/@num >= 3  

return $s/TITLE 

 

Apply  

Select ($s) 

GET(PXI) 

Path_ID LIKE #TITLE%#SECTION#BOOK 

XML_Serialize 

Assemble subtree of 

<TITLE> 

XML_Serialize 

Path_ID=#@id#BOOK 
& VALUE=“123” & 

Parent_check($b) 

Apply  

Select  

GET(PXI) 

Apply  

Select ($b) 

GET(PXI) 

Path_ID=#BOOK 

Assemble subtree of 

<BOOK> 
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In the example, the Path_ID column is used to match 
the path /BOOK//SECTION using the LIKE operator. The 
APPLY operator with the $s binding iterates over the 
<SECTION> nodes and determines its <TITLE> children. 
The operators for the “where” condition are discussed 
later. 
Nested “for” expressions and “for” with multiple 

bindings (e.g. for $i in /Customer, $j in /Order …) turn 
into nested APPLY operators, where each APPLY binds 
to a different variable. 
 

 
Figure 6. Relational operator tree for the XQuery 
expression 'for $s in /BOOK//SECTION where $s/@num 
>= 3 return $s/TITLE' for indexed XML. 
 

4.2.2  “where” 

The “where” clause in XQuery is represented by the 
“where” child of the XML algebra operator 
XmlOp_Apply. It maps to a relational SELECT operator 
on the input sequence that filters the rows matching the 
specified condition. An example is shown in Figure 6. In 
the example, <SECTION> elements matching the path 
/BOOK//SECTION are bound to the variable $s. Another 
path matching using the LIKE operator occurs for the path 
/BOOK//SECTION/@num obtained by path collapsing on 
the path $s/@num inside the “where” condition. At the 
same time, the VALUE comparison is performed using 
the specified value 3, and to check parent-child 
relationship between <SECTION> nodes and the @num 
attributes. The OrdPath values of the the <SECTION> 
element and its @num attribute satisfies the conditions of 
the parent-child relationship.  

The EXISTS operator further on is introduced to filter 
the <SECTION> rows because of the existential 
semantics of the >= operator. 

4.2.3 “order by”  

“Order-by” sorts rows based on the order-by expression 
and adds a ranking column to these rows. The ranking 
column is then converted into OrdPath values that yield 
the new order of the rows to fit the rest of the query 
processing framework. 

4.2.4 “return” 

XQuery expressions in the “return” clause are evaluated 
based on the foregoing principles. If the return sequence 
of nodes is in document order, then the stored OrdPath 
values suffice in capturing the structure of the returned 
result. Thus, the XML_Serialize operator at the end can 
generate the final, XML result.  
New element and sequence constructions are 

considered in the next subsection. The top-level 
XML_Serialize converts the constructed rows, based on 
the new structural relationships, into the final, XML 
result. 

 
Figure 7. Relational operator tree illustrating element 
construction. 
 

4.2.5 Construction 

New element construction is done by generating new 
rows for the constructed element with an appropriate 
OrdPath value. The new element’s content requires 
XQuery evaluation as described in this section, and may 
require JOIN with the primary XML index to retrieve 
nodes. Multiple constructed sibling nodes are put together 
using UNION_ALL operator. For the query 

Path_ID LIKE 
#@num#SECTION%#BOOK 

& VALUE >= 3 
& Parent_check($s) 

Select  

Select ($s) 

GET(PXI) 

      Path_ID LIKE  

#SECTION %#BOOK  

Exists  

GET(PXI) 

Select  

 

XML_Serialize 

Assemble subtree of 

<SECTION> 

 

Path_ID LIKE 
#TITLE#SECTION%#BOOK 

& Parent_check($s) 

Apply ($s)  

Apply   

GGEETT((PPXXII))  

XXMMLL__SSeerriiaalliizzee  

AAppppllyy  

SSeelleecctt  (($$ss))  

PPaatthhIIDD  ==  ##SSEECCTTIIOONN##BBOOOOKK  

GGEETT((PPXXII))  

SSeelleecctt  

AAppppllyy  

UUnniioonn__AAllll  

<<ttooppiicc>>  

SSwwiittcchh__UUnniioonn  

AAsssseemmbbllee    

ssuubbttrreeee  ooff  <<TTIITTLLEE>>  
CCTTGG((11))  NNeeww??  

