
Native XML Support in DB2 Universal Database

 Matthias Nicola Bert van der Linden

 IBM Silicon Valley Lab IBM Silicon Valley Lab

 555 Bailey Avenue 555 Bailey Avenue
 San Jose, CA San Jose, CA
 USA USA
 mnicola@us.ibm.com robbert@us.ibm.com

Abstract
The major relational database systems have been
providing XML support for several years, pre-
dominantly by mapping XML to existing con-
cepts such as LOBs or (object-)relational tables.
The limitations of these approaches are well
known in research and industry. Thus, a forth-
coming version of DB2 Universal Database® is
enhanced with comprehensive native XML sup-
port. “Native“ means that XML documents are
stored on disk pages in tree structures matching
the XML data model. This avoids the mapping
between XML and relational structures, and the
corresponding limitations. The native XML stor-
age is complemented with XML indexes, full
XQuery, SQL/XML, and XML Schema support,
as well as utilities such as a parallel high-speed
XML bulk loader. This makes DB2 a true hybrid
database system which places equal weight on
XML and relational data management.

1 Introduction
XML is the de-facto standard for exchanging data be-
tween different systems, platforms, applications, and or-
ganizations. Key benefits of XML are its vendor and plat-
form independence and its high flexibility. XML is a data
model suited for any combination of structured, unstruc-
tured and semi-structured data. XML data is easy to ex-
tend because new tags can be defined as needed. Also,
XML documents can easily be transformed into “different
looking” XML and even into other formats such as

HTML. Furthermore, XML documents can easily be
checked for compliance with a schema. All this has be-
come possible through widely available tools and stan-
dards such as XML parsers, XSLT, and XML Schema.
They greatly relieve applications from the burden of deal-
ing with particularities of proprietary data formats. In an
era where message formats, business forms and services
change frequently, XML reduces the cost and time it takes
to maintain application logic correspondingly.

Beyond XML for data exchange, enterprises are keep-
ing large amounts of business critical data permanently in
XML format. This has various reasons. Some businesses
must retain XML documents in their original format for
auditing and regulatory compliance. Typical examples are
legal and financial documents as well as eForms, particu-
larly in the government sector.

Another reason for using XML as a permanent storage
format is that XML can be a more suitable data model
than a relational schema. This is not only true for content-
oriented applications, but also for certain data-oriented
applications. For example, in life science applications the
data is highly complex and hierarchical in nature and yet
may contain significant amounts of unstructured informa-
tion. Most of today’s genomic data is still kept in proprie-
tary flat file formats but major efforts are under way to
move to XML �[14].

Relational databases have been offering support for
storage, manipulation, search, and retrieval of XML data.
This is usually based on storing XML documents in LOBs
or mapping and shredding XML to a relational schema.
These solutions have inherent functional and performance
constraints. Generally, LOB-based storage allows for fast
insert and retrieval of full documents but suffers from
poor search and extract performance due to XML parsing
at query execution time. This can be moderately improved
if indexes are built at insert time. While this incurs XML
parsing overhead, it may speed up queries that look for
documents which match given search conditions. Yet,
extraction of document fragments and sub-document level
updates still require expensive XML parsing.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1164

Shredding XML to relational tables is expensive at in-
sert time due to costly XML parsing �[10] and multi-table
inserts. But once XML is broken into relational scalar
values, queries and updates in plain SQL promise higher
performance. Still this approach suffers from drawbacks:
XML schemas can have many nested and repeating ele-
ments such that the corresponding relational schema
would consist of dozens or even hundreds of tables. De-
fining such a mapping from XML to a relational schema
is a complicated task. Once data has been inserted, any
changes to the relational schema -due to changes in the
XML Schema- are almost always infeasible. This severely
restricts the flexibility which XML is often used for in the
first place. Also, the required multi-way joins to recon-
struct XML documents can be expensive when dealing
with large amounts of data �[12]. Beyond that, complex
XQueries can even be untranslatable into SQL �[5].

This motivates native XML database technology. DB2
Universal Database® has been extended with comprehen-
sive native XML support. In this paper we present the
XML features in the upcoming version of DB2 and de-
scribe some of the key implementation concepts. We dis-
cuss examples to illustrate the XML capabilities as well as
the integration of XML with SQL and relational data
management.

After pointing to related work in section �2, we provide
an overview of DB2’s native XML solution and its high
level architecture in section �3. Sections �4 and 5 then pre-
sent the native XML storage and XML indexing mecha-
nism, respectively. The XQuery and SQL/XML support is
explained in section �6. This is followed by a description
of XML schema support and the DB2 schema repository
in section �7. Section �8 explains why shredding remains an
important XML feature and presents DB2’s new shred-
ding solution. Application support and API enhancements
for XML are covered in section �9. Then section �10 gives
an overview of various tools for XML, such as XML im-
port, export and load, and the graphical XQuery builder.
Finally, this paper concludes with a summary.

2 Related Work
Various native XML databases have been in existence for
several years, such as Tamino, XHive, Ipedo, NeoCore,
Xyleme, and others �[4]. The XML storage approach de-
scribed in �[7] is similar to ours in the sense that large
documents are split into subtrees of nodes.

In Oracle 10g XML documents can be stored with in-
dexing support as CLOBs, shredded to object-relational
tables, or a combination of both �[11]. The XML support
in Microsoft SQL Server 2005 stores XML documents as
byte sequences in BLOB columns �[12]. A primary XML
index can be defined to avoid parsing the XML BLOBs at
query time �[12]. Additionally, secondary XML indexes
can be defined to further increase query performance.
This is somewhat different from DB2’s XML storage and
indexing approach described in sections �4 and �5. In DB2,

XML parsing is never required at query time and indexes
can be defined on specific paths. The upcoming XML
support in DB2 is based on a prototype described in �[2].
The more general modeling and architectural concepts can
also be found in �[2] and are not covered in this paper.
Further related work is discussed in �[9] and �[2].

