
Getting Priorities Straight:
Improving Linux Support for Database I/O

Christoffer Hall, Philippe Bonnet

University of Copenhagen
Universitetsparken 1

2100 Copenhagen
Denmark

{hall,bonnet}@diku.dk

Abstract

The Linux 2.6 kernel supports asynchronous
I/O as a result of propositions from the
database industry. This is a positive evo-
lution but is it a panacea? In the context of
the Badger project, a collaboration between
MySQL AB and University of Copenhagen,
we evaluate how MySQL/InnoDB can best
take advantage of Linux asynchronous I/O
and how Linux can help MySQL/InnoDB
best take advantage of the underlying I/O
bandwidth. This is a crucial problem for
the increasing number of MySQL servers
deployed for very large database applica-
tions. In this paper, we first show that the
conservative I/O submission policy used by
InnoDB (as well as Oracle 9.2) leads to an
under-utilization of the available I/O band-
width. We then show that introducing pri-
oritized asynchronous I/O in Linux will al-
low MySQL/InnoDB and the other Linux
databases to fully utilize the available I/O
bandwith using a more aggressive I/O sub-
mission policy.

1 Introduction

Established database vendors are promoting Linux
as a platform of choice for commodity servers. In

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

addition to crafting marketing messages, they are in-
volved in the evolution of the Linux kernel [15, 10].
Oracle and IBM in particular have argued that ker-
nel support for asynchronous I/O1 was critical for
database performance [20]. Their efforts have re-
sulted in the adoption of asynchronous I/O in Linux
2.6. But is that good enough? Can the Linux kernel
be further enhanced to support database I/O?

The collaboration between the database industry
and the Linux community is a positive develop-
ment. We believe that this collaboration should
be extended to the research community. Indeed,
the emergence of commercially viable open source
database systems empowers the data management
research community to impact the design and im-
plementation of actual products.

In the context of the Badger project, a collaboration
between University of Copenhagen and MySQL AB,
we study how MySQL equipped with the InnoDB2

storage manager can best take advantage of the un-
derlying I/O bandwidth. As all other database ven-
dors, MySQL and InnoDB regularly interact with
clients who want to get the best performance out of
their I/O devices. More generally, the widening gap
between CPU speed and I/O bandwith defines the
need to utilize the existing bandwith as efficiently
as possible [13]. Ideally, it is the hardware configu-
ration that limits I/O performance, but do the soft-
ware layers, MySQL/InnoDB (or as a comparison
point Oracle) on top of Linux, utilize the underlying
I/O devices as efficiently as possible? This is the
question that underlies this study.

1According to Open Group definition: An asynchronous
I/O operation is an I/O operation that does not of itself cause
the thread requesting the I/O to be blocked from further use
of the processor [16].

2MySQL can accomodate various storage managers. In
this paper we focus on InnoDB, whose structure is similar to
Oracle’s storage manager.

1116

1.1 Throughput/Latency Trade-off

To efficiently support database I/O, the OS kernel
must efficiently support concurrent I/O requests on
multiple files3. This is why asynchronous I/O are
very attractive for database servers. They allow to:

1. Accumulate reads or write requests so that the
I/O subsystem can optimize performance. The
file system can group and reorder I/O requests
in order (i) to favor sequential access to disk
and (ii) to favor larger requests. This benefits
all I/O issued by the database server.

2. Overlap I/O and CPU work. This benefits
background operations such as data prefetching
or preflushing (by the lazy writer).

3. Parallelize reads and write requests to multiple
files. This benefits concurrent requests on log
and data files.

Intuitively, asynchronous I/O are most effective if
the number of outstanding request is constant and
sufficiently high to allow the file system to schedule
them efficiently. We verify Linux ability to accumu-
late and schedule asynchronous I/O in Section 2.
The database storage manager is submitting I/O
requests both synchronously (physical reads and
log writes that are blocking the query thread) and
asynchronously (prefetching and preflushing that are
non-blocking). For synchronous requests, latency is
of the essence. For asynchronous requests, through-
put is key. There is thus a trade-off: The database
should submit as many asynchronous requests as
necessary to increase throughput while making sure
the file system is ready to process synchronous re-
quests whenever they are submitted.
The only way for the database to ensure that syn-
chronous requests are processed efficiently is to keep
the number of outstanding asynchronous requests
low at all time4. This way, the file system will not
be too busy whenever a synchronous request is sub-
mitted. InnoDB for example limits the number of
asynchronous requests submitted when prefetching
or preflushing. Prefetching is done 1MB at-a-time,
and preflushing is done at various intervals depend-
ing on memory pressure and I/O activity (up to once
a second if I/O activity is low).
Such a conservative policy is currently the best
way for databases to handle the throughput/latency
trade-off. Ideally though, it is not the database
that should handle this trade-off but the file sys-
tem. Indeed the database is not actually scheduling

3In addition, the file system should provide backup capa-
bilities (specially for the data and index files).

4We focus on the I/O generated by the database and we
consider that the database tuner has made sure that the
amount of reads and writes is not higher than necessary [22]

IO requests, it is the role of the file system5. In-
stead of controlling the latency/throughput trade-
off by limiting the number of submitted I/O re-
quests, the database should rely on the I/O sub-
system to schedule latency critical I/Os in a timely
manner even if there are many outstanding requests.
In other words, the I/O subsystems should distin-
guish between synchronous and asynchronous re-
quests, thus providing the database system with a
way to schedule latency critical requests without sac-
rificing throughput.
On some mainframes (e.g., DB2 on z/OS [19]), the
operating system supports I/O priorities. The file
system schedules I/O requests based on their pri-
ority thus trading throughput for latency in case a
high priority request needs to be scheduled while a
large number of consecutive low priority requests are
being queued.
If the database system associates a high priority to
synchronous requests and a low priority to asyn-
chronous requests, it can implement an aggressive
I/O policy that maintains a high number of out-
standing asynchronous requests and let the file sys-
tem handle the latency/throughput trade-off.

