Recovery Principles of MySQL Cluster 5.1

Mikael Ronstrom

Jonas Oreland

MySQL AB
Bangardsgatan 8
753 20 Uppsala
Sweden
{mikael, jonas}@mysql.com

Abstract

MySQL Cluster is a parallel main memory
database. It is using the normal MySQL software
with a new storage engine NDB Cluster. MySQL
Cluster 5.1 has been adapted to also handle fields
on disk. In this work a number of recovery
principles of MySQL Cluster had to be adapted
to handle very large data sizes. The article
presents an efficient algorithm for synchronizing
a starting node with very large data sets. It
provides reasons for the unorthodox choice of a
no-steal algorithm in the buffer manager. It also
presents the algorithm to change the data.

1. Introduction

MySQL Cluster is a parallel main-memory DBMS. In
MySQL Cluster 5.1 fields on disk are introduced. This
introduces a number of challenges on the recovery
architecture.

1.1 Description of MySQL Cluster

MySQL Cluster uses the normal MySQL Server
technology paired with a new storage engine NDB
Cluster. Data within MySQL Cluster is synchronously
replicated among the data nodes in the cluster. MySQL
Cluster uses the shared-nothing architecture, data nodes in
the cluster handle their own storage and the only means of
communication between the nodes is through messages.
The main reason for choosing a shared-nothing
architecture is to enable a very fast fail-over at node
failures. It also doesn’t rely on an advanced storage

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment

Proceedings of the 31° VLDB Conference,

Trondheim, Norway, 2005

system as most shared-disk systems do. This means that
normal cluster hardware can be used also for building
large database clusters.

MySQL Cluster Interfaces

‘ Application ‘ ‘ Application | | Applicati ‘ ‘ Applicati ‘
Y e Y
MySQL o MysSQL
Server application Server

NDB API

\

NDB API

NDB API

/A

NDE Kernel
(Data nodes)

Management
Client
Management
API

Internally there are a number of protocols designed, to
be able to handle single failures most of these protocols
have an extra protocol to handle failures of the master and
to be able to handle multiple failures there is also an extra
protocol to handle failure of the new master taking over
for the old master.

Applications can use the normal MySQL interface
from PHP, Perl, Java, C++, C and so forth, the only
difference is that the tables are created with
ENGINE=NDBCLUSTER.

In version 4.1 and 5.0 of MySQL Cluster all data in
MySQL Cluster resides in main memory distributed over
the data nodes in the cluster.

1.2 Challenges for Node Restart

Main memory is fairly limited in size. A starting node is
synchronised by copying the entire data set to it. Even a
large node with 10 Gbyte of data can in this manner be
synchronised in 10-20 minutes. Using fields on disk the
size of the data set in a data node in MySQL Cluster can
easily be 1 TB. The current synchronisation method will
thus take one day. This is obviously too much. A solution

1108

is needed that restores an old copy in the starting node and
only synchronises the changes since the node failure.

1.3 Buffer Manager

A main memory database has no buffer manager at all
since data resides in memory. Since the size of a main
memory database is small, it is possible to write it to disk
in its entirety when performing a checkpoint. This enables
a lot of optimisation on the logging.

As in any modern DBMS, the no-force algorithm [1],
[6] is used. This means that at commit it isn’t necessary to
write pages to disk.

A traditional DBMS also uses the steal algorithm [1],
[6], with in-place updates. Whenever a page needs to be
written to disk, it is written and the proper log records are
produced to ensure that any uncommitted data on the page
can be undone.

In our first step towards disk data in MySQL Cluster it
was natural to keep indexes in main memory and add the
option that certain fields are stored on disk. Thus each
record has a main memory part and a disk part.

In a traditional DBMS every update will be written to
disk at least three times with each write containing a
certain amount of overhead. The first write goes to the
REDO log to ensure the committed data is not lost, the
second write goes to the UNDO log to ensure we can
restore a certain point in time from where the REDO log
can be applied (many variations on this theme exists in
DBMS’s). The third write is to update the page where
data resides whenever it is flushed from the page cache
(this write to disk can disappear since data is cached if
several writes of the same data occurs before the write
goes to disk).