PPaatthhIIDD  ==      
      #TITLE#SECTION#BOOK 
&&  PPaarreenntt__cchheecckk(($$ss))  
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for $s in /BOOK/SECTION  

return <topic>{$s/TITLE}</topic> 

 
the relational operator tree is shown in Figure 7. The 
<TITLE> nodes are found from the primary XML index 
as described earlier in this section. An UNION_ALL 
operator over these rows and the rows generated for the 
new <topic> elements produces a single set of rows; the 
hierarchical relationship between the two rowsets for 
<topic> and <TITLE> is maintained using compile time 
OrdPath values. Each row also contains a flag to indicate 
whether the row represents a newly constructed node or 
an existing node (the “New” flag in Figure 7).  
The SWITCH_UNION operator checks the “New” 

flag on each row. For a newly constructed <topic> row, it 
outputs a constant row (CTG(1)) with an appropriate 
OrdPath value. For an existing <TITLE> row, it 
assembles the subtree of the <TITLE> element from the 
primary XML index and modifies the OrdPath values in 
the subtree to maintain the hierarchical relationship with 
the corresponding <topic> element. Finally, the XML 
data type result is produced using the XML_Serialize 
operator. 
Sequence construction is handled in a similar way 

using UNION_ALL, and if needed, a SWITCH_UNION.  

4.2.6 Other XQuery Constructs 

Other XQuery constructs, such as if/then/else, are 
expressed in terms of the appropriate relational operators. 
A discussion of these is too detailed and beyond the scope 
of this paper.  

4.3 XQuery Functions & Operators 

Several of the XQuery functions and operators are 
available in SQL Server 2005. These are selected based 
on customer requirements rather than completeness. 
The XQuery built-in functions and operators are 

mapped to the underlying relational functions and 
operators wherever possible. An example is the fn:count() 
function, which is evaluated using the count() function in 
SQL. For XQuery types, functions and operators that 
cannot be mapped directly, additional support has been 
added to the query processor.  
A couple of the aggregate functions, namely, fn:data() 

and fn:string() are specially optimized since they are 
frequently used and expensive. Each of these functions 
aggregates the values from multiple rows. This would 
normally result in JOIN operations over those rows. 
Special operators have been introduced to perform these 
aggregations directly for runtime efficiency. 

5. XQuery Type System 

The XQuery 1.0 and XPath 2.0 type system is based on 
W3C XML Schema [21]. The type system is used for type 

inferences and for generating static type error during 
query compilation. This fits well with the static type 
system of the relational data model. In fact, XPath 1.0 
[19] has a dynamic type system which prevents error 
detection during query compilation, and does not fit as 
well into a relational database system. 
Most of the SQL types are compatible with the 

XQuery type system (e.g. decimal). A handful of types 
(e.g. xs:duration) are stored in an internal format and 
suitably interpreted for compatibility with the XQuery 
type system.  
Compilation of XQuery expressions requires 

annotation of the XML algebra tree with type information, 
which can be obtained from type definitions or by using 
type derivation. The type information must be supplied 
using XML Schema. For example, a node whose value 
must be of type xs:integer is prevented at compilation 
time from being supplied with a value of an incompatible 
type such as xs:string. When such schema information is 
unavailable, e.g. for “untyped” XML, a limited set of type 
inferences using the XQuery type system is still possible. 
Static type checking of XQuery expressions can raise 
static errors during query compilation and report errors 
without executing the expressions. This improves the 
responsiveness of the database system in a big way. 
Dynamic errors are still possible during query execution 
time, such as failure of type casts, and return in empty 
XML or a NULL result instead of an error. 