3 Overview: “The Big Picture”
A high-level view of DB2 with native XML support is
shown in Figure 1. The DB2 storage component manages
both, conventional relational data storage and the new
native XML storage. Both types of storage are accessed
by the DB2 engine which processes plain SQL,
SQL/XML �[6] and XQuery �[3] in an integrated manner.
Different parsers are used to read SQL and XQuery
statements but then a single compiler is used for both lan-
guages. There is no translation from XQuery to SQL.
DB2’s compiler and optimizer are extended to handle
SQL and XQuery in a single modeling framework �[2].
Corresponding processing support is built into the index
manager, the runtime system, memory management, the
data dictionary, concurrency control, the storage layer,
and database utilities.

Figure 1: Integrating XML and Relational in DB2

There is no impact on existing SQL applications. A
client application can continue to use SQL to communi-
cate with the DB2 Server through the relational APIs to
access and manipulate data in the relational data store.
The SQL/XML extensions also allow publishing of rela-
tional data in XML format. Additionally, SQL allows full
document retrieval from the native XML storage. New
SQL/XML functions provide SQL applications also with
sub-document level search and extract capabilities, i.e. by
embedding XPath or XQuery into SQL statements.

An XML application can interact with the DB2 Server
through the XML interface using the XQuery language.
XQueries typically access the native XML store. XQuery
is supported as a standalone query language independent
from SQL. Yet, XQueries can optionally contain SQL
statements to combine and correlate XML with relational
data. Since an XUpdate language is not yet close enough
to standardization, the DB2 server supports full document
updates for now. An XML update stored procedure is
available which provides applications with a flexible in-
terface for sub-document level updates. This also elimi-
nates the need to send documents for update from the
DB2 server to the client and back.

CLIENT
SQL/X

XQuery

DB2
Engine

XML
Interface

Relational
Interface

XML�

DB2 Storage:

DB2 Client /
Customer Client
Application

����������	

1165

3.1 The XML Data Type

At the heart of DB2’s native XML support is the XML
data type. XML is now a first-class data type in DB2, just
like any other SQL type �[6]. The XML data type can be
used in a “create table” statement to define one or more
columns of type XML (Figure 2). Since XML has no dif-
ferent status than any other types, tables can contain any
combination of XML columns and relational columns. An
XML-only application may define tables that contain
XML columns only. A column of type XML can hold one
well-formed XML document for every row of the table.
The NULL value is used to indicate the absence of an
XML document. Though every XML document is logi-
cally associated with a row of a table, XML and relational
columns are stored differently. Relational and XML data
are stored in different formats that match their respective
data models. The relational columns are stored in tradi-
tional row structures while the XML data is stored in hi-
erarchical structures. The two are closely linked for effi-
cient cross-access.

Figure 2: Table with a column of type “XML”

An XML schema is not required in order to define an
XML column or to insert or query XML data. An XML
column can hold schema-less documents as well as docu-
ments for many different or evolving XML schemas.
Schema validation is optional on a per-document basis.
Thus, the association between schemas and documents is
per document and not per column, which provides maxi-
mum flexibility.

Unlike a Varchar or a CLOB type, the XML type has
no length associated with it. The XML storage and proc-
essing architecture imposes no limit on the size of an
XML document. Currently, only the client-server com-
munication protocol limits XML bind-in and bind-out to
2GB per document. With very few exceptions, this is ac-
ceptable for all XML applications.

Values of type XML are processed in an internal rep-
resentation that is not a string and not directly comparable
to strings. The XMLSERIALIZE function can be used to
convert an XML value into a string value which repre-
sents the same XML document. Similarly, the

XMLPARSE function can be used to convert a string
value which represents an XML document into the corre-
sponding XML value.

The XML type can be used not only as a column type
but also as a data type for host variables in languages such
as C, Java, and COBOL. Section �9 provides details on this
extension to the DB2 APIs. The XML type is also allowed
for parameters and variables in SQL stored procedures,
user-defined functions (UDFs), and external stored proce-
dures written in C and Java. This is important for flexible
application development.

4 Native XML Storage
To insert XML data into the database, client applications
send XML documents in their textual representation to the
DB2 server. The server
uses a SAX parser to
check incoming docu-
ments for wellformed-
ness and to perform op-
tional validation. The
SAX events are con-
verted into a hierarchical
representation of the
XML document. For the
sample document in
Figure 3, this hierarchy looks similar to the document tree
in the upper part of Figure 4.

Figure 4: StringIDs in XML Storage

During insert, all tag names and namespace URIs in
the document tree are replaced by integer values
(StringIDs). The new catalog table SYSXMLSTRINGS
holds the mapping from tags to StringIDs for all XML
columns in the database. There is only one entry per

create table dept (deptID char(8),…, deptdoc xml);

…

…
…

… …

“PR27” <dept> …
<emp>…</emp>
</dept>

deptdoc deptID

DB2 Storage

0 dept
4 employee
1 name
5 id
2 phone
3 office

String table

… …..

0 dept
4 employee
1 name
5 id
2 phone
3 office

String table

… …..