Our design goal was to find an algorithm that can
perform updates with only two disk writes. MySQL
Cluster is designed for modern cluster computers with
large main memories. Thus the no-steal algorithm is of
great interest. With the no-steal algorithm there is no
uncommitted data written to disk and thus there is no need
to undo changes in recovery. Thus the write to the UNDO
log can be avoided. The no-steal has the disadvantage of
using more memory space for the buffer manager. There
are disadvantages particularly for large transactions. Our
design is optimised for the transactions that are fairly
limited in size although still striving for correctness for a
large transaction.

1.4 Related Work

A rather old article from Computer Corporations of
America [7] discusses much of the basics of recovery in
shared-nothing architectures. In [8] Hvasshovd explain
some new ideas on how to perform recovery of a
distributed DBMS. In [2] Ronstrom explains an
alternative approach to recovery of a distributed DBMS
when it is known that all data resides in main memory.

This work is an extension of that work where some parts
of the data are moved to disk.

2. Recovery Principles in MySQL Cluster

To enable fast restart of the cluster, MySQL Cluster has a
requirement that REDO log records can be used from
other nodes in the cluster. This means log records cannot
be connected to pages in the local node. The log records
must be operational log records, meaning they specify
only the operation and what was changed (e.g. operation:
UPDATE, action: set A=2). As all DBMS’s with logging
it is necessary to regularly checkpoint the data pages to
disk. Due to the requirement on operational log record
MySQL Cluster checkpoints (called Local Checkpoint,
LCP) must restore a database where all references
between pages must be correct.

MySQL Cluster was designed with telecom
applications in focus. These applications have tough
requirements on response times, also on updates. At the
same time they have very high requirements on reliability
and availability. To meet those requirements the commit
protocol was divided in two phases. The first phase
commits the data in main memory of all nodes where data
resides. The second phase collects a number of
transactions together and ensures that all of them are
synched to disk and restorable in case of a complete
cluster crash. The second phase is called Global
Checkpoint, GCP.

3. Node Restart Algorithm

The original algorithm in MySQL Cluster does a
complete resynch and copies all of the data from the live
node to the starting node. During the resynch all updates
are performed on all copies to ensure that data is up-to-
date when copy process is completed. For data that
resides on disk it is not a feasible solution to copy all data.

The first idea that pops up is to restore the starting
node from its own disk to the point where it crashed. Then
the problem is how to synchronise the live node and the
starting node. This synchronisation problem is the main
issue discussed in this section.

3.1 Initial idea

The original design idea was based on an analysis of the
possible differences between the live node and the starting
node. This analysis goes through UPDATE, DELETE and
INSERT respectively.

UPDATE provides no other problem than a
TIMESTAMP problem to ensure that it is possible to
avoid synchronising those records that haven’t changed
(normally the majority of the records).

INSERT means that the live node consists of new
records not existing in the starting node. This is also easy
since they have a new TIMESTAMP and can be handled
by a scan of the live node.

1109

DELETE means that the starting node can contain
records no longer present in the live node. This is the
major difficulty of the synchronisation problem. This
cannot be solved through a scan of the live node. It can be
solved through a scan of the starting node. This requires
sending a verification of each record in the starting node
to verify its presence in the live node. This is very time
consuming and almost as bad as restoring from scratch.

The next idea that pops up is to introduce a DELETE
log in the live nodes. Thus before synchronising the
nodes, the DELETE log is executed from the GCP that the
starting node has restored. After this execution the starting
node contains no records not also present in the live node
and thus a scan of the live node with synch of
updated/inserted records will be enough to bring the
starting node in synch with the live node.

This method works but has the unsatisfactory side
effect that a new DELETE log is introduced. This has
negative effects both on performance and on design
complexity. Thus new solutions were looked for.

3.2 iSCSI idea

A new idea of how to solve the resynch problem came
when considering the same problem for another
application.

The problem here is a cluster of computers
implementing an iSCSI server. iSCSI is an IP protocol for
accessing disk subsystems. It implements a SCSI protcol
over TCP/IP [4].

SCSI is much simpler than SQL. The only methods
needed are READ, WRITE and defining and undefining
logical disks. We avoid all other details of the SCSI
protocol here.

SCSI is a block-based protocol, so it is below the level
of files. Thus in our model it consists of records of fixed
size equal to the block size and a table can be mapped to a
logical disk. On these blocks on the logical/physical disks
it is possible implement databases, file systems and so
forth.

Now a resynch here is much easier. The first step is to
get hold of the logical disks present in the live node. The
number of such logical disks is limited and is thus not a
very time-consuming activity. So for this part one can use
the full copy as in the current algorithm.