1.2 Contribution

Following the downsizing trend from mainframes to
commodity servers [14], we propose to introduce pri-
oritized I/O in Linux so that MySQL/InnoDB (and
other Linux databases) can implement aggressive
I/O policies. More specifically, our contribution is
the following:

• We evaluate the capacity of Linux to accumu-
late asynchronous I/O requests and schedule
them efficiently.

• We show that MySQL/InnoDB does not uti-
lize the full potential of Linux asynchronous I/O
(and that neither does Oracle) due to its con-
servative I/O policy. Note that we extended
InnoDB to support native Linux asynchronous
I/O.

• We introduce prioritized I/O in Linux so
that the file system can control the la-
tency/throughput trade-off. We detail our de-
sign and implementation within the Linux ker-
nel and illustrate its potential benefit using a
version of InnoDB modified to associate priori-
ties to the I/O it submits.

• We summarize the lessons we learnt and discuss
the design of an aggressive I/O policy.

5In this study we consider that the file I/O subsystem is
responsible for scheduling I/O requests. Studying the utiliza-
tion of I/O bandwidth on servers connected to a SAN is a
topic for future work and a key challenge for the data man-
agement research community.

1117

2 Linux Asynchronous I/O

Before we focus on the performance of Linux asyn-
chronous I/O, let us describe the internals of the
Linux kernel that are relevant for our study.

2.1 Linux Kernel Internals

In the rest of the paper, we adopt a classic represen-
tation of the software layers on top of I/O devices.
The database server relies on OS kernel services to
access the underlying I/O devices. Kernel services
are typically organized in three layers [23]: At the
bottom, device drivers abstract the actual commu-
nication with the hardware devices. On top of these
drivers, the I/O subsystem is responsible for the ex-
ecution of I/O requests. The top layer consists of
the file services including layout and metadata man-
agement as well as caching.
Let us zoom in on the Linux file system cache. This
cache stores pages that have previously been read
from files and it stores pages that have just been
written. The fsync system call flushes all buffered
write requests to disk. In addition, a lazy writer
(called pdflush) forces dirty pages to disk regu-
larly or as a result of memory pressure. When a se-
quential pattern is detected among read requests, a
read ahead mechanism is activated to prefetch pages
(the number of prefetched pages depends on memory
pressure). Because the file system cache is in kernel
space, buffered pages are copied between kernel and
user space whenever they are read or written.
Linux supports direct I/O that bypass the file system
cache when reading or writing to a file. Direct I/O
requests manipulate pages allocated in user space.
Whether read and write operations are buffered or
direct is specified when opening a file (e.g., using the
O DIRECT parameter for direct I/O). Note that I/O
devices can also be opened as raw devices, in which
case the application directly interacts with the I/O
subsystem6.
As of version 2.6, the Linux I/O subsystem fully
relies on asynchronous I/O. Synchronous I/O are
implemented on top of asynchronous I/O. When
an I/O request is submitted, it is associated to a
completion queue. A worker thread then progresses
through an asynchronous state machine, and ends up
sending a page request to the disk scheduler. When
the page request completes, an interrupt is raised
(within the I/O device driver). In the case of direct
I/O, the I/O completion is notified from the inter-
rupt context. In the case of buffered read, the I/O

6By default, Linux supports buffered access to raw devices.
As of Linux 2.6, direct access to raw devices is possible us-
ing the O DIRECT parameter. Previously, a specific raw driver
needed to be used to avoid buffering accesses to a raw device.
In our experiments we used direct access to raw devices using
the deadline scheduler.

completion is notified after the page is added to the
file system cache.
A request to the disk scheduler logically consist of a
number of contiguous sectors and a flag that states
if the blocks should be read or written. These re-
quests are typically sorted in order to minimize disk
seeks. The scheduler will also merge smaller requests
into a larger one to exploit disk throughput and to
minimize the number of DMA transfers. Note that
Linux uses one disk scheduler per I/O device. As
a consequence, I/O requests submitted to different
disks are actually treated in parallel.
Linux 2.6 implements a deadline-based scheduler7.
When a request enters the disk scheduler it is as-
signed a deadline using a fixed time offset. Different
time offsets are used for reads (1 second) and writes
(5 seconds). This deadline describes a point in time
by which the request should be submitted to disk.
This is done to avoid starvation (requests that are
never submitted if the scheduler only focuses on min-
imizing seeks). The disk scheduler arranges the re-
quests it receives both (a) in two Red-Black tree (one
for read, the other for write) sorted by timestamp (or
deadline) – that sort requests on the first sector they
access –, and (b) in two lists (one for read, the other
for write) sorted by timestamp (or deadline) asso-
ciated to each request. Because the deadlines are
simply defined using time offset, those sorted lists
are simply FIFO queues. A dispatch queue is used
to store the requests scheduled for submission.
The device driver always accesses the dispatch queue
first. If there are requests on it they will be sent to
the I/O device. If there are no requests on the dis-
patch queue, then the driver will look to the deadline
list. If the earliest deadline is reached then the asso-
ciated requests are moved to the dispatch queue. If
no deadline is reached, then requests are moved to
the dispatch queue from the sector-sorted Red-Black
trees.

2.2 Performance Characteristics

We ran a set of experiments to find out (a) whether
Linux asynchronous I/O did a good job at utilizing
the capacity of the underlying I/O device in terms of
latency and throughput, and (b) what kind of over-
head they incurred in terms of CPU usage. The re-
sults of these experiments are presented in [11]8. In

7Linux 2.6 provides several disk schedulers. The default
scheduler is called anticipatory, as it waits for some prede-
fined I/O patterns, e.g., when a page is read the disk sched-
uler waits for a contiguous page before scheduling other re-
quests. Those patterns do not fit the needs of database sys-
tems. There is also a no-op disk scheduler that basically seri-
alizes the incoming requests and hands over the responsability
of scheduling to an underlying RAID or SAN controller.