Tag names and
namespace URIs
get replaced by
unique StringIDs

0

1 2

4

35 1 2

4

35

901 John
Doe 344408-555

1212

902 Peter
Pan

216408-555
9918

0

1 2

4

35 1 2

4

35

901 John
Doe 344408-555

1212

902 Peter
Pan

216408-555
9918

0

1 2

4

35 1 2

4

35

901 John
Doe 344408-555

1212

902 Peter
Pan

216408-555
9918

0

1 2

4

35 1 2

4

35

901 John
Doe 344408-555

1212

902 Peter
Pan

216408-555
9918

dept

name phone

employee

officeid name phone

employee

officeid

901 John
Doe 344408-555

1212
902 Peter

Pan
216408-555

9918

dept

name phone

employee

id name phone

employee

officeid

901 John
Doe 344408-555

1212
902 Peter

Pan 216408-555
9918

dept

name phone

employee

officeid name phone

employee

officeid

901 John
Doe 344408-555

1212
902 Peter

Pan
216408-555

9918

dept

name phone

employee

id name phone

employee

officeid

901 John
Doe 344408-555

1212
902 Peter

Pan 216408-555
9918

Figure 3: Sample Document

<dept>
 <employee id=901>
 <name>John Doe</name>
 <phone>408 555 1212</phone>
 <office>344</office>
 </employee>
 <employee id=902>
 <name>Peter Pan</name>
 <phone>408 555 9918</phone>
 <office>216</office>
 </employee>
</dept>

1166

unique string. In the example in Figure 3 and 4, the tag
“id” occurs twice in the sample document, and possibly
many more times in other documents in the current data-
base, but each occurrence of that tag is replaced by the
same StringID “5”. Upon the first database-wide insert of
a tag, a StringID is assigned and registered in the string
table. In all subsequent occurrences the tag is replaced
with that same StringID. The size of the mapping table is
usually very small since it corresponds to the number of
unique tags in the database (typically hundreds or thou-
sands). A special purpose cache ensures high performance
access to this table.

The document tree in the lower part of Figure 4 is simi-
lar to the format in which inserted documents are stored
on disk pages. Extra information is stored with each node,
such as the type annotation if the document was validated.

Replacing tags with StringIDs not only reduces the
space consumption but also allows for higher performance
of navigational queries. Operations such as node compari-
sons now operate on integers instead of strings. Further
details on document navigation can be found in �[2].
Whenever XML nodes or documents are returned as
query results, the nodes are serialized back to their text
form. In this process the mapping from StringIDs to ac-
tual tags is reversed.

If a document tree is too large to fit on one page it gets
split into regions (Figure 5). At any level of the document
a subtree of nodes can be cut off and become a region.
The regions of a document can be stored on separate
pages which do not have to be in physically consecutive
order. Multiple regions can be stored on one page, espe-
cially if documents are much smaller than the page size
and each document is just a single region.

Figure 5: Interlinked document regions

If a document spans multiple pages, its regions are
connected by the regions index. A regions index is a sys-
tem index that is created automatically for every table that
contains one or more XML columns. In Figure 5 the
document tree is split into three regions colored in white,
black and gray. The white and the black region occupy a
full page each. The gray region is smaller and fits on a
page already containing another small region.

Upon document traversal, a step to a parent, sibling, or
child node may not lead to a node on the same page but to
a different region. In this case, a regions index lookup
finds the page with the corresponding region. In Figure 5,
it is possible to navigate from the white region to the gray
region of the document without touching the black region.
For large documents this means that only those pages
need to be fetched from disk which are actually required
to evaluate a given query. For partial document access
this saves costly I/O.

An alternative to the regions index could have been di-
rect links between regions, similar to the implementation
described in �[7]. In our system we use the regions index
for efficient sub-document level access and intelligent
prefetching of regions.

The paged storage of XML documents leverages exist-
ing components in DB2, such as the buffer pool manager,
the table space layer, and the logging facility.

5 XML Indexes
XML applications that manage millions of XML docu-
ments are not uncommon. Thus, indexing support for
XML data is required to provide high query performance.
DB2 supports path–specific value indexes on XML col-
umns so that elements and attributes frequently used in
predicates and cross-document joins can be indexed. DB2
also supports XML-aware full-text indexing.

5.1 XML Value Indexes

Based on the sample table and document in Figure 2 and 3,
the following statement defines an XML value index on
all employee names in all documents in the XML column
“deptdoc”:
create index idx1 on dept(deptdoc) generate key
using xmlpattern '/dept/employee/name' as sql varchar(35)

The xmlpattern is a path which identifies the XML
nodes to be indexed. It is called xmlpattern and not xpath
because only a subset of the XPath language is allowed in
index definitions. For example, wildcards (//,*) and name-
spaces are allowed but XPath predicates such as /a/b[c=5]
are not supported. Since we do not require a single XML
schema for all documents in an XML column, DB2 may
not know which data type to use in the index for a given
xmlpattern. Thus, the user must specify the data type ex-
plicitly in the “as sql <type>” clause. The following types
can be used:

page page page

Regions
index

Document tree
delivered by the
XML parser gets
broken into regions

1167

• VARCHAR(n) - for nodes with values of a known
maximum length.

• VARCHAR HASHED - for nodes with values of arbi-
trary length. In this case, the index contains hash val-
ues of the actual strings. Such an index can be used for
equality predicates but not for range predicates.

• DOUBLE - for nodes with any numeric type.
• DATE and TIMESTAMP - for nodes with correspond-

ing XML values.

Since the SQL type system is not exactly the same as
the XML type system, special mechanisms are in place to
compensate for key differences. One example is that the
DB2 index manager has been enhanced to explicitly han-
dle special values from the XML type system, i.e. +0, -0,
+INF, -INF, and NaN.

If a node matches the xmlpattern but fails to cast to the
specified index type, then no index entry is created for
that node without raising an error �[2]. A single document
may contain zero, one, or multiple nodes that match the
xmlpattern. Thus there may be zero, one, or multiple in-
dex entries for a single row in the table. This is a signifi-
cant difference to indexes on relational columns.