5.1  Type Inference Mechanism 

The XQuery Compiler loads type information from XML 
schemas in the XML schema collection associated with an 
XML instance into a symbol table.  It annotates the nodes 
in the XML algebra tree with type information retrieved 
from the symbol table. The type of a node is also based on 
the inferred types of the earlier processed nodes. The 
resulting operator tree is referred to as the “annotated 
XML algebra tree” (AXAT). 
For example, when adding two inputs annotated with 

the type xs:decimal, the node for the addition is annotated 
with the type xs:decimal. 
The symbol table contains a normalized form of the 

type information that makes retrieval of type information 
from it very efficient.  

5.2   Static Type Checking 

Compilation errors are returned from syntactically 
incorrect XQuery expressions. The compilation phase 
checks static type correctness of XQuery expressions, and 
raises static type errors if an expression could fail at 
runtime due to type safety violation. Examples of static 
errors are addition of a string to an integer, and detecting 
potential mistakes such as querying for a non-existent 
node name in typed XML data. 
Explicit casting to the proper type allows users to 

work around static errors, although runtime cast errors are 
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transformed to empty sequences as a deviation from the 
W3C recommendation; an option to return dynamic errors 
could have been provided. The empty sequence may 
propagate as empty XML or NULL in the query result 
depending upon the invocation context. SQL Server 2005 
requires "cast as" with "?" (0 or 1 occurrence) since any 
cast can result in the empty sequence due to runtime 
errors. 
Location steps, function parameters, and operators 

(e.g. eq) requiring singletons return an error if the 
compiler cannot determine whether a singleton is 
guaranteed at runtime. The problem arises often with 
untyped data and path expressions that may yield multiple 
nodes, and an explicit iteration or an ordinal predicate 
(e.g. (/book)[1]) selecting a single node needs to be used. 
If a node is specified as a singleton in an XML schema, 
the XQuery Compiler uses that information and no error 
occurs. However, the use of descendant-or-self axis, as in 
/BOOK//TITLE, loses singleton cardinality inference for 
<TITLE> element even if the XML schema specifies it to 
be so. An ordinal predicate is required in this case. In 
some contexts, the ordinal specification can be removed, 
even for untyped XML [14]. 
If the type of a node cannot be determined, such as in 

an xs:any section with processContents = “skip”, it 
becomes xs:anyType, which is not implicitly cast to any 
other type. An element may be defined as xs:anyType in 
an XML schema and navigation using parent axis (e.g. 
XDOC.query('/book/@genre/../price')) also results in 
xs:anyType for the parent node type. In both cases, the 
loss of more precise type information often leads to static 
type errors, and requires explicit cast of atomic values to 
their specific types. 

6. Optimizations on Query Tree 

The relational query optimizer treats the query plan with 
relational semantics. This is appropriate for many cases, 
such as for evaluating relational accesses before XML 
data accesses or vice versa, and results in an optimal 
execution. 
This section describes some of the optimizations 

supported for XQuery processing. 

6.1  Exploiting Ordered Sets 

The XML Operator Mapper produces query plans for 
XQuery processing in structure preserving ways. Order 
preservation among the nodes of an XML tree is achieved 
using OrdPath as a ranking column – it not only supports 
relative order but also encodes hierarchical relationship – 
so that it can serve as a node identifier column during the 
intermediate processing steps. The query optimizer honors 
the directives given by the relational operator tree in its 
optimization decisions.  
Rows representing the subtree of an element, either 

retrieved from the primary XML index or generated by 
the XML_Reader, are in ascending order of OrdPath, i.e. 

the rows are in depth-first order of the nodes in the 
subtree. This information is made available to further 
relational operators in the relational operator tree to 
eliminate sort operations. Serialization of an XML subtree 
using the XML_Serialize operator serves as an example. 
Similarly, the fn:data() and fn:string() aggregators avoid 
sorting on OrdPath when the input is already in document 
order (e.g. retrieved from the primary XML index).  