8Note that we did not conduct scalability experiments: our
experiments are run with a single thread issuing requests on
a single file. IBM Linux Technology Center is conducting

1118

this section we focus on the throughput and latency
of random asynchronous requests.
We run our experiments using a simple tool that sub-
mits I/O requests, so that the number of outstanding
requests remains constant over the duration of each
experiment. Requests are issued against a 10 GB
file. Each request manipulates 16 KB (i.e., the size of
an InnoDB page). Sequential requests scan the file,
while random requests cover the whole file randomly.
We measure latency for each request and throughput
as the ratio of the total amount of data transferred
(10 GB) over the total time for all requests. We re-
mounted the file system (reiserfs) between runs to
enforce a cold cache. Our benchmarking tool can be
used by system administrators to gather key char-
acteristics of the Linux asynchronous I/O on their
own installation 9.
The I/O devices in our experiments are just a bunch
of disks (IBM Ultrastar 36LZX), directly connected
to a dual 1 GHz Pentium III server via a SCSI bus on
two different channels (Dual channel Adaptec AHA-
3960D controller). The disks are configured with
read ahead and write back enabled. The server has
1 GB of RAM. This simple hardware configuration
(no RAID, no SAN) allows us to reduce the num-
ber of parameters as we focus on the Linux kernel
services. Running hdparm, we measured a sustained
data rate of 34,5 MB/s which matches the disk speci-
fication [1]. This is the sequential throughput we can
hope for.

0

1

2

3

4

5

6

7

0 50 100 150 200

pending requests

Th
ro

ug
hp

ut
 (M

B
/s

)

direct read
buffered read
direct write
buffered write

Figure 1: Throughput of Random Requests
(buffered vs. direct I/O)

We expect that increasing the number of outstand-
ing requests submitted by the benchmarking tool
will improve throughput and increase latency. Fig-
ure 1 shows the throughput of random requests for
buffered and direct I/O as we increase the number
of outstanding requests. Throughput remains con-
stant at around 2,7 MB/sec for buffered reads and
at around 6,5 MB/sec for buffered writes (with a

scalability experiments. Preliminary results were presented
in [8, 6].

9http://www.distlab.dk/badger/

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

pending requests

re

qu
es

ts
 in

 c
on

tr
ol

le
r

direct read
buffered read
direct write
buffered write

Figure 2: Number of requests in SCSI controller as
a function of the number of pending requests

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

pending requests

Ti
m

e
(m

s)

direct read
buffered read
direct write
buffered write

Figure 3: Latency of random requests (buffered vs.
direct I/O)

single fsync10). The throughput of direct reads in-
creases quickly with the number of outstanding re-
quests: from 2 MB/sec for 1 outstanding request to
4,5 MB/sec for 64 outstanding requests. In compari-
son, the throughput of direct writes increases slowly:
it reaches 4,1 MB/sec for 200 outstanding requests.
As expected, the increased throughput is due to the
ordering of requests in the disk scheduler. The poor
performance of buffered read is due to a bug in the
file system that serializes the submission of I/O re-
quests.
Figure 2 traces the number of requests actually
placed in the SCSI controller as a function of the
number of outstanding requests (submitted by the
benchmarking tool). The graph shows that the SCSI
controller can handle up to 32 requests and no more.
The lazy writer does a good job at submitting write
requests (for buffered writes). For buffered reads
however, the file system serializes the submission of
requests to the SCSI controller. This explains the
advantage of direct reads in terms of throughput.
Indeed for direct I/O the number of requests in the
SCSI controller rapidly increases to the maximum as
the number of I/O requests submitted by the bench-
marking tool increases.
Figure 3 traces the average latency of random re-

10We dicuss the impact of fsync on performance in our tech-
nical report

1119

quests as a function of the number of outstanding
requests. The latency increases linearly with the
number of outstanding requests. As exected, the
latency of buffered writes is significantly lower than
the latency of buffered reads. The latency of direct
requests lies in between. For direct requests, average
latency becomes noticeably high (above 0,5 second)
when the number of outstanding requests reaches
128.
Because of space limitation, we do not show all the
graphs we obtained (see [11] for details). Here is a
summary of our results:

• Sequential requests: We could expect that in-
creasing the number of outstanding sequential
requests would lead the scheduler to merge re-
quests into large blocks thus increasing through-
put. However, we observe that throughput re-
mains constant for buffered and direct requests
(at around 30MB/sec for writes and 33 MB/sec
for reads). In general throughput is slightly
higher for sequential reads compared to sequen-
tial writes because the disk implements a form
of read ahead that benefits read requests [1].
The latency of sequential requests is lower com-
pared to the latency of random requests but
has a similar pattern. A latency of 0,5 seconds
is reached when the number of outstanding re-
quests is higher than 1024. Those results show
that the number of outstanding requests is irrel-
evant for sequential requests. The key parame-
ter is the rate at which requests are submitted.

• CPU utilization: We observed that CPU usage
is lower than 3 msec/MB for direct I/O requests
(this is comparable to the CPU overhead mea-
sured by Chung et al. for direct I/O on Win-
dows 2000 [12]).

• Raw I/O: Direct I/O and raw I/O exhibit sim-
ilar characteristics in terms of throughput and
latency. The only minor difference we observed
was a slightly higher CPU overhead for direct
writes compared to raw writes.

Our experiments focused on the capacity of Linux
asynchronous I/O to accumulate I/O requests and
schedule them efficiently. We can draw the following
conclusions:

1. Linux asynchronous I/O implementation is ef-
ficient. For sequential requests, the throughput
we obtain (33 MB/s) is close to the maximum
(34,5 MB/s). For random requests, we obtain a
throughput of up to 320 pages/s (5 MB/s). This
is much higher than the 200 pages/s we would
obtain with the documented average seek time
of 4,9 msec. The good performance for random
requests is due to the ordering of requests in the

disk scheduler that results in a reduction of the
seek distance. There is however a clear trade-
off between throughput and latency for random
requests. Issuing a large number of requests im-
proves throughput but hurts latency.