As another example, the next statement defines a
unique index on all employee id attributes. Uniqueness is
enforced within a document and across all documents in
the XML column.
create unique index idx2 on dept(deptdoc) generate key
using xmlpattern '/dept/employee/@id' as sql double

In some applications it is difficult to predict which
elements or attributes will be searched. For such cases, the
following index definitions can be used to index all text
nodes and all attributes, respectively, if needed. In this
example we are prepared for elements with arbitrary-
length values and expect attributes to be numeric:
create index idx3 on dept(deptdoc) generate key
using xmlpattern '//text()‘ as sql varchar(hashed)

create index idx4 on dept(deptdoc) generate key
using xmlpattern '//@*' as sql double

To match and index nodes in a particular namespace,
the xmlpattern can contain namespace declarations and
namespace prefixes:
create index idx5 on dept(deptdoc) generate key using
xmlpattern 'declare namespace m="http://www.me.com/";
/m:dept/m:employee/m:name‘ as sql varchar(45)

To reduce the size of index entries, each unique path
that exists in the documents of an XML column is
mapped to an integer PathID. This is very similar to the
concept of StringIDs for tags described in section �4.
Again, the mapping information is cached for perform-
ance and typically small since only unique paths are regis-
tered.

Each index entry includes the PathID that identifies
the path of the indexed node, the value of the node cast to
the index type, a RowID and a NodeID. The RowIDs

identify the rows containing the matching documents,
similar to regular relational indexes. The NodeIDs iden-
tify the matching nodes and regions within the documents.

Typically, indexes will be defined with xmlpatterns
that identify atomic nodes. A node is “atomic” if it is an
attribute, a text node, or an element that has no child ele-
ments and exactly one text node child. All of the index
examples above index atomic nodes in the document
shown in Figure 3. However, it is also possible to define
indexes on non-atomic nodes. In our example, the XML
pattern ‘/dept/employee’ would be considered “non-
atomic”, because each employee element has three child
elements with one text node each. This results in a single
index entry for each employee element. The value of such
an entry is the concatenation of all text nodes in the sub-
tree under “employee”. This is in compliance with the
XML data model. If the intention is to index all employee
names, offices, and phone numbers as separate values,
then the xmlpattern ‘/dept/employee/*/text()’ or three
separate create index statements should be used. Non-
atomic indexes are rarely useful for data-centric XML, but
can be useful for mixed content in text-oriented XML. For
example, the following element “title” contains mixed
content to indicate a formatting suggestion. In this case, a
non-atomic index on “…./title” is useful because then the
full title value gets indexed with no regard for the format-
ting suggestion:

<title>The benefits of<bold>XML</bold></title>

A given index can be used to evaluate an XPath predi-
cate only if the data type used in the predicate matches the
one in the index, and if the XPath qualifies a subset of the
indexed nodes. For example, index idx3 above could be
used to evaluate the predicate /dept//name[text()=”Joe”].
However, idx2 could not be used to evaluate the predicate
//@id=”A167”, for two reasons: (a) idx2 is a numeric in-
dex but the predicate asks for a string comparison, (b) the
predicate searches for @id attributes anywhere in the
document but idx2 only covers those under
/dept/employee. Further details on index eligibility are
given in �[2] and �[1].

5.2 XML Full Text Indexes

Full-text search is a common operation in document-
and content-centric XML applications. DB2’s existing
text search capabilities have been extended to work with
the new XML column type. Full-text indexes with aware-
ness of XML document structures can be defined on any
native XML column. The documents in an XML column
can be fully indexed or partially indexed, e.g. if it is
known in advance that only a certain part of each docu-
ment will be subject to full-text search, such as a “descrip-
tion” or “comment” element. Correspondingly, text search
expressions can be applied to specific paths in a docu-
ment.

1168

The following statement defines a text index which
fully indexes the documents in the XML column deptdoc
in our table dept in the database personneldb:
create index myIndex for text on dept (deptdoc) format xml
connect to personneldb

The following query exploits this index but restricts
the search to a specific element. The query retrieves all
documents where the element ‘/dept/comment’ contains
the word “Brazil”:
select deptdoc from dept where
contains (deptdoc,‘sections(”/dept/comment”) “Brazil” ') = 1

Text search in specific parts of the documents is a
critical feature for many applications. Standard text search
features are also available, such as scoring and ranking of
search results as well as thesaurus-based synonym search.

For best performance of XML insert, update, and de-
lete operations the text index is maintained asynchro-
nously, i.e. not within the context of a DML transaction.
However an “update index” command is available to
force synchronization of the text index.

6 XQuery and SQL/XML
DB2 treats both SQL and XQuery as primary query lan-
guages. Both operate on their respective data models and
can be used independently from each other. However,
database applications can benefit immensely from the
integration of the two languages that DB2 supports. Since
many applications deal with existing relational data and
XML simultaneously, queries need to combine and corre-
late these two types of data. This is described in the fol-
lowing subsections. Throughout this discussion we will
refer to two tables in our examples:
create table dept(deptID char(8) primary key, deptdoc xml)
create table unit(ID char(8), name char(20), manager char(20))

6.1 Querying XML Data with XQuery

In DB2, XQueries can operate on XML documents in one
or more XML columns. Each XML column is interpreted
as a sequence of XML document nodes. This is accom-
plished by using either one of the two DB2 functions
“db2-fn:xmlcolumn” and “db2-fn:sqlquery”. As shown in
the following example, db2-fn:xmlcolumn takes a string
literal that identifies an XML column. db2-fn:xmlcolumn
returns an XML sequence that consists of all documents
in the specified column. Thus, the for clause in the exam-
ple iterates over all documents in the XML column. If a
column value is null, then there is nothing in the resulting
XML sequence for that row.
for $e in db2-fn:xmlcolumn("DEPT.DEPTDOC")/dept/employee
where $e/office = 344
return $e/name

The function db2-fn:xmlcolumn can be used multiple
times in a single XQuery to reference different XML col-
umns in the same or separate tables, or to reference one

XML column several times. Each time the
db2-fn:xmlcolumn function produces all documents of an
XML column as input to the XQuery. This is a very
common usage scenario. However, sometimes it can be
desirable to restrict the input to an XQuery based on con-
ditions placed on relational columns in the same or related
tables. This can be accomplished with the function
db2-fn:sqlquery which accepts any select statement that
returns a single XML column.