6.2  XML Index and XML Blob Accesses 

XML indexes are used as available. The choice of the 
primary XML index is made statically by the XML 
Operator Mapper, which work well in most cases [12]. 
The choice of secondary XML indexes is cost-based and 
is made by the relational query optimizer.  
For indexed XML data, the XML Operator Mapper 

produces a query plan that uses lookups on the Path_ID 
column of the primary XML index for path evaluation. 
The lookup may be an exact match for a fully specified 
path such as /BOOK/SECTION. For a path expression 
containing //, such as //SECTION/TITLE, the LIKE 
operator is used to match the prefix of the Path_ID 
column with the ending portion of the specified path. This 
works since the Path_ID column stores reversed paths. 
For non-indexed XML data, XML index rows are 

generated in document order at runtime using the 
XML_Reader operator, which is a streaming table-valued 
function (TVF). To transform an XML blob into XML 
index rows, XML_Reader uses a streaming, pull-model 
XML parser, similar to the XmlReader in the .NET 
framework [9]. Searching for paths is done differently for 
XML blobs than using the Path_ID column in the indexed 
case. XML_Reader accepts simple XPath expressions 
without branching and generates rows for the result of the 
XPath expression evaluation.  
The XML_Reader has a special optimization to 

minimize the number of passes over an XML blob. The 
rows generated from an XML_Reader can serve as XML 
node references for a second, correlated XML_Reader. 
The latter can use these node references to locate the 
corresponding XML nodes in a single pass over the blob. 
An example is the path expression /BOOK[@id = 
“123”]//TITLE, in which the rows generated by an 
XML_Reader for /BOOK are used as <BOOK> node 
references in a correlated XML_Reader. Making 
XML_Reader a stateful operator allows the second 
XML_Reader to generate <TITLE> elements in a single 
pass over the XML blob using the <BOOK> element 
references. An interesting extension is to merge multiple 
XML_Reader operators into a single one that evaluates 
multiple path expressions in a single pass over the XML 
blob, although this optimization is not in the product.   

6.3  Using Static Type Information 

Node values within an untyped XML instance are stored 
as Unicode strings. Operations such as numeric addition 
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(+) require such values to be converted at runtime to 
compatible types. Within a typed XML instance, on the 
other hand, node values are stored as the primitive XML 
Schema types mapped to the corresponding SQL types. 
For typed XML, the type conversion of values is 
eliminated wherever possible for faster execution. 
Elimination of type conversion also enables range scans 
over XML indexes; this can yield significantly faster 
execution for range queries. XML schemas are used for 
other optimizations as well, notably the determination of 
singleton cardinality. 
The query processor uses the static type information to 

optimize queries. For instance, if it is known from the 
XML schema that an element <BOOK> occurs at most 
once in an XML instance, then parsing of an XML 
instance for the path expression  /BOOK can stop as soon 
as the <BOOK> element has been found. Furthermore, 
searching for singleton nodes can collapse multiple node 
retrievals into a single parse of the XML instance.  

6.4  Transformations on XML Algebra Tree 

A few optimizations on the XML algebra tree are 
performed by the XQuery Compiler. In the expression  
 
for $i in /BOOK/SECTION 
 return $i/TITLE  

 
the variable $i is annotated with the path 
/BOOK/SECTION. Within the scope of $i, a path 
expression relative to $i, such as $i/TITLE, is expanded 
into the exact path /BOOK/SECTION/TITLE. This 
technique is called path collapsing. In the indexed case, 
the collapsed path is mapped to an equality comparison on 
the Path_ID column of the primary XML index for 
efficient execution. In the case of XML blob, the path is 
used during XML data parsing to retrieve the <TITLE> 
nodes.  
Path collapsing can be used in more complex path 

expressions as well, such as /BOOK/SECTION [TITLE = 
“Introduction”]. In practice, this simple optimization 
yields very good results.  
The XQuery Compiler rewrites the ordinal predicates 

1 and last(), as in /BOOK[1] and 
/BOOK/SECTION[last()], to TOP 1 ascending and TOP 1 
descending, respectively. Primary XML index rows as 
input to the TOP operator avoid sorting the rows and 
yields better performance. 