2. Linux databases should use direct I/O. Com-
pared to buffered I/O, direct I/O provide bet-
ter performance for random requests (provided
enough requests are submitted), better CPU
utilization, and equivalent scan performance.
Direct I/O provides equivalent performance
compared to a raw device while providing a file
system abstraction.

3. The rate of submission is key for sequential op-
erations. This impacts prefetching (sequential
reads) and log writing (sequential writes). Both
operations will be most efficient if they succeed
in issuing a sustained flow of request submis-
sions.

We have established the potential of Linux asyn-
chronous I/O. In the next Section, we focus on how
InnoDB (and Oracle 9.2) utilize the available I/O
bandwidth.

3 InnoDB Conservative I/O Policy

The InnoDB storage manager is comparable to Ora-
cle’s with its support for multi-read consistency, the
separation of redo and undo log, and the utiliza-
tion of tablespaces as abstraction for data files. In
this Section, we describe InnoDB’s I/O submission
policy and we evaluate how this policy impacts I/O
bandwidth utilization.

3.1 InnoDB Internals

Before we focus on how I/O are submitted, let us
review the organization of the files on which I/O
requests are submitted. InnoDB separates log and
data files (temporary files are organized as data
files). Log files are managed as a circular structure
to which redo log records are appended11. Data files
are organized in tablespaces. A tablespace consists
of one or several operating system files. Each ta-
blespace is structured in segments. Segments are
associated to tables. For example, a table with a
primary index is stored using a data segment and
an index segment. Each segment is organized in ex-
tents of 64 pages. Page size is fixed at 16KB.
InnoDB issues following the I/O requests:

• Sequential writes of log records. A write request
containing log records is submitted by a query
thread at commit time, or if the cache that

11As Oracle, InnoDB manages the circular log over several
files.

1120

stores log records in memory is 50% full. In
addition, the background server thread forces
log records to disk every second.

• Random writes of dirty pages. If there are dirty
pages in the buffer pool and if the I/O activ-
ity is low then preflusing takes places and Inn-
oDB issues asynchronous write requests to write
committed dirty pages to disk. Now, if there
is memory pressure InnoDB issues synchronous
write requests – possibly dirty pages are stolen
to free buffer space.

• Random reads for physical I/O. Random reads
are submitted by query threads if the page they
access is not in the database cache.

• Sequential reads during prefetching. The query
thread performs prefetching as follows. If it ac-
cesses pages with a sequential pattern then it
prefetches extents, one at a time. Otherwise,
if a query thread accesses more than a tunable
number of pages from a same extent, then the
whole extent is prefetched. Pages are allocated
in the database cache as soon as I/O requests
are submitted. A query thread might access a
page for which the I/O request has not yet com-
pleted. In that case the query thread waits on
a latch and is notified when the I/O completes.

InnoDB uses native asynchronous I/O on Windows,
while it uses simulated AI/O on Linux and other
Unix systems. Simulated I/O rely on dedicated
threads (I/O handler threads) that accumulate I/O
requests and process them while the query thread
is running. The I/O threads merge I/O requests on
consecutive pages and submit them in sequence us-
ing synchronous I/O.

We modified MySQL/InnoDB v4.1 to utilize Linux
asynchronous I/O. Support for Linux asynchronous
I/O is modeled on InnoDB’s support for Windows
asynchronous I/O. That means that asynchronous
I/O are submitted from the query threads directly.
The completion mechanism in Linux is a bit differ-
ent than on Windows. On Windows, a query thread
uses WaitForMultipleObjects to wait for the com-
pletion of the I/O requests it has issued. There is
no such function in Linux: get event returns with
a list of completed events – there is no possibility to
filter events within the kernel. We thus introduced
the eventprocessing thread that filters completion
events and signals any thread that is waiting for the
completion of a given I/O request. This support for
native asynchronous I/O on Linux has been trans-
ferred to InnoDB Oy.

3.2 Performance Characteristics

We conducted a set of experiments to establish how
efficiently MySQL/InnoDB v4.1 uses asynchronous
I/O. We used Oracle 9.2 as a comparison because
it has similar characteristics. We configured both
systems to use native direct asynchronous I/O.
Prefetching
Using asynchronous I/O, a scan of 800 MB takes
29 seconds as opposed to 33 seconds with simulated
asynchronous I/O. This slight improvement is due
to a more sustained flow of sequential requests: Us-
ing simulated asynchronous I/O, I/O threads only
submit a new requests when the current request has
completed. There is thus no sustained flow of se-
quential request. Using native asynchronous I/O, re-
quests are submitted in batches in order to prefetch
entire extents. But could InnoDB do even better?
The answer is yes.

0%

20%

40%

60%

80%

100%

MySQL
simulated AIO

MySQL
native AIO

Oracle

D
is

tr
ib

ut
io

n
in

 %

3 outs. req.
2 outs. req.
1 outs. req.
 0 outs. req.

Figure 4: Distribution of outstanding requests when
performing a scan

Figure 4 shows the distribution of outstanding
requests when scanning a 800 MB table with
MySQL/InnoDB using simulated asynchronous I/O,
MySQL/InnoDB using native asynchronous I/O,
and with Oracle 9.2. We measured the number of
outstanding requests by sampling the kernel data
structure managed by the disk scheduler. We cal-
ibrated the sampling rate using our benchmarking
tool from Section 2.
We saw in the previous section that the key to good
sequential read performance is to maintain a sus-
tained flow of requests, i.e., at least one outstanding
request. Oracle does a good job: There is at least
one outstanding request for 96% of the scan dura-
tion. InnoDB is much less efficient: There is no out-
standing request for 22% of the scan duration using
native asynchronous I/O (and for 42% of the scan
duration using simulated asynchronous I/O). This
is because InnoDB prefetches one extent at a time,
while Oracle prefetches the whole table (see [9] for a
complete analysis of InnoDB scan performance).
InnoDB chose to limit the number of outstanding
requests to guarantee that latency critical I/O re-
quests could be scheduled in a timely manner. Or-

1121

acle is more aggressive in its utlization of the I/O
bandwidth for prefetching purposes.