The sample query in Figure 6A is equivalent to the
query with db2-fn:xmlcolumn above because the embed-
ded SQL statement simply returns all XML documents
from the XML column. However, in Figure 6B the input to
the XQuery is very efficiently reduced to a single docu-
ment, because the relational predicate exploits the primary
key index on deptID.

Figure 6C shows an example where the set of input
documents to XQuery is filtered by using a join and a
predicate on another relational table. This highlights the
power of integrating XQuery and SQL. Users can lever-
age all of their existing relational data to qualify XML
documents for XQuery processing. The db2-fn:sqlquery
function can be used not only to reduce the input to an
XQuery but also to extend it. This is illustrated in Figure
6D where we use a UNION query to search all US de-
partments and all UK departments for employee Jane Doe
(using tables deptUS an deptUK in a slight variation of
the running example).

The db2-fn:sqlquery function also enables applications

to use XQuery to access and retrieve relational data. This
is facilitated by SQL/XML constructor functions that
transform relational data into XML format and produce a
single column of type XML which can serve as an input
to an XQuery. This integration is possible because
SQL/XML has adopted the XQuery data model �[6].

for $e in db2-fn:sqlquery('select deptdoc
 from dept')/dept/employee
where $e/office = 344
return $e/name
for $e in db2-fn:sqlquery('select deptdoc
 from dept
 where deptID = “PR27”')/dept/employee
where $e/office = 344
return $e/name
for $e in db2-fn:sqlquery('select deptdoc
 from dept, unit
 where dept.deptID=unit.ID and
 unit.manager = “Jim Qu”’)/dept/employee
where $e/office = 344
return $e/name
for $e in db2-fn:sqlquery('select deptdoc
 from deptUS UNION
 select deptdoc
 from deptUK’)/dept/employee
where $e/name = “Jane Doe”
return $e

Figure 6: XQueries with embedded SQL

A

B

C

D

1169

The following example shows an XQuery which con-
structs a result document that contains unit and depart-
ment information. The department information is an XML
document retrieved from the XML column deptdoc. The
unit information comes from a pure relational table. The
SQL/XML statement constructs an XML element “Unit”
with three child elements whose values are taken from the
relational columns of the unit table, i.e. the columns ID,
name, and manager.
let $d := db2-fn:sqlquery('select deptdoc from dept
 where deptID = “PR27”')
let $u := db2-fn:sqlquery('select XMLELEMENT(NAME “Unit”,
 XMLFOREST(ID, name, manager))
 from unit where ID = “PR27”’)
 return <report>
 <units>{$u}</units>
 <department>{$d}</department>
 </report>

An XQuery and one or multiple embedded SQL que-
ries are compiled into a single execution plan and com-
prise a single statement. SQL isolation levels as well as
security privileges apply to the entire statement as a single
unit, just like to any regular SQL statement.

The result returned by an XQuery statement is treated
as a table with a single column of type XML. Each row
returned represents an item from the XML sequence that
is the result of the XQuery. Thus, existing DB2 mecha-
nisms can be used to declare and open cursors, fetch items
from the XML sequence returned by the XQuery, and
close cursors. Note that these items can be anything from
XML documents to atomic values such as integers or
strings.

6.2 Querying XML Data with SQL

It is often desirable to use and/or extend SQL statements
to retrieve XML data. One reason is that database users
are familiar with SQL which makes it a good starting
point for managing XML. Also, existing relational appli-
cations are frequently augmented with XML data. There-
fore, it is a natural approach to extend the exiting SQL
applications and even existing SQL statements with XML
capabilities.

Since XML is now a regular SQL data type �[6], full
documents can be retrieved from an XML column with a
simple select statement:

select deptdoc from dept where deptID LIKE “PR%”;

Additionally, DB2 supports most of the new
SQL/XML functions and predicates, including
XMLQUERY, XMLEXISTS, XMLTABLE, XMLVALIDATE,
XMLPARSE, and XMLCAST. These are described in detail in
�[6], so here we only highlight some of the most useful
ways of deploying these functions.

XMLEXISTS is a Boolean predicate which tests whether
an XML document matches given criteria. It returns either
true or false for every row. The XMLEXISTS predicate
evaluates an XPath or XQuery expression for each value

of an XML column. If the result of the XQuery expression
is an empty sequence then XMLEXISTS returns false, oth-
erwise it returns true.

The following sample query returns full department
documents as in the previous example but with XMLEX-
ISTS for additional filtering. Only those rows are returned
where the department document contains an employee in
office 344. The passing by clause establishes the binding
between the SQL and the XQuery context �[6].

select deptID, deptdoc
from dept d
where deptID LIKE “PR%” and
 xmlexists(‘$deptdoc/dept/employee[office = 344]’
 passing by ref d.deptdoc as “deptdoc")

Apart from document filtering, it is also desirable to
extract and return partial XML documents such as sub-
trees or atomic attribute and element values. This is
achieved with the XMLQUERY function. It evaluates XPath
or XQuery expressions and returns the actual result as an
XML sequence to the SQL application. The query in the
next example selects the deptID for all PR departments,
and the XMLQUERY function extracts the employee names
for all PR employees in office 344.
select deptID, xmlquery('for $e in $deptdoc/dept/employee
 where $e/office = 344
 return $e/name'
 passing by ref d.deptdoc as “deptdoc"

returning sequence)
from dept d
where deptID LIKE “PR%”;

In this statement, XMLQUERY returns an empty se-
quence for each department document where no employee
in office 344 is found. To avoid those rows in the query
result, a corresponding XMLEXISTS predicate needs to be
placed in the where clause.