7. Related Work  

A significant body of research exists on the execution of 
XQuery on an XML view of relational data, such as 
SilkRoute [4], XPeranto [17][18], etc. Several commercial 
products support XML views as well, such as Microsoft’s 
SQL Server 2000 [10]. These approaches compile the 
XQuery or XPath expression into one or more SQL 
statements using the XML view definition. The results of 

execution of these SQL statements are combined into the 
XML result. Unlike our approach, these techniques still 
operate on relational data and cannot efficiently handle 
the full richness of general XML documents or the non-
relational aspects of XQuery/XPath. Our approach is to 
devise query plans for rich XML data type as well as for 
XML indexing. 
This paper differs from our earlier paper on XML 

indexing [12] in that it describes the internal operators 
used in the query trees produced for executing XQuery 
expressions. The XML indexing paper discusses how 
XML data can be indexed to speed up different query 
classes and how query plans use those indexes. Thus, 
these two papers complement one another. 
Grust et al. [7] discusses an XQuery implementation 

on a relational database system. They use the pre-order 
and post-order node labeling scheme instead of OrdPath, 
and their approach comes closest to our treatment of 
indexed XML data. Their approach, however, is built 
outside the database engine. Our work fits XQuery 
compilation and execution into the relational query 
processing framework and pursues optimizations possible 
within the relational query optimizer. 
Florescu et al. [5] describe an XQuery implementation 

on streaming XML data. By comparison, we consider a 
persistent, shared state of the XML data on which XQuery 
processing is studied using a relational query processing 
framework. 

8. Conclusions and Future Work 

This paper gives an overview of some of the major 
features of the XQuery language implemented in SQL 
Server 2005 using the relational query processor. (A data 
modification language is also available and fits into the 
relational query processing framework equally well.) The 
underlying query processing and data storage frameworks 
have been built up to provide users with a good set of 
features that perform and scale well. 
SQL Server 2005 is the first release from Microsoft 

Corporation which implements XQuery. This has been a 
major undertaking with the primary focus of building up 
the infrastructure that can support the implementation of 
the full XQuery specification. Features not currently 
supported, such as “let” and typeswitch, can be 
implemented using the same framework. Needless to say, 
future work includes a long list if items. 
From the language perspective, although many built-in 

functions are available, features such as the remaining 
XQuery language constructs, remaining XPath axes, user-
defined function library, user-defined recursive functions, 
and many built-in functions and operators can be done in 
the future. Converting dynamic errors to empty sequences 
yields correct results as in predicates without negations. 
However, in the presence of negation and update 
expressions, wrong results can occur. Therefore, a future 
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version needs to provide better filtering of spurious errors 
in the execution framework. 
From the query processing viewpoint, more cost-based 

optimizations, such as the cost-based selection of the 
primary XML index, can be done. This can be achieved 
by making the XML Operator Mapper an integral part of 
the relational query processor. Computed columns based 
on XML data type methods are useful for property 
promotion and are supported by SQL Server 2005. In the 
future, the query optimizer can provide support for 
matching such columns and in general matching 
materialized views on XML columns. 
Experimental results can be found in the paper on 

XML indexing [12] for the XMARK benchmark. The 
query plans were produced for those experiments by the 
query processing framework described in this paper. As 
future work, it will be interesting to study the benefits of 
individual optimizations and to work on further 
optimizations.  
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