Physical I/O

In order to study how efficiently InnoDB (and Or-
acle) submits physical I/O, we submitted range
queries that select 1000 out of 3 millions tuples us-
ing a secondary index. We vary the number of client
threads submitting these queries. Again, we mea-
sure the distribution of outstanding requests in the
kernel by sampling the kernel data structure used by
the disk scheduler.

0

20

40

60

80

100

0 10 20 30 40

Number of Outstanding Requests

D
is

tr
ib

ut
io

n
in

 %

1 client
2 clients
4 clients
8 clients
16 clients

(a) MySQL/InnoDB

0

20

40

60

80

100

0 10 20 30 40

Number of Outstanding Requests

D
is

tr
ib

ut
io

n
in

 %

1 client
2 clients
4 clients
8 clients
16 clients

(b) Oracle

Figure 5: Distribution of outstanding requests when
performing range queries on MySQL/InnoDB and
Oracle

Figures 5(a) and 5(b) trace the distribution of out-
standing requests. They reveal similar behaviours.
For both systems, the number of outstanding re-
quests follows the number of query threads issuing
random reads. Each query thread traverses the sec-
ondary index and accesses one data page at a time.
There is thus one outstanding request per client
thread.

In the case of InnoDB, we observe a heavy tail dis-
tribution. This is due to the random read ahead

mechanism that prefetches extents on which random
requests are concentrating. There is thus up to 64
oustanding requests, i.e., the number of I/O requests
submitted to prefetch an entire extent.
We discussed in the Introduction the trade-off be-
tween throughput and latency of random requests.
Submitting one I/O request at a time is a pretty ex-
treme way to control this trade-off. It should be pos-
sible to achieve a better throughput by submitting
batches of I/O requests without sacrificing latency.

Database Writes

Figure 6 traces the number of outstanding requests
on the log file and on the data file (located on two
different disks) when performing an update of a table
(800 MB) larger than the database cache (600 MB)
using InnoDB. We ran this experiment with Oracle
and observed similar results.
Such a large update is interesting as it focuses on
InnoDB behaviour under memory pressure. As there
is constant read activity, there is no preflushing.
When the buffer cache is full with uncommitted dirty
pages, they need to be stolen to make room for free
buffers.

0

20

40

60

80

100

0 5 10 15 20

Number of Outstanding Requests

D
is

tri
bu

tio
n

in
 %
data file
log file

Figure 6: Distribution of Outstanding Requests
when performing an update larger than the database
buffer on InnoDB (Oracle displays a similar behav-
ior)

We observe a low activitiy to the log file: there are no
outstanding requests to the log file 98% of the time.
The distribution of outstanding requests to the data
file is characteristic of a mix of sequential reads (with
a peak around 40% for 2, 3 outstanding requests
and a long tail distribution due to prefetching) and
random writes in relatively small batches (with a
peak around 10% for 5 outstanding requests).
This is another illustration of InnoDB conservative
policy. InnoDB partitions read and write requests
in time. First, the storage manager only preflushes
if there is a low I/O activity. Second, under memory
pressure, InnoDB submits alternately read and write
requests. Writes are submitted to disk in batches
of limited size in order to reduce latency. In the
meantime, the query thread is blocked on free pages.
As soon as a page is freed a new page is read in. Note

1122

that there is no avoiding a mix of read and write
requests during such a large update. However, it
is not the database that should arbitrarily alternate
between the submission of reads and writes. The
database should subit requests and let the file system
organize the mix of read and writes as efficiently as
possible.

3.3 Discussion: Towards an Aggressive I/O
Policy

Our experiments show that a database system such
as MySQL/InnoDB (as well as Oracle) sacrifices
throughput to provision for latency. InnoDB sub-
mits few random requests in order not to block po-
tential critical requests. This conservative approach
is definitely sub-optimal.
As we showed in Section 2, the best performance is
achieved with a sustained rate of sequential requests
and with a reasonably high number of outstanding
random requests. The number of outstanding ran-
dom requests should be fixed by device to obtain a
reasonable latency/throughput trade-off. As a con-
sequence, we propose that InnoDB implements the
following mechanisms to improve its utilization of
the underlying I/O bandwidth:

1. Prefetching. The key requirement for sequential
I/O performance is that requests are submit-
ted at a sustained rate so that there is always
at least one outstanding request. Instead of
prefetching one extent at a time, InnoDB should
prefetch data so that there is always at least one
outstanding request. Whenever MySQL indi-
cates that a scan is to be performed, the query
thread could initially prefetch a couple of ex-
tents and then keep on prefetching extents as
soon as one extent has been accessed. Such
a design requires that the query thread keeps
track of the extent boundaries (as it does cur-
rently) and keeps track of the next extent to
be prefetched (this can be accessed from the
primary index used to structure each table in
InnoDB).

2. Index read ahead. Instead of accessing one page
at a time when traversing an index, InnoDB
could implement an index read ahead similar
to SQLServer’s. The idea is first to traverse
the index and collect the page ids to be ac-
cessed, and then to submit read requests for
these page ids in batches of tunable size (on our
hardware platform, our experiments from Sec-
tion 2 show that 16 outstanding request would
be the ideal size for these batches). If the num-
ber of concurrent threads increases then the size
of the batch should be reduced to maintain the
number of outstanding requests per I/O device

under a tunable maximum (the equivalent of
max async io in SQLServer [24]).

3. Database writes. InnoDB manages the trade-off
between latency and throughput by submitting
random writes in large batches when I/O activ-
ity is low and batches of limited size when there
is pressure on the database cache. Instead, Inn-
oDB should maintain a steady stream of out-
standing write requests to give the disk sched-
uler a chance to optimize throughput (again re-
specting the maximum number of outstanding
requests per device). When there is no pressure
on the database cache, writes should be per-
formed when there is no other request to sub-
mit. When there is pressure on the database
cache, writes should be agressively intertwined
with read requests.