The second step is to resynch the blocks. Since only
WRITE’s change data and the WRITE is similar to an
UPDATE it is enough to check the blocks on a timestamp
to perform the synchronisation. Thus a scan of all blocks
in the live node and synch of those updated is enough to
bring the starting node in synch with the live node.

3.3 Final Algorithm

The same idea can be mapped also to an SQL database.
Instead of defining primary keys as the record identifier
we use ROWID’s as record identifer. The ROWID
consists of a table identity, partition identity, page identity

and a page index. In many cases the table identity and
partition identity is known and is not needed.
Mapping the SCSI algorithm to an SQL database thus
becomes:
1) Synchronise one partition at a time (done already
in current MySQL Cluster version)
2) Specify number of pages in the partition in the
live node
3) Delete any tuples in the starting node that is
residing in pages no longer present in the live
node.
4) For each possible ROWID in the live node check
its timestamp and synchronise with the starting
node if needed.

After these steps the starting node is synchronised
with the live node. Step 4) requires some further small
tidbits to work and to be efficient. At first it is necessary
to resynch ranges of ROWID’s in cases where a range of
ROWID'’s are not used anymore (as in the case of a page
no longer used in the page range between start and end
page identity). Second it is necessary to keep a timestamp
also on ROWID’s deleted. When this ROWID is reused it
will obviously also update its TIMESTAMP but it is
important also that the TIMESTAMP exists also before
the ROWID is reused. If the ROWID is reused for an
internal record part, the old timestamp must be retained.

The following logic will be used in the resynch
process. This logic executes on the live node that is to
resynch its state with the starting node. Before starting the
resynch logic, the live node need to know the
TIMESTAMP that survived the crash in the starting node.
The copy process will proceed page by page until all
pages have been processed.

For each page one must keep track of the maximum
ROWID used in the page. This number must never
decrease unless all copies decrease them in a
synchronised manner. For the presentation we assume it
never decrease.

1) If there are no ROWID entries that have a newer
TIMESTAMP, the page hasn’t changed and no
synchronisation is needed. In this case also the maximum
ROWID of this page on the starting node must be the
same since row entries have changed.

2) If most rows are up-to-date then only the records
that have changed are sent to the starting node. In this
case full records are sent through INSERT row entry
unless the row entry indicated that the row is deleted in
which case a DELETE row_id is sent to the starting node.

3) In some cases all entries in a page have been
removed since the starting node crashed. In this case it is
possible to send a DELETE RANGE start row_id
end row_id. It is not possible to use ranges that span over
pages since it is not possible for the starting node to know
what the maximum ROWID in a page is. This could have
changed since last. However it is possible send multiple
ranges in one request.

1110

4) Many times new pages are allocated in chunks. In
this case there might be a set of empty pages in the live
node that doesn’t exist in the starting node. These pages
can be synchronised by sending a specific EMPTY PAGE
message with the page identifier.

New pages in the live node filled with new records
will fit in case 2) since most or all entries are changed
since the starting node crashed. In cases where massive
deletes have occurred a combination of case 2) and 3) is
used and finally massive updates.

3.4 Scan Order in Live Node

One performance problem to consider for this new
algorithm is how to scan in the live node. There are two
methods. The first is the simple method to simply scan in
ROWID order. ROWID’s are referring to main memory
pages so the scan is performed as random access from the
disk data’s point of view. Thus each record that needs to
be copied over follows its reference to the disk data part
and reads that part to send it.

In situations where most data has been updated since
the starting node crashed it is more optimal to scan in disk
order instead of in ROWID order. In this case the pages
on disk are scanned and for each record found on disk the
main memory part is checked to see whether it needs to be
sent or not. After scanning the disk it is also necessary to
make another scan in ROWID order to find deleted
records and new pages with still unused row entries. For
this algorithm to work there has to be a bit set in the
record header that indicates whether a record has been
sent already or not in the scan in disk data order.

3.5 Recovery during Node Recovery

During the recovery process the starting node has to be
careful so as not to destroy the capability to restart node
recovery if the recovery fails. For this to be possible it is
necessary to perform UNDO logging but REDO logging
is not needed. After completing the node recovery process
REDO logging is restarted and the node participates in an
LCP to ensure that the node can be recovered to the new
point in time.

