
Flexible Database Generators

Nicolas Bruno Surajit Chaudhuri

Microsoft Corp.
One Microsoft Way, Redmond, WA 98052

{nicolasb,surajitc}@microsoft.com

Abstract

Evaluation and applicability of many database
techniques, ranging from access methods, his-
tograms, and optimization strategies to data
normalization and mining, crucially depend
on their ability to cope with varying data dis-
tributions in a robust way. However, compre-
hensive real data is often hard to come by, and
there is no flexible data generation framework
capable of modelling varying rich data distrib-
utions. This has led individual researchers to
develop their own ad-hoc data generators for
specific tasks. As a consequence, the resulting
data distributions and query workloads are of-
ten hard to reproduce, analyze, and modify,
thus preventing their wider usage. In this pa-
per we present a flexible, easy to use, and scal-
able framework for database generation. We
then discuss how to map several proposed syn-
thetic distributions to our framework and re-
port preliminary results.

1 Introduction
When designing or modifying a new DBMS compo-
nent or technique, it is crucial to evaluate its effective-
ness for a wide range of input data distributions and
workloads. Such a systematic evaluation helps identify
design problems, validate hypothesis, and evaluate the
robustness and quality of the proposed approach.

Consider for instance a new histogram technique
for cardinality estimation (some recently proposed ap-
proaches include [7, 10, 14, 15]). Since these techniques
often use heuristics to place buckets, it is very difficult
to study them analytically. Instead, a common prac-
tice to evaluate a new histogram is to analyze its effi-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

ciency and quality of approximations with respect to
a set of data distributions. For such a validation to be
meaningful, input data sets must be carefully chosen
to exhibit a wide range of patterns and characteris-
tics. In the case of multidimensional histograms, it is
crucial to use data sets that display varying degrees
of column correlation, and also different levels of skew
in the number of duplicates per distinct value. Note
that histograms are not just used to estimate the car-
dinality of range queries, but also to approximate the
result size of complex queries that might involve joins
and aggregations. Therefore, a thorough validation
of a new histogram technique needs to include data
distributions with correlations that span over multiple
tables (e.g., correlation between columns in different
tables connected via foreign key joins).

Consider the problem of automatic physical design
for database systems (e.g., [3, 9, 18]). Algorithms ad-
dressing this problem are rather complex and their
recommendations crucially depend on the input data-
bases. It is therefore advisable to check whether the
expected behavior of a new approach (both in terms
of scalability and quality of recommendations) is met
for a wide variety of scenarios. For that purpose, test
cases should not be simplistic, but instead exhibit com-
plex intra- and inter-table correlations. As an exam-
ple, consider the popular TPC-H benchmark. While
TPC-H has a rich schema and syntactically complex
workloads, the resulting data is mostly uniform and
independent. In the context of physical database de-
sign, we can ask ourselves how would recommenda-
tions change if the data distribution shows different
characteristics. What if the number of lineitems

per order follows a Zipfian distribution? What if
customers buy lineitems that are supplied exclu-
sively by vendors in their nation? What if customer
balances depend on the total price of their respective
open orders? These constraints require capturing de-
pendencies across tables.

In many situations, synthetically generated data-
bases are the only choice: real data might not be avail-
able at all, or it might not be comprehensive enough to
thoroughly evaluate the system in consideration. Un-
fortunately, to our knowledge there is no available data

1097

generation framework in the context of RDBMSs that
is capable of modelling varying rich data distributions
like the examples described above (references [2, 4] dis-
cuss some recent frameworks in the context of XML
databases). This has led individual researchers to de-
velop their own ad-hoc generation tools. Usually, gen-
eration settings are not clearly documented and details
become hidden in the particular implementations. As
a consequence, resulting data distributions and query
workloads are often hard to reproduce, analyze, and
modify, which severely limits their applicability.