These propositions define an aggressive I/O policy
where InnoDB submits I/O requests agressively to
utilize the I/O bandwidth. The throughput/tradeoff
latency is controlled at the storage manager level by
a tunable parameter that fixes the maximum num-
ber of outstanding requests per device. Now this
requires that the file system makes sure that out-
standing asynchronous requests do not get in the
way of the synchronous requests. In the next Sec-
tion, we show that introducing prioritized I/O is an
appropriate solution to this problem.

4 Linux Prioritized I/O

In this Section, we present the design and implemen-
tation of I/O priorities inside the Linux kernel. We
evaluate the performance of our implementation and
describe its impact on the InnoDB storage manager.

4.1 Design

We modified the Linux disk scheduler to account for
priorities as follows. Instead of assigning deadline
based on fixed time offsets (1 sec for reads and 5 sec
for writes), the scheduler assign to each I/O request
a deadline based on its priority: Requests submit-
ted with high priority will get deadlines that expire
within a short time interval and requests with low
priority will get deadlines that will expire within a
longer time interval.
Let us first define our notion of priority. We use
absolute deadlines, i.e., to each priority level is asso-
ciated a different deadline (0,25 sec for the highest
priority level and 12 sec for the lowest priority level).
We use 5 levels of priority.
Deadlines based on variable time offsets required
some changes to the deadline scheduler. Since time
offsets were fixed in the original design, the sched-
uler maintainted read and write requests using FIFO

1123

queues. The most natural extension is to define one
FIFO queue per priority level. This is what we im-
plemented 12. Whenever a deadline expires in one
of the priority queues, the corresponding request is
moved to the dispatch queue. If no deadline has ex-
pired, requests are moved from the sector-ordered
red-black trees to the dispatch queue as before.
Another key aspect of the disk scheduler concerns
the allocation of requests. Linux preallocates a num-
ber of requests available for normal disk I/O (special
commands for eg. disk flushes do not use the preallo-
cated requests). There is not much point in setting
different deadlines, if a task is able to get all the
preallocated requests for low priority requests. This
is why we also consider priorities when allocating
requests. Our solution consists in defining alloca-
tion groups associated to priority levels. A task that
submits a low priority requests gets preallocated re-
quests from the low priority allocation group and
does not interfere with high priority requests.

4.2 Implementation

Our implementation did not require to change the
file system interface. Indeed the data structure
passed as an argument to the io submit system
call(see below) already accounts for priorities (as re-
quired by the POSIX standard [16]). No modifi-
cation was needed for the event completion mech-
anism. Completion events are fetched through the
io getevents

long io_submit (aio_context_t ctx_id,
long nr, struct iocb **iocbpp);

struct iocb {
// Pointer returned on completion

void *data;
// Internal key

unsigned key;
// read, write etc.

short aio_lio_opcode;
// Request priority

short aio_reqprio;
// Filedescriptor

int aio_fildes;
// Buffer, buffer size and offset

void *buf;
unsigned long nbytes;
long long offset;

};

12An alternative would have been to maintain the requests
explicitely sorted in one data structure, i.e., either an insertion
sort on the deadline queues – which would be CPU intensive
– or insertions into a B+-tree storing the requests based on
their deadline – which introduce non negligible complexity
into the kernel.

The patch to the Linux kernel contains a new disk
scheduler (basically a modified version of the dead-
line scheduler). In addition, only a few changes were
needed to carry the priority information all the way
from the asyncronous state machine and down to the
disk scheduler. The patch is publically available13.

4.3 Performance Evaluation

0

1

2

3

4

10 20 30 40 50 60 70 80 90

Pct high prio writes

T
hr

ou
gh

pu
t (

M
ib

/s
ec

)

low priority high priority

(a) Throughput

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90

Pct high prio writes

L
at

en
cy

 (m
se

c)
low priority high priority

(b) Latency

Figure 7: Average throughput and latency for a
mix of 200 outstanding high and low priority re-
quests. Note that in our pure experiments (Sec-
tion 2), throughput for 200 requests was around 4
Mib/sec while average latency was around 750 msec.

Figure 7 traces throughput and latency for a mix
of high and low priority random requests. We main-
tain 200 outstanding requests throughout the exper-
iment and we vary the percentage of high priority
requests. The requests are random writes over a 10
Gb file. We measure average latency and through-
put for high and low priority requests. High priority
requests have a deadline of 3 sec and low priority
requests have a deadline of 9 sec (recall that the

13http://www.distlab.dk/badger/deadline prio.patch.gz

1124

native deadline deadline for writes is 5 sec). This
experiment is run on the server described in Section
2.2.

Figure 7(a) shows that the total throughput for low
and high priority requests is around 4 Mb/sec which
corresponds to the numbers from Figure 1. When
we increase the percentage of high priority requests,
their throughput increases sharply until they con-
stitute 30% of the mix. Thereafter throughput still
increases but slowly.

In terms of latency, we observed around 800 msec
in the pure experiment for 200 outstanding write
requests (see Figure 3). Figure 7(b) shows that the
latency is around 280 msec for high priority requests
when they constitute 10% of the mix. At the same
time the latency of low priority requests is around
1000 msec. When we increase the percentage of high
priority requests, their latency remains low (below
350 msec) until they constitute 30% of the mix. At
the same time the latency of low priority requests
increases up to 2000 msec. When the percentage of
high priority requests is higher than 30% the latency
of low priority requests remains constant while the
latency of high priority requests increases.

In the context of database I/O the most interesting
mix consists of low priority sequential I/O (prefetch-
ing or preflushing) and high priority random I/O
(physical reads). We ran an experiment where a
thread submits random reads while three threads
maintaining a sustained rate of sequential read re-
quests.