3.6 ROWID uniqueness

The use of ROWID as record identifier introduces a new
requirement to ensure that all replicas use the same
ROWID. This is accomplished by ensuring that the
primary replica always picks the ROWID and since
MySQL Cluster updates the replica one at a time this is
simple. The only problem is in certain situations when the
primary replica is changed. Then it is necessary to be
careful to avoid using the same ROWID for two different
records.

3.7 Analysis of Algorithm

A traditional algorithm to perform synchronisation is by
replaying the REDO log of the live node on the starting
node. If the crash was short and not many updates have
occurred then this algorithm is very fast.

The problem of this algorithm is

- Difficult to synchronise after a longer period of
unavailability of starting node.

- Very difficult to avoid a write lock of system at
the end when log replay has been performed and
need to go over in normal operational mode.
Problem is similar to jumping on a train that
moves, it is easy to come up alongside of the train
but very difficult to embark the train while it is
moving.

- If many updates are made to the same record we
have to reapply all updates, not just the last since
the log has no an index of its history and future.

So our analysis shows that the new algorithm has a
very stable performance independent of the time between
the crash and the recovery. It doesn’t require any massive
locks that decrease concurrency of the system.

The scan of only main-memory parts should be more
efficient as long as no more than 5% of the disk data has
changed since the crash. In the case where more data has
changed then a scan of the disk data is superior compared
to the random access caused by scanning the main
memory parts.

4. Record Layout

In the figure below the layout of the main memory part of
a record with variable sized fields are shown. The ideas
on the record layout contains no new ideas, most of the
possible structures are shown in [5]. It is shown here to
improve the understanding of the rest of the paper.

Structure of Variable Sized Record

2B 2B [4B] [4B] [4B] [8B]
Tup [l CheckNULLIGEH Disk | "¢ Ml Var
Vers. Sum | Bits | Id | Ref ttr. X
Part
Attribute
Id

Offset

Attribute
Descriptor

Variable Attnibute
Length Array

The checksum is a field used to store a checksum over
the record in main memory. It is a field that is prepared to
be an optional field that currently is mandatory. The

1111

NULL bits contain NULL bits of all fields in the main
memory part (if there are any NULLable fields). The GCP
id is the TIMESTAMP used by the node recovery
algorithm. It is not needed for main memory tables that
can handle copying all records in the table at node restart.
The disk reference is a page identity and page index in the
disk part. Most parts of the record header will be
optimised for storage at some point in time.

The disk part has more or less the same fields although
the tuple version and disk reference is not useful. There is
instead a reference back to the main memory part.

Structure of Var Sized

Disk Record
4B [4B] [4B] 4B 4B
Fixed
CheckNULLGCP MM Size Var
Sum | Bits | Id | Ref ttr. x
Part
Attribute ———
d
Attribute Offset

Descriptor

Variable Attnibute
Length Array

In case a completely minimal main memory part is
desired, it is possible to decrease the header part to only
contain the GCP identity plus a minimal header. Without
this TIMESTAMP the node restart will be not be fast
enough as already shown. Tuple Version can be removed
if it is known that no indexes are used on the table. The
bits header can be very small and indicate what parts that
are present. For fixed size main memory part and fixed
size disk part it is possible to use a special mapping from
ROWID to disk ROWID to remove the need of the disk
reference. NULL bits aren’t needed if there are no
NULLable fields.

To enable retaining the GCP identity (TIMESTAMP)
for deleted records the GCP id is kept in the directory of
the variable sized pages where a reference to the record
and its length is previously stored.

5. Checkpoint Algorithm for Main Memory

As explained previously MySQL Cluster uses a REDO
log to replay transactions not yet written to disk. To
ensure that the REDO log is not of infinite size LCP’s are
performed. When going through these mechanisms for
disk fields we also optimised the behaviour of main
memory fields. Rather than saving the memory pages in
the LCP we opted for saving the records instead. This is
an acceptable method since all indexes are rebuilt at
recovery.

The algorithm for checkpoints of main memory data is
thus very simple. A full table scan is performed reading
the latest committed version of each record. The same

reasoning as shown in [3] proves that applying a REDO
log onto this checkpoint will restore a consistent version
of the table as long as the REDO log is applied from a
point that is certain to be before the time of the start of the
LCP.

Now this simple algorithm is enough for pure main
memory tables. For tables with mixed main memory and
disk content an extra requirement exist. The disk data is
checkpointed using a traditional page approach and it is
restored to the point where the checkpoint was started. It
is important that the LCP of main memory data is restored
to the same point in time. The reason for this requirement
is that there is a reference from the main memory record
to the disk part. The recovery system must ensure that this
reference is valid also after recovery.