An XMLQUERY function may also appear in the where
clause so that an extracted value can be used in a join
condition with a relational column of another table. The
extracted XML value needs to be cast to the SQL type of
the relational join column. In the example below we join
the tables unit and dept to obtain the name of the unit
whose manager happens to be employee number 901. The
XMLQUERY function searches the department documents
in the dept table and extracts the name of the employee
with id 901. The xmlserialize function casts the extracted
XML value to char(20) so that it can be compared to the
manager column from the unit table.

select u.name, u.manager, d.deptID
from dept d, unit u
where xmlserialize(content

xmlquery(‘$deptdoc/dept/employee[@id=901]/name/text()’
 passing by ref d.deptdoc as “deptdoc“
 returning sequence) as char(20)

) = u.manager

1170

6.3 Query Execution Plans and Operators

DB2 has separate parsers for SQL and XQuery state-
ments, but uses a single integrated query compiler for
both languages. Query execution plans can contain novel
XML operators for XML navigation (XSCAN), XML
index access (XISCAN), and novel joins over XML in-
dexes (XANDOR). For details see �[2] and �[8]. DB2 also
collects XML-specific statistics for XML data which the
query optimizer uses to create efficient query execution
plans. Statistics for XML data are more complex than for
relational data since not only value distributions but also
structural statistics need to be considered. Histograms of
element occurrences, attribute occurrences, and their cor-
responding value occurrences aid in query optimization.

7 XML Schema Support
DB2 supports optional XML Schema validation of docu-
ments during insert, update, and query operations. In addi-
tion, there is limited support for DTDs and external enti-
ties. The type annotation produced by the validation is
persisted together with the document for use during query
execution. DB2 conforms to the XML Query standard, the
XML Schema standard, and the XML standard for the
above operations.

7.1 XML Schema Registration and Validation

Before XML Schemas and DTDs can be used for validat-
ing documents, they need to be registered with the data-
base. If validation is used, then the database relies on the
XML Schemas, stores type-annotated documents on disk,
and compiles execution plans with references to the XML
Schemas. Additionally, stable and high performance ac-
cess to schemas is required for efficient validation in
XML insert, update, or query operations. These stability
and performance requirements can only be met by storing
the schemas in the database itself. Hence, DB2 provides
an XML Schema repository (XSR).

Internally, the schema repository consists of several
new database catalog tables. These tables store the origi-
nal XML schema documents that comprise an XML
schema as well as a “binary representation” of the schema
for fast reference during validation of a document.

Registration of XML schemas is done via DB2 com-
mands, stored procedures, or language-specific APIs. The
following is an example of registering a simple schema.
Its schema URI is “http://my.dept.com”, the file that con-
tains the schema document is “dept.xsd”, the schema
identifier in the database is “deptschema”, and it belongs
to the relational database schema “departments”. Note
that the namespace URI is deduced from the schema
document itself.

register xmlschema http://my.dept.com
 from dept.xsd
 as departments.deptschema complete

Documents can be validated in SQL statements with

the XMLVALIDATE function. The schema, which is to be
used for validation, can either be specified explicitly or it
can be deduced from the schemaLocation hints in the in-
stance documents. A schema can be explicitly referenced
by its schema URI or by its schema identifier. The next
example shows two insert statements which validate the
input document against our previously registered “dep-
tschema”. Both statements specify the schema explicitly,
by schema URI and by schema ID respectively.

insert into dept(deptdoc) values xmlvalidate(? according to
 xmlschema uri 'http://my.dept.com')

insert into dept(deptdoc) values xmlvalidate(? according to
 xmlschema id departments.deptschema)

These statements clarify that XML Schema validation
in DB2 is a per-document concept and not a per-column
concept. Each inserted document can potentially be vali-
dated against a different XML Schema, demonstrating the
flexibility of the DB2 XML store. This flexibility is nec-
essary for ‘document-centric’ applications where organi-
zation and classification of documents is more important
than homogeneousness.

The next example shows an insert where no schema is
referenced explicitly. In this case DB2 tries to deduce the
schema from the input document and will try to find it in
the repository.

insert into dept(deptdoc) values xmlvalidate(?)

Documents that include and/or refer to DTDs or exter-
nal entities can also be inserted, but the DTD will only be
used to resolve entity references and to add default attrib-
utes and elements.

7.2 XML Schema Evolution and Flexibility

The DB2 schema repository is based on two main de-
sign principles. The first principle is that the repository
should not and will not require users to modify a schema
before it is being registered, or modify XML documents
before they are inserted and validated. In addition, once
documents have been inserted and validated, they should
never be invalidated and should never require updates to
remain valid. XML applications often deal with large
numbers of documents so that bulk updates to make them
compliant with a non-compatible schema change- are
almost always infeasible.

The second design principle for the DB2 XML schema
repository is to enable schema evolution. Schema evolu-
tion is a sequence of changes in an XML schema over the
course of its lifetime. Such changes usually occur due to
new or evolving business needs. For example, changing
or introducing new services, products, or business proc-
esses can all result in new requirements for information
management. All this might result in XML schema
changes.

1171

Schema evolution and how best to accomplish it has
been a much-debated topic. So far, there is no standard for
evolving schemas in sight. However, business pressure
force schemas to evolve and XML users find ways to do
it. Fortunately, most applications do not need a solution to
the general schema evolution problem; instead, they suffi-
ciently constrain the problem so that relatively simple
solutions are possible. Therefore, flexibility of the schema
repository is of paramount importance. In practical terms,
this means that DB2’s schema repository does not require
the namespace or the schema URI of each registered
schema to be unique because the user might not have con-
trol over that. The user does have control over the data-
base specific Schema identifier, which must be unique.
The schema repository also does not prescribe a specific
way of doing schema evolution.