0

2

4

6

8

10

12

14

random sequential

La
te

nc
y

(m
se

c) same priority
different priorities

Figure 8: Latency of mixed sequential and random
requests.

Figure 8 shows the result when sequential and read
requests have the same priorities and when a high
priority (with a deadline of 1 sec) is associated to
random reads and a low priority (with a deadline of
3 sec) is associated to sequential reads (recall that
the native deadline associated to reads is 1 sec). As
expected, the graph shows that when sequential and
random read get the same level of priority, the la-
tency of random requests suffers: We observe a la-
tency of 13 msec for the random request. With a
high priority, the latency of random read is back

to 7 msec which is the latency we observed for one
outstanding random read requests in Figure 3. In-
terestingly the average latency of sequential requests
does not suffer when it is associated a low priority.
This is because sector sorting is still active. The
performance of sequential requests would suffer sig-
nificantly if their deadline were to expire. This is
obviously not the case in our experiment.
These experiments show that our implementation
lives up to the promises of prioritized I/O. The prior-
itized disk scheduler achieves a low latency for high
priority requests while maintaining an overall high
throughput. Our experiments show that we achieve
these good performances if high priority requests
constitute up to 30% of the submitted requests.

4.4 Impact on InnoDB

The re-implementation of InnoDB to incorporate an
aggressive I/O policy is out of the scope of this pa-
per. In order to validate our approach, we focused
on InnoDB preflushing policy.
We modified InnoDB in order to associate priorities
to the I/O requests that it submits. We associate a
low priority to asynchronous read requests (prefetch-
ing) and a high priority to synchronous requests
(physical reads). We modified the preflushing mech-
anism as follows. Once per second a background
thread checks the amount of repleacable pages in
the database buffer. If less than 50% of all pages are
free then (up to) 64 pages are flushed with a low pri-
ority. We increase the number of pages flushed with
low priority to 5 ∗ 64 if the percentage of free pages
falls to 40%. and to 10 ∗ 64 if the percentage of free
pages falls below 40%. Whenever the percentage of
free pages reaches 10%, we flush 100 pages with high
priority and 100 pages with low priority.
This preflushing mechanism submits database writes
more and more aggressively as the amount of free
pages diminishes. Interestingly, the pririty associ-
ated to write requests evolves adaptively depending
on memory pressure. This is possible because prior-
ities are associated to individual I/O requests (and
not to processes or transactions).
When running the large update from Section 3, we
observe a 5% improvement in terms of response time.
Figure 9 shows the distribution of outstanding re-
quests for the conservative approach (from Section
3) and for the aggressive approach. The aggressive
policy reduces the amount of idle time for the disk
controller and increases the likelihood of 2 or 3 out-
standing requests.
This experiment shows the potential of an aggressive
policy. However, our implementation still submits
I/O requests in batches (write requests are submit-
ted every second). What is needed to significantly
improve performance is to modify the InnoDB stor-

1125

0

20

40

60

80

100

0 5 10 15 20

Number of Outstanding Requests

D
is

tri
bu

tio
n

in
 %

Conservative
Aggressive

Figure 9: Distribution of outstanding requests when
performing an update larger than the database
buffer with conservative and aggressive policies

age manager so that it submits a constant flow of
I/O and thus fully utilizes the underlying I/O band-
width. This is a topic for future work.

5 Related Work

Prioritized I/O, are commonplace on mainframes.
For example, IBM supports I/O request priorities in
the context of its Enteprise Storage Server [19]. A
priority is associated to each I/O request. Within
the fibre channel adapter, requests are dispatched
into different queues depending on their level of pri-
ority. The scheduled requests are taken from the
highest priority non empty queue. Once the active
queue is empty, requests from lower priorities are
promoted one priority level and the new highest pri-
ority non empty queue becomes active. This queue
promotion process guarantees that low priority re-
quests do not starve. Our case for prioritized I/O
in Linux follows the downsizing trend from main-
frames to commodity servers analyzed by Gray and
Nyberg [14].
Even if the POSIX standard defines priorities, we
do not know of any UNIX implementation of pri-
oritized disk I/O. Jens Axboe posted a version of
the Linux anticipatory disk scheduler that supports
priorities [5]. The priority level of I/O requests is
fixed by the priority of the task that submits them.
This does not correspond to the database needs (in
particular the preflushing needs expressed in Section
4).
Recently, McWerther et al. [18] argued that pri-
ority mechanisms were needed inside the database
systems to efficiently support OLTP and transac-
tional web applications. Their study show that Post-
gresSQL with its multi-read consistency model (sim-
ilar to Oracle and InnoDB) exhibits an I/O bottle-
neck when running the TPC-C and TPC-W bench-
marks. The I/O priorities we argue for are a natural
complement to their CPU and lock scheduling poli-
cies.
There are few studies of Linux asynchronous I/O.

The most complete description so far was led at IBM
Linux Center [8, 7].
More generally, I/O have not received a lot of at-
tention in the database research community lately.
Most results are published in measurements (CMG,
SIGMETRICS) or high performance computing con-
ferences (HPCA), in white papers (e.g., [25, 17, 2],
or on Jim Gray’s home page (e.g., [12, 14]).
We chose to consider a simple hardware config-
uration involving a server connected to a couple
of disks because our point concerned the way the
database utilize the underlying kernel services. Now,
it will be interesting to study the behaviour of Linux
databases on hardware set-up including large SMP,
and clusters as well as storage area networks (SAN).
Arpaci-Dusseau et al. [3] studied the impact of dif-
ferent architectures (server, SMP and cluster) on
the performance of streaming I/O. They concluded
that none of the architectures were well-balanced
and that CPU was becoming a bottleneck before
any other ressources as they increased the amount
of I/O. Their data processing benchmarks (scan and
insert) issued I/O requests as efficiently as possible.
We showed in Section 3 that this was not the case for
the asynchronous I/O submitted by InnoDB (and to
a lesser extent Oracle).
SAN raise a set of interesting challenges as they
encapsulate a significant portion of I/O processing
(including cache management and request schedul-
ing) [4]. Our goal with this paper was to study
the collaboration between a database server and
the kernel disk scheduler. When using a SAN, the
scheduling of I/O requests does not take place at
the OS level but within the SAN controller. Improv-
ing the collaboration between a database server and
the SAN controller raises great challenges. Schindler
et al. [21] already proposed to communicate perfor-
mance characteristics from the storage device (e.g.,
preferred access patterns) to the storage manager so
that it can take take informed decisions when sub-
mitting I/O requests. This area should definitely be
investigated further.