To accomplish this a simple idea is used. It is a
traditional copy-on-write algorithm using a single bit in
the record header. The idea is to get a consistent
checkpoint from the point in time of the LCP start. If
anyone tries to modify the record before it has been
scanned, the record is copied to storage ensuring that the
record is saved in the state at the time of the LCP start.
This is a popular method to achieve a consistent state.
One bit per record is needed to keep track of whether the
record have been scanned yet. Whenever a commit of an
UPDATE/DELETE is performed the following check
must be made:

If the bit is set to 0 and an LCP is ongoing and this
record is not yet written, write the record to the LCP
storage at commit of the update and set the bit to 1. If the
bit is already set to 1, no action is performed.

At Commit of an Insert the bit is set to 1 if an LCP is
ongoing and the record has not been scanned yet.

When the LCP scan passes a record it checks the bit. If
it is set to 1 it ignores the record and sets the bit to 0. If
the bit is set to O it reads the record as part of the scan.

The algorithm requires that the state of the LCP scan
has a defined point and that it is possible to check if a
record has been scanned yet. In this implementation it is
accomplished through scan in order of the ROWID.

As with all implementations that write to storage
through a buffer, there can be problems when the buffer is
overrun and this is yet another such possibility. The same
problem previously occurred also with writing of the
UNDO log. To solve this the commit is delayed until
there is buffer space available.

To clarify the concept three examples are used. The
following events happen (in time-order) for record r1.

Example 1: Update rl1, Start LCP, LCP scan rl,
Update r1, LCP Completed.

Example 2: Start LCP, Delete r1, LCP scan rl, Insert
rl, LCP completed.

Example 3: Start LCP, Insert r1, LCP scan rl, Update
rl, LCP Completed.

It is enough to exemplify using one record since each
record is handled independent of all other records.

1112

In the first example the first update will find the bit set
to 0 since this is always the case when no LCP is ongoing,
and since no LCP is ongoing no action is performed.
When the LCP scan reaches the record nothing has
occurred and so the bit is still 0, thus the record is read as
part of the LCP and the bit is not changed. Finally when
the last update is done the bit is set to 0 and LCP is
ongoing but the record is already written. This is
discovered by keeping track of whether LCP ROWID >
rl ROWID.

In the second example the record is deleted after
starting the LCP. In this case the record must be written to
the LCP before deleting it. It is also required to set the bit
in the record header even though the record is deleted.
The LCP scan will detect either that the record is deleted
or that it changed and was processed previously, in both
cases no action is needed by the LCP scan. Later the
record is inserted again (it might be a different record but
using the same ROWID) and since the LCP scan has
already passed the record the bit is set to 0 when inserting
the record.

Finally in the third example we insert a record before
the record has been scanned. In this case it is necessary to
set the bit to 1 when inserting the record but not writing it
to the LCP since the record was not present at start of
LCP. When the record is reached by the LCP scan it will
find the bit set and will reset it with no record written to
the LCP. When update is performed after LCP scan it will
detect the bit set to 0 and will detect that LCP scan
already passed and will ignore both writing the LCP and
the bit.

6. Index Recovery

In the original design of MySQL Cluster the hash index
was restored at recovery of the cluster. This design has
been changed so that the hash index is rebuilt at recovery.
With the new algorithm as described this will happen
automatically during restore of a LCP. The LCP is
restored through insertion of all records.

Ordered indexes are restored at recovery. They are not
built automatically while inserting the data. To enable
best possible performance of the index rebuild this is
performed one index at a time. The most costly part of
index rebuild is cache misses while inserting into the tree.
This is minimised by building one index at a time.

At the moment all indexes in MySQL Cluster are main
memory so rebuilding indexes at recovery is ok for the
most part. If it is deemed to be too much work, it is very
straightforward to apply normal recovery techniques of it.
Especially for the unique hash indexes, as they are normal
tables and no special handling at all is needed for
recovery of those.

7. Checkpoint Algorithm for Disk Data

Fields on disk are stored on disk pages in a traditional
manner using a page cache. Allocation of pages to a part
of a table is done in extents and each part of the table
grabs an extent from a tablespace defined at table
creation.

Recovery of disk data is relying on the REDO log in
the same manner as the main memory data. The disk data
must recover its data from the point in time at the start of
the LCP. In particular all references between pages in disk
part and between main memory part and disk part must be
exactly correct as they were at the time of the LCP start.