In this paper we present a flexible framework to
specify and generate databases that can model data
distributions with rich intra- and inter-table corre-
lations. In Section 2 we introduce a simple special
purpose language with a functional flavor, called DGL

(Data Generation Language). DGL uses the concept of
iterators as basic units that can be composed to pro-
duce streams of tuples. DGL can also interact with an
underlying RDBMS and leverage its well-tuned and
scalable algorithms (such as sorting, joins, and aggre-
gates). As we show in Section 3, DGL can also be used
to further simplify the specification of synthetic rela-
tional databases by adding “DGL annotations” to the
SQL CREATE TABLE statement, which concisely specify
how a table should be populated. Finally, Section 4
reports some preliminary results on the data genera-
tion framework introduced in this paper.

2 Data Generation Language (DGL)
We next present DGL, a special purpose language to
generate synthetic data distributions.

2.1 Data Types

We now discuss the main data types in DGL, and the
various operations that each data type support.

Scalars are the most basic type in DGL, and are fur-
ther subdivided into integers (Int), double pre-
cision reals (Double), strings (String), and dates
(DateTime). DGL supports the traditional opera-
tions over each scalar type, such as arithmetic and
comparison operations for integers and real num-
bers, and concatenation and substring operations
for strings.

Rows are fixed-size heterogenous sequences of scalars.
For instance, R = [1.0, 2, ’John’] has type
[Double, Int, String]. The expression dim(R)

returns the number of columns in R, and R[i]

returns the i-th column of R (0≤i<dim(R)). In
the example above, dim(R)=3, R[0]=1.0, and
R[0]+R[1]=3.0. The operator ++ combines rows,
so [2,’John’] ++ [’Smith’,4] returns a new row
[2,’John’,’Smith’,4]. Finally, operators defined
over scalars can use rows as operands provided
that (i) each operand is of the same size, and
(ii) each column in the operands is compatible

with the operator. In that case, the result is a
new row where each column is obtained by ap-
plying the operator to the individual operands’
columns. Then, [1,2,3]+[4,5,6] = [5,7,9], and
both [1,2]+[2,3,4] and [1,’John’]+[3,4] are in-
valid expressions.

Iterators are the most important objects in DGL. It-
erators support the operations open (which ini-
tializes the iterator), and getNext (which returns
a new Row or an end-of-iterator special value).
For instance, the iterator Step(f,t,s) results
in the following rows {[f], [f+s], [f+2s], ...,

[f+ks]} where f+ks ≤ t < f+(k+1)s. As another
example, for a row R, the iterator Constant(R) re-
turns the infinite sequence {R, R, R, ...}. All
operations on rows can also be applied to itera-
tors. The result of such operations is a new itera-
tor that, for each getNext request, obtains a new
row from each operand, applies the operator to
such rows, and returns the resulting row. Con-
sider I1=Step(1,100,2), I2=Step(5, 21, 3), and
I3=Constant([10,20,30]). In that case,

I3[1] = {[20], [20],...}

I1++I2 = {[1,5], [3,8], ..., [11,20]}

I1+I2-I3[0] = {[-4], [1], ..., [21]}

Tables are in-memory instances of (finite) iterators
provided for efficiency purposes. We denote the
i-th row in table T as T[i].

Implicit casts

DGL applies implicit casts to operands depending on
the expression context. Consider Step(1,100,1) ++

[5]. The left operand is an iterator and the right
operand is a row. In this case, the row is implicitly pro-
moted to iterator Constant([5]). Similarly, in [1]+3,
the integer 3 is converted into a single-column row [3].
Iterators and tables can be used interchangeably (but
tables must fit in memory). We rely on implicit casts
in the remainder of this paper.

2.2 Primitive Iterators

If Step and Constant were the only available iterators in
DGL there would not be many interesting data sets that
we could generate. A strength of DGL is the existence
of a large set of primitive iterators and the ability to
extend this basic set with new user-defined primitives.
We next describe some built-in iterators in DGL.