6 Conclusion

Our goal was to find out whether MySQL/InnoDB
on top of Linux took best advantage of the available
I/O bandwith. We showed that the conservative
I/O submission policy implemented by InnoDB (and
Oracle) constitutes a barrier to I/O performance.
In order to remove that barrier, the database stor-
age manager needs to rely on the operating system’s
ability to process large amounts of asynchronous I/O
while guaranteeing the latency of synchronous I/O.
We designed and implemented priorities in the Linux
kernel for that purpose. We showed that our imple-
mentation is flexible and efficient, and that it is now

1126

possible to define a more aggressive I/O submission
policy for InnoDB and for Linux databases in gen-
eral.
The support for native Linux asynchronous I/O we
implemented in InnoDB has been transferred to Inn-
oDB Oy. The patch of the Linux kernel is publically
available, making it possible for the data manage-
ment research community to experiment with vari-
ous aggressive I/O submission policies. This is hope-
fully a first step towards a more effective collabora-
tion between this research community, the database
industry and the Linux community.
Improving the collaboration between a database sys-
tem and the underlying storage system presents
plenty of interesting challenges, e.g., how to lever-
age the storage cache hierarchy? How to control the
throughput-latency trade-off when submitting I/O
requests to a SAN? These are topics for future re-
search.

References
[1] IBM Ultrastar 36LZX. Documentation.

http://www.hgst.com/tech/techlib.nsf/products/Ultrastar 36LZX.

[2] Steve Adams. The Mysteries of DBWR Tuning, 1997.
http://www.ixora.com.au/tips/mystery.doc.

[3] Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau,
David E. Culler, Joseph M. Hellerstein, and Dave Patterson.
The Architectural Costs of Streaming I/O: A Comparison of
Workstations, Clusters, and SMPs. In Symposium on High-
Performance Computer Architecture (HPCA ’98), Febru-
ary 1998.

[4] Mark Cohen Austrowiek and Pierluigi Grassi. UNIX IO Per-
formance Measurement Methodologies Applied to Old and
New Storage Technologies. In EuroCMG, 2002.

[5] Jens Axboe. Cfq + IO Priorities.
http://www.kerneltrap.org/comment/reply/1596.

[6] Suparna Bhattacharya. Linux Asynchronous IO.
http://www.kernel.org/pub/linux/kernel/people/suparna/aio/.

[7] Suparna Bhattacharya. Personal Communication.

[8] Suparna Bhattacharya, Steven Pratt, Badari Pulavarty, and
Janet Morgan. Asynchronous I/O support in Linux 2.5. In
Proceedings of the Ottawa Linux Symposium, 2003.

[9] Philippe Bonnet Bjarke Buur Mortensen. Beyond Response
Time: Analyzing MySQL Performance. Submitted to publi-
cation.

[10] IBM Linux Technology Center. Home Page.
http://www.ibm.com/linux/tlc/.

[11] Do Linux Asynchronous I/O Really Matter? DIKU Techni-
cal Report 04/03.

[12] Leonard Chung, Jim Gray, Bruce Worthington, and Robert
Horst. Windows 2000 Disk IO Performance. Technical Re-
port MS-TR-2000-55, Microsoft Research, 2000.

[13] Garth Gibson, Jeffrey Scott Vitter, and John Wilkes. Re-
port of the Working Group on Storage I/O for Large-Scale
Computing. ACM Computing Surveys, December 1996.

[14] Jim Gray and Chris Nyberg. Desktop batch processing. In
Proceedings of COMPCON 94, 1994.

[15] Oracle’s Linux Project Development Group. Home Page.
http://oss.oracle.com/.

[16] The Open Group. Base Specifications Issue 6, 2003.
http://www.opengroup.org/onlinepubs/007904975/.

[17] Oracle Performance Tuning Tips: Use asynchronous I/O.
http://www.ixora.com.au/tips/use asynchronous io.htm.

[18] David McWherter, Bianca Schroeder, Anastassia Ailamaki,
and Mor Harchol-Balter. Priority Mechanisms for OLTP and
Transactional Web Applications. In ICDE 2004.

[19] A.S. Meritt, J.A. Staubi, K.M. Trowell, G. Whistance, and
H.M. Yudenfriend. z/OS support for the IBM TotalStorage
Enterprise Storage Server. IBM Systems Journal, July 2003.

[20] Oracle Technical White Paper. Oracle 9iR2 on Linux: Per-
formance, Reliability and Enhancements on Red Hat Linux
Advanced Server 2.1, 2002.

[21] Jiri Schindler, Anastassia Ailamaki, and Gregory Ganger.
Matching Database Access Patterns to Storage Characteris-
tics. In VLDB 2003 PhD Workshop, 2003.

[22] Dennis Shasha and Philippe Bonnet. Database Tuning:
Principles, Experiments and Troubleshooting Techniques.
Morgan Kaufmann, 2002.

[23] Abraham Silberschatz, Greg Gagne, and Peter Baer Galvin.
Operating System Concepts. Wiley Text Books, 6th edition,
2002.

[24] Ron Soukup and Kalen Delaney. Inside Microsoft SQL
Server 7.0. Microsoft Press, 1999.

[25] Nitin Vengurlekar. Oracle Disk Manager. White
paper, Oracle Solutions Support Center, 2002.
http://otn.oracle.com/deploy/availability/pdf/nitin ODM.pdf.

1127