In order to produce a checkpoint that recovers exactly
what was present in the disk part at LCP start we are
using the same method as is used currently in MySQL
Cluster. We checkpoint all pages (for disk data only
changed pages) after LCP start and UNDO log records are
generated thereafter to enable us to restore the data as it
was at LCP start. For disk data UNDO logging must
proceed even after completion of LCP since all normal
page writes are changing the pages on disk. The UNDO
log records are physiological log records [5] meaning that
they specify the logical changes to a page (thus
reorganisation of the page need not be UNDO logged).

Before writing a page from the page cache to disk it is
necessary to conform to the WAL (Write Ahead Log)
principle [5] meaning that all UNDO log records must be
forced to disk before the write can proceed.

Now an observation is that it isn’t really necessary to
UNDO log all data changes. Whatever data changes was
applied after LCP start will also be present in the REDO
log and when executing the REDO log the contents of the
record will never be checked, the records are simply
overwritten with their new content. Thus UNDO log
records need only report changes of structure (insert new
record parts, delete record parts and move of record
parts).

There is a complication however. The problem is that
our algorithm writes to the pages at commit time. At
commit time however the data is not yet synchronised
with disk, so only at completion of the GCP of the
commit is it ok to write the page to disk. Now this
complication of the page cache algorithm is unwanted so
an alternative method is to filter the UNDO log before
writing it to disk.

The solution to this problem is to write full UNDO
logs as usual to the UNDO log buffer. At a time when it is
decided to send UNDO logs to disk each log record is
checked to see,if the data part in it is part of a transaction
whose GCP is already synched. If it is, it will be skipped.
If it hasn’t been synched yet, also the data part is written
to the UNDO log. In this manner complex logic around
page writes is avoided. Still, for the most part, the data
part is removed from the UNDO log.

One major reason of not complicating the page cache
logic is the large transactions. These transactions will at

1113

commit start writing massive amounts of pages and if it is
not allowed to write those to disk very soon the page
cache will be swamped and the system will get into a
grinding halt. So again large transactions will cost more
than small transactions, but they will be doable.

8. Abort handling Decoupled from Recovery

One distinct advantage that we have accomplished with
the recovery algorithm is that a full decoupling of
recovery logic and abort logic is achieved. The algorithm
for UPDATE and INSERT are shown to exemplify how
this is achieved.

8.1 UPDATE algorithm

When an UPDATE is started the main memory part is
found and through that a reference to the disk part as well.
Before the UPDATE starts it is ensured that all disk pages
used by the record is loaded into memory. An
optimisation is that the disk page is not loaded if it is
known that the UPDATE only will touch main memory
fields.

The UPDATE is not performed in-place, rather a new
region of memory certain to contain the record is
allocated. This is allocated from “volatile” memory not
surviving a crash and not part of any recovery algorithms.
The current data in the record is copied into this “volatile”
memory. Next the UPDATE is executed. This could
involve using interpreter code internal to the data node
and can involve any fields.

When the UPDATE is completed, the size of the
variable parts in main memory and disk are calculated.
The space on the page currently used is pre-allocated if
possible. If not possible, space on a new page is pre-
allocated. No update of the page is performed while
updating, only pre-allocation of space and update of a
“volatile” memory region.

At commit time all pages involved are loaded into
memory before starting the commit logic. Now the pages
are updated and the space pre-allocated is committed.

As long as the “volatile” memory fits in main memory
this algorithm suffers no problems. Large transactions
require very large memory regions to contain the ongoing
changes. To be able to handle transactions of any size,
even the “volatile” memory can be spooled out on disk.
This is performed on a per-transaction basis. When a
transaction reaches a threshold size, all new updates of
this transaction is using a special memory space that can
easily be sent to disk in its completeness. When such a
transaction is to commit, this memory must be read back
into memory. At rollback this memory and the file
connected to it can be deallocated and deleted. At
recovery any such files can be deleted since they have no
impact on the recovery logic.

8.2 INSERT algorithm

The difference with an INSERT is that it is mandatory to
pre-allocate space on memory pages and disk pages for
the record. This is performed at the end of the INSERT
when the size of the record parts is known.

An intricate algorithm is used to find the optimum
disk page to house the disk part. There are five steps in
this algorithm. Each step is performed if possible and the
next step is only done if the previous wasn’t possible.

1) Find any page that fits the record in the current set

of “dirty” pages in the page cache.