DB2 has built-in support for one very simple yet very

important type of schema evolution. If the new schema is
backwards-compatible with the old schema, then the old
schema can be replaced with the new schema in the
schema repository. For this operation DB2 verifies that all
possible elements and attributes that can exist in the old
schema have the same named types in the new schema.
This type of schema evolution limits the type of changes
one can make to additions of optional elements and attrib-
utes, but is simple and useful.

For the general schema evolution problem, one option
is to allow the old and new schemas to exist side by side,
under different names. One can freely mix documents that
conform to the old schema with documents that conform
to the new schema in the same column of a table. We can
also write queries against that table to process only docu-
ments that conform to the old schema, or only documents
that conform to the new schema, or to both. To enable the
application to perform more complicated version-aware
operations, DB2 supplies a function to identify the
schema that was used to validate a particular document:

select deptid, xmlxsrobjectid(deptdoc) from dept
where deptid = “PR27”

This statement returns the schema identifier of the

schema which was used for validation of the XML docu-
ment for department PR27.

8 Annotated Schema Decomposition
Even though the DB2 native XML store can insert and
query any XML document, there are cases where it still
makes sense to shred XML documents into relational
rows and columns. In certain usage scenarios XML is
only used to transport data to the database but the XML
structure is irrelevant once the data is integrated with ex-
isting relational data. For example, if an application ex-
tracts all relevant data from a web-services message and
decomposes that data into existing tables, then the original

XML message might not be needed anymore. Shredding
can also be required because many existing tools for data
mining and business intelligence only work on the rela-
tional format of the data. Also, the performance of queries
over relational data can be superior to queries over XML
if the schema is sufficiently simple.

DB2 offers an improved decomposition product that
maps XML data into relational tables. The decomposition
process is driven by annotations inside the XML Schema,
similar to schema-annotated mappings in MS-SQL Server
�[13] and Oracle �[11]. These annotations are added to the
schema by the user and describe which XML elements
and attributes map to which tables and columns.

DB2 automates the decomposition process by using
the annotated schema as input. The following is an exam-
ple of an annotation. When a document is inserted and
decomposed according to this piece of annotated schema,
the value of the salary element under the payroll element
will be inserted into the salary column in table T. The
DB2 decomposition annotations are in their own name-
space and are using the namespace prefix db2-xdb.

<xsd:element name=”payroll" >

<xsd:complexType>
<xsd:sequence>

<xsd:element name="salary" type="xsd:string"
db2-xdb:rowSet=”T”
db2-xdb:column="salary"/>

<xsd:element name="bonus" type="xsd:integer"
db2-xdb:rowSet=”T”
db2-xdb:column="bonus" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

The annotations enable to user to control the decom-

position process in great detail:
• The data can be normalized, its white space manipu-

lated, the data manipulated in an expression, or trun-
cated before insertion.

• The data can be inserted conditionally: e.g. only if
values matching certain criteria should be decom-
posed into the table-column pairs.

• Foreign key relationships can be described.
• The same element or attribute can be inserted into

multiple table-column pairs
• Multiple elements or attributes can be inserted into

the same table-column pair.

Since XML is a first class type in DB2, decomposing

an XML document can include inserting part or the entire
document as an XML value into an XML column. Effec-
tively, this allows an application to break an XML docu-
ment into several pieces and to store only the required
pieces in one or multiple XML columns.

1172

9 XML API and Application Support
DB2 introduced a new SQL column type in the database,
the XML data type. Applications can bind various lan-
guage specific data types for input and output of XML
columns or parameters. These existing language specific
data types only allow the user to work with XML as char-
acter or binary types.

In order to use XML efficiently and seamlessly, new
language specific XML types are added to the existing
client interfaces. These new language specific XML types
enable the database to be more efficient and enable the
database to supply a richer API for the applications. By
making XML explicit in the application, the database will
avoid unnecessary and/or unwanted code page conver-
sions. XML documents have an internal encoding declara-
tion which makes all but the XML parser’s transcoding
unnecessary. Avoiding unnecessary code page conver-
sions is often an important performance benefit. Addi-
tionally, transcoding an XML document without carefully
adjusting the XML encoding declaration might make the
XML document invalid.

All the major database interfaces are supporting the
XML type natively, i.e. treating XML data as XML, not
as a character type. Below, we will touch on JDBC,
ODBC, .NET, and embedded SQL.

9.1 JDBC

JDBC is enhanced to make XML data compatible with
Strings, Byte arrays, and streams, i.e. XML columns and
XML parameters can be bound to Strings, Byte arrays,
and streams. IBM is working on standardizing a JDBC
XML type. In the mean time a proprietary XML type
com.ibm.db2.DB2Xml is available in such a way that
application will be able to migrate seamlessly to the future
standard JDBC type.

This DB2Xml interface has a number of methods that
makes working with XML data easy. In the example be-
low, a ‘column’ is retrieved as a DB2Xml object. Then
the getDB2String method returns the serialized represen-
tation of the XML value (without XML declaration) as a
String object. The getDB2XMLBinaryStream(“UTF-16”)
then returns a binary stream with the XML value encoded
in UTF-16, including a matching XML declaration.

com.ibm.db2.jcc.DB2Xml xml1 =
 (com.ibm.db2.jcc.DB2Xml) rs.getObject ("xml_stuff");
String s = xml1.getDB2String();
InputStream is = xml2.getDB2XMLBinaryStream(“UTF-16”);

9.2 ODBC

ODBC is enhanced to support XML via a new XML type:
SQL_C_XML. However, since there is no native XML
type in C, that type can only be used in the ODBC API
calls to mark XML values as XML typed. The advantage
is that the DB2 client and server know that this is XML

data and avoid unnecessary or unwanted code page con-
versions. Here is an example of inserting XML data into
an XML typed column:

char xmlBuf[10240]; // SQL_C_XML
SQLExecDirect(hStmt, "Insert into T values (?)", SQL_NTS);
SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT,

SQL_C_XML, SQL_XML, xmlBuf, &xmlBufLen);

9.3 ADO.NET

The goal of the DB2 .NET support is to integrate as
deeply as possible with the .NET APIs. In this example,
an XML document is extracted from DB2 and the applica-
tion can use the standard .NET interface, XmlReader, to
manipulate the result.