Distributions. DGL natively supports many statis-
tical distributions as built-in iterators. For in-
stance, function Uniform takes two input iter-
ators and returns an iterator that produces a
multidimensional uniform distribution. Consider

1098

I=Uniform(iLO, iHI). Each time a new row is re-
quired from this iterator, I retrieves the next row
from iterators iLO and iHI (denoted rLO and rHI)
and produces a new row (denoted rOut) where
rOut[i] is a random number between rLO[i]

and rHI[i]. Then, Uniform(Constant([5,5]),

Constant([8,15])) is an iterator that produces
an infinite stream of uniformly distributed 2-
dimensional points (x,y) where 5 ≤ x ≤ 8
and 5 ≤ y ≤ 15. Due to implicit casts, we
can write the same iterator as Uniform([5,5],

[8,15]). In addition to Uniform, DGL supports a
wide variety of discrete and continuous iterators
to produce intra-table correlated distributions, in-
cluding UniformInt (discrete version of Uniform),
Normal, Exponential, Zipfian, and Poisson1.

SQL and Relational Queries. Two primitive func-
tions, Persist and Query, are provided to bridge
DGL and an underlying RDBMS. Persist takes
an iterator I and an optional string s as its in-
put, bulk-loads all the rows provided by I in a
database table named s, and returns the string
s. If no input string is provided, DGL generates a
unique name for a temporary table in the DBMS.
In this case, the bulk-loaded table contains one
additional column, id, that stores the sequential
number of the corresponding row. The remain-
ing columns in the table are called v0, v1, and so
on. For instance, if Persist(Step(15,1000,6)++5)
returns #Tmp1, a new temporary table #Tmp1 was
created in the DBMS as a side effect with the fol-
lowing schema and values:

id v0 v1

0 15 5
1 21 5
...
164 999 5

Conversely, Query takes a parametrized query
string sqlStr and a sequence of iterators T0, ...,

Tk−1, and (i) materializes the i-th iterator in the
database (using an implicit Persist), (ii) replaces
the i-th parameter in the query with the tempo-
rary table assigned to the corresponding iterator,
(iii) executes the resulting query, and (iv) returns
an iterator over the query results2. The i-th para-
meter is denoted as <i> in sqlStr. The expression
below returns a random permutation of all odd
numbers below 1000:

1With appropriate wrappers, it is also possible to use
statistical distributions from other packages such as SAS,
MATLAB, or Octave. Those packages, however, can gen-
erate distributions with just intra-table correlations.

2If the underlying database system has native support
for streams, operator Query first creates a user defined
stream in the database system, and then directly works
over the resulting stream, without necessarily materializ-
ing intermediate results.

Query("SELECT v0 FROM <0> ORDER BY v1",

Step(1, 1000, 2) ++ Uniform(0, 1))

In this expression, Query takes an iterator of two
columns, where the first column consists of all
odd numbers between 1 and 1000 and the sec-
ond is a random number. This iterator is per-
sisted in the database into a temporary table, and
is subsequently read in order of the random col-
umn v1. This example shows an early decision
while designing DGL: instead of reinventing ro-
bust and scalable algorithms to sort, aggregate, or
join rows, we reuse the underlying DBMS. While,
strictly speaking, the loading/query cycle might
incur some overhead, we found out that it is quite
acceptable while providing much additional func-
tionality and robustness.

Non-blocking duplicate elimination. DGL pro-
vides a primitive iterator, dupFilter, which takes
as input an iterator I, two numbers f1 and f2,
and a row of indexes cols, and controls the degree
of uniqueness of I. Each time we call getNext on
dupFilter(I, f1, f2, cols), we get the next row
R from the input iterator I and return it a fraction
f1 of the time if the columns of R specified by
cols were not seen previously, or a fraction f2 of
the time otherwise (f1+f2 is not necessarily equal
to one). The pseudo-code of dupFilter.getNext

is given in Figure 1. This operator is useful in
the context of infinite streams, since it is not
possible to first persist them into a temporary
table and then use SQL to filter duplicates. DGL

supports two implementations of dupFilter which
vary on how line 4 in Figure 1 is implemented
and balance space consumption and efficiency:
dupFilterMem maintains a hash table of all unique
values in memory, and dupFilterDB creates a
temporary table on the database system with a
unique constraint and uses it to check whether a
new value was already inserted.