2) Find any page that fits the record in the current set

of pages currently read from disk to be used in

INSERT/UPDATE/DELETE.

3) Find a new page in the same extent that fits the
record.

4) Find a new extent using a two-dimensional
matrix.

5) Allocate a new extent.

The reasoning behind step 1) and 2) is that as much
updated data as possible is written to disk when a page is
flushed from the page cache. The reasoning behind step 3)
is to use one extent and ensure that all new allocations as
much as possible are done by sequential writes. New
writes are grouped into writes larger than one page as
much as possible to minimise cost of each write.

Step 4) is the most complex step and requires some
careful explanation. The free space in all extents will in
the long-run form a variant of the normal probability
distribution. When a new extent is picked to write from it
is desirable to find an extent that has as much free space
as possible. At the same time it is necessary that it contain
at least one page with enough space to fit our needs. The
first dimension in the matrix is the minimum of the
maximum free space on one page in the extent. The
second dimension is the size of the free space in the
extent. The search tries to find an extent that has the
largest possible free space on a page and the largest free
space in the extent. The figure shows the search order.

Search Extent to Write
(Down First, Right Then)
(Extent Size = 1 MB, 70% full
Record Size = 10 kB

»0.5MB | »04MB | »03MB | »02MH | »0.1M
»28kB| | »22kB| | »18kB| | »15kB | | »11kB
>05MB | »04MP | »02MB | >02MB | »0.1MB
»24kB| | »19kB| | »15kB| | »12kB{ | »8kB
>05MB | »04MB | >0.3M]J »02MB | %0 1MB
»20kB »16kB »12kBy | »9kB »5.5kB
v

>05MB | »04MB | »03MB | »02MB | »0.1MB
>16kB | »12.8kB | »96kB | »64kB | »3.2kB

1114

The boundary values in the matrix are calculated using
the proper probability distribution such that an even
distribution of extents is accomplished. This is future
work to optimise the selection of these values.

Finally if no such extent is found, a new extent is
allocated from the proper tablespace.

The discussion above is still only to preallocate area in
a page so no change of the page is performed. A separate
subtransaction to allocate a new extent might be started
but this will commit even if the INSERT transaction is
rolled back. The INSERT itself is first performed in a
“volatile” area as for UPDATE’s. Thus even abort of
INSERT’s are done independent of handling of recovery.

8.3 Reasoning behind data placement

For INSERT’s the intention is to choose a page such that
page writes occur on many sequential pages. It is never
attempted to gather writes bigger than an extent.

For UPDATE’s a possibility is to always write in a
new place since we have the directory in the main
memory. There is still however a need to update the free
list of the page to ensure the space is reused. Since it is
necessary to read the record to update it, it was deemed
more efficient to do a in-place update if possible. If the
updated record no longer fits in memory it is moved in its
entirety to a new page. This follows the same procedure
as an INSERT.

The in-place updates will require writing pages
through random access. Thus it is known that this page is
written at some point in time and thus it is prioritised to
write more records on this page since there is no extra
cost of writing this page with more records compared to
only one record.

In future releases of MySQL Cluster there are ideas to
move disk parts to “hotter” pages if often used (or even to
main memory pages) and likewise to “colder” pages if not
used for a longer period. This will greatly improve the
cache hit rate in the page cache.

References

[1]EImasri, Navathe. Fundamentals of Database Systems,
Third Edition

[2]M. Ronstrom. High Availability Features of MySQL
Cluster, White Paper MySQL AB 2005-02-18

[3]M. Ronstrom. Design of a Parallel Data Server for
Telecom Applications, Ph.D. thesis, Linkoping
University, 1998

[4]1U. Troppens, R. Erkens, W. Miiller. Storage Networks
Explained, Wiley 2004

[5]J.Gray, A. Reuter. Transaction Processing: Concepts
and Techniques, Morgan Kaufmann 1993

[6]W. Effelsberg, T. Haeder. Principles of Data Buffer
Management, ACM TODS 9(4):560-595

[71D. Skeen, A. Chan, The Reliability Subsystem of a
Distributed Database Manager, Technical Report CCA-
85-02, Computer Corporation of America, 1985

[8]S-O Hvasshovd, A Tuple Oriented Recovery Method
for a continuously available distributed DBMS on a
shared-nothing computer, Ph.D. Thesis, NTH Trondheim,
1992, ISBN 82-7119-373-2

1115