DB2Command cmd = DB2Connection.CreateCommand();
cmd.CommandText = "select deptdoc from dept";
cmd.CommandType = CommandType.Text;
DB2DataReader dr = cmd.Execute();
dr.Read();
// retrieve the column as an XML reader
XmlReader xml1 = dr.GetXmlReader(0);

9.4 Embedded SQL

The SQL standard defined new host variable declarations
for XML types. DB2 is using this in its implementation.

EXEC SQL BEGIN DECLARE;
SQL TYPE IS XML AS CLOB(10K) xmlBuf;
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT deptdoc INTO :xmlBuf from dept

 where deptID = '001';

10 XML Utilities and Tools
The standard DB2 utilities are upgraded to work with

the new XML type. For example, XML column type data
is supported by DB2’s backup & restore as well as high
availability data replication for failover and fault toler-
ance.

IMPORT/EXPORT is the flexible way to insert or ex-
tract data to or from database tables. A single IMPORT
command can populate any combination of relational and
XML columns in a table. The IMPORT utility can read
and import XML documents from any number of separate
XML files in the file system. Alternatively, DB2 can im-
port XML documents which are concatenated in a single
large input file. Likewise, the EXPORT utility can write
XML documents to separate files or concatenate them
into a single file.

IMPORT and EXPORT give the user fine-grained
control of the XML parsing and validation options. The
options are similar to the SQL/XML functions XMLParse
and XMLValidate. Validation of documents during im-
port is optional. If validation is used, all imported docu-
ments can be validated against a single schema, or sche-

1173

mas can be specified on a per-document basis. Also, it is
possible to validate some but not all documents during
import. When XML data is exported, a flat file is written
in addition to the XML data. This flat file may contain
relational data which may have been part of the export. It
also contains references to the exported XML documents.
Optionally, a schema identifier is included for each ex-
ported document that was validated at insert time. Thus,
the relationship between documents and schemas can be
exported along with the actual data and can be used for
validation upon re-import into a database.

LOAD is the fast way of inserting data. LOAD is
modified to process XML data very efficiently by paral-
lelizing the XML parsing and by bypassing the regular
insert flow, directly and formatting writing pages. Parsing
multiple input documents concurrently has been shown to
significantly boost XML bulk load times �[10]. Again,
XML Schema validation is optional during load.

XQuery is a functional query language that enables
users to query XML data sources, including XML col-
umns. Novice users may find the language fairly complex
and unintuitive, even for simple queries. To resolve this
issue, DB2 provides a GUI-based XQuery Builder. The
XQuery Builder exposes the XQuery language functional-
ity as sets of grids. Using a simple drag & drop and drill
down paradigm the user can build fairly complex queries.
The tool interprets users’ GUI actions and generates the
corresponding queries, greatly assisting the user in the
construction and manipulation of XQuery syntax.

11 Summary
DB2 Universal Database® has been enhanced with com-
prehensive native XML support to overcome the limita-
tions inherent in mapping XML to relational tables or
CLOBs. XML documents are stored as type-annotated
trees on disk pages, indexed with path-specific indexes,
and queried with XQuery, SQL/XML, or a combination
of both. Schema validation is optional and on a per-
document basis, which allows for flexibility and schema
evolution. Enhancements to the major database APIs pro-
vide client applications with the required functionality to
exploit new XML capabilities in the DB2 server. The na-
tive XML solution in DB2 is rounded off by XML sup-
port in utilities such as XML import/export and a visual
XQuery design tool.

Acknowledgement
We would like to thank and recognize the large number of engi-
neers at the IBM Toronto Lab, IBM Silicon Valley Lab, IBM
Almaden Research Center, IBM Portland Lab, and IBM T.J.
Watson Research Center for their contributions to integrating
native XML support into DB2.

References

[1] Balmin, A. et al.: A Framework for Using Materialized
XPath Views in XML Query Processing, VLDB 2004,
pages 60-71.

[2] Beyer, K. et al.: System RX: One Part Relational, One Part
XML, SIGMOD Conference, 2005.

[3] Boag et al.: XQuery 1.0: An XML Query Language,
February 2005, http://www.w3.org/TR/xquery

[4] Bourret, R.: XML Database Products.
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

[5] DeHaan et al.: A Comprehensive XQuery to SQL Transla-
tion using Dynamic Interval Encoding. Sigmod 2003.

[6] Eisenberg, Melton: Advancements in SQL/XML, ACM
SIGMOD Record 33(3), pages 79-86, 2004

[7] Fiebig, T. et.al.: Anatomy of a Native XML Base Manage-
ment System, VLDB Journal 11(4), December 2002

[8] Josifovski, V. et al.: Querying XML Streams, VLDB Jour-
nal, Vol. 14, No 2, April 2005.

[9] Katz, H., (Editor): XQuery from the Experts, Addi-
son-Wesley, 2004.

[10] Nicola, M. et al.: XML Parsing, A Threat to Database Per-
formance, CIKM 2003.

[11] Oracle XML DB 10g
www.oracle.com/technology/tech/xml/xmldb

[12] Pat et al.: Indexing XML Data Stored in a Relational Data-
base, VLDB 2004.

[13] SQLXML in MS SQL Server 2000
http://msdn.microsoft.com/sqlxml

[14] XML Efforts in Life Sciences and Bioinformatics,
http://www.xml.com/pub/rg/Bioinformatics

1174