Miscellaneous. DGL supports a large library of
primitive iterators, including Top(I,k), which
produces only the first k rows of iterator I,
Union(I1, I2), which produces all rows from
iterator I1 followed by those from iterator I2,
ProbUnion(I1,I2,p), which is similar to Union(I1,

I2) but interleaves rows from I1 and I2 with prob-
ability p and 1-p, respectively, tableApply(T,I)

which returns, at each step, the element in
table T indexed by the next element from the
integer-iterator I, and Duplicate(IR,IF) which
returns, for each r and f respectively retrieved
from iterators IR and IF, f copies of r. For
instance, Duplicate(Step(5, 8, 1), [3]) returns
{[5], [5], [5], [6], [6], [6], [7], [7], [7]}.

1099

dupFilter.getNext (local I:Iterator, f1, f2:Double, [c1, ..., cn]: Row)

01 while(true)

02 R = I.getNext()

03 if (R = end-of-iterator) return R

04 isD = [R[c1], ..., R[cn]] is duplicate

05 if (isD and random()<f1) or (!isD and random()<f2)

06 return R

Figure 1: Pseudo-code for dupFilter.getNext().

2.3 Expressions and Functions

The general form of a DGL expression is as follows:

LET v1 = expr1,

v2 = expr2,

...,

vn−1 = exprn−1

IN exprn

where each expri is a valid DGL expression that can
refer to variables vj . The only restriction is that the
reference graph be acyclic (primitive and user-defined
iterators can be recursive). For instance, the following
expression is an iterator that produces 65% of uni-
formly distributed and 35% of normally-distributed
rows (Figure 2 shows graphically the output distrib-
ution of this iterator):

LET count = 10000, P = 0.65,

U = Uniform([5,7], [15,13]),

N = Normal([5,5], [1,2])

IN Top(ProbUnion(U, N, P), count)

DGL functions, in turn, are specified as follows:

function name (arg1, ..., argn) = expr

where expr is a DGL expression. For instance, we can
define a function simpleF that parametrizes the previ-
ous example as follows:

simpleF (P, count) =

LET U = Uniform([5,7], [15,13]),

N = Normal([5,5], [1,2])

IN Top(ProbUnion(U, N, P), count)

and obtain the original expression using simpleF(0.65,

10000).

2.4 DGL Programs and Evaluation Model

A DGL program is a set of function definitions followed
by an expression (called the main expression). Eval-
uating a DGL program is equivalent to evaluating its
main expression, casting the result to an iterator, and
returning all the rows produced by this iterator. This
stream of rows can then be either saved to a file, or
discarded if the program already persisted tables in the
RDBMS as a side effect. We now discuss the evalua-
tion model of a DGL program.

In general, we can see a DGL program as a directed
acyclic graph, or DAG (see Figure 3 for some exam-
ples). The DAG of a general expression consists of

0

5

10

15

0 5 10 15

Figure 2: Distribution obtained by a DGL iterator.

one node (with label vi) for each vi=expri in the main
expression plus an additional node (with label main)
for the IN expression exprn. There is a directed edge
between nodes ni and nj if exprj directly refers to vi.
If (ni, nj) is a directed edge in the DAG, we say that
nj is a consumer of ni.

In the simplest case, if each node has exactly one
consumer (e.g., Figure 3(a)), the evaluation of a DGL

program is straightforward. Each node produces ob-
jects that are passed to its unique consumer. Multiple
iterators can be chained in this way and the mem-
ory required to evaluate a program remains constant3.
This evaluation model is still valid even if some nodes
have multiple consumers, provided that such nodes are
scalars or rows (e.g., node a in Figure 3(b) is shared by
nodes b and c). The reason is that scalars and rows are
immutable and can be safely shared among consumers.

In the general case, if some iterator node has mul-
tiple consumers (e.g., node b in Figure 3(c)) the situa-
tion is more complex. The problem is that the differ-
ent consumers must see the same stream of rows from
the shared iterator but might request rows at different
rates. DGL implements a buffering mechanism for that
purpose. It is important to note that, in many com-
mon examples (see Section 4) the actual speed of dif-
ferent consumers is the same, and therefore the buffer
is always of a small constant size. Consider the ex-
ample in Figure 3(c). Each time main produces a new
row, it requests the next row to both b and c. In
this case, b is shared between main and c, so it must
buffer the row that produces for main until c requests
it. However, for c to generate the row required by main

3Iterators with an internal state that can grow un-
bounded (e.g., dupFilterMem) are not be memory-
bounded.

1100

��� � � ���� 	
�
���
�� � ���� 	��������� � ���� 	��������� ������� ��� � �
���� � ���� 	
� �� ��� � � � ���� 	
� ��
��� ������� � �
���� � ���� 	
� �� ��� � ���� 	�� ��
��� ����� ����� � � ����� � � ����� �
(a) (b) (c)

Figure 3: Simple DGL programs and their corresponding DAGs.

it requests the next row of b in sync with main. There-
fore, although buffering is present in this example, it
is not used beyond its first cell and the memory of the
whole program remains constant.

Memory/Performance Trade-offs

DGL offers a simple mechanism to allow a program to
trade-off space consumption for performance in the
presence of shared iterators. Consider the following
program:

LET U = Step(1, 10000, 1),

Q = Query("some complex query", U)

IN U ++ Q

whose DAG is shown in Figure 4(a). Due to the im-
plicit Persist operator generated by Q, iterator U is
consumed entirely when the first row from Q is re-
quested. Therefore, U must buffer its entire stream to
satisfy future requests from main. In this particular ex-
ample, U simply produces integers of increasing value.
Therefore, a simple way to avoid the buffering of U is
to duplicate U such that Q and main request rows from
different instances. This can be specified as follows
(the corresponding DAG is shown in Figure 4(b)):

LET U = Step(1, 10000, 1),

U’= Step(1, 10000, 1),

Q = Query("some complex query", U)

IN U’ ++ Q

In this case each iterator node has at most one con-
sumer and there is no buffering involved. Since the
processing done by U is minimal, there is almost no
additional overhead. Unfortunately, in complex pro-
grams it is not always desirable to duplicate iterators,
since each copy duplicates work. Also, due to primitive
or user-defined operators with side effects, this alterna-
tive is not always correct. We therefore do not attempt
to automatically rewrite programs to avoid buffering.�� � ��� � � � ��� � � ! " # "

Figure 4: Buffering versus duplicating work.

Instead, DGL provides a manual construct to prevent
buffering at a given node. If the name of an iterator
variable is preceded by the ’*’ sign, the correspond-
ing iterator is not shared by multiple consumers, but
a new instance is generated for each consumer. The
above example can thus be rewritten as:

LET *U = Step(1, 10000, 1),

Q = Query("complex query", U)

IN U ++ Q

which is internally converted into the program shown
earlier. When duplicating nodes with distribution
primitives (e.g., Uniform), the compiler carefully seeds
each primitive’s random generator with the same
value, to ensure that multiple executions return the
same rows. For complex or user-defined iterators, it is
responsibility of the programmer to ensure correctness
when duplicating iterators.

2.5 Implementation Details

Figure 5 shows how a DGL program is compiled. Our
compiler takes a DGL program and transforms it into
intermediate C++ code. We then compile the inter-
mediate C++ code and link it together with the DGL

runtime library and any user-defined library (see Sec-
tion 2.5.1). The resulting executable is then run to
create and populate a database.

DGL
Program

DGL
Compiler

C++
Program

C++
Compiler/Linker

DGL Primitives
and Runtime Library

Data
Generator

Figure 5: Building a data generator in DGL.

We could have implemented DGL on top of
an existing functional language like Haskell
(http://www.haskell.org). There were, however,
some practical drawbacks with this approach. First,
we wanted to explicitly fine-tune the internal mecha-
nisms to evaluate expressions (e.g., iterator buffering)
which are fixed in a language like Haskell. Also, there
is currently no widely used interface between Haskell
and RDBMSs (specifically for bulk-loading, which
is crucial in our scenario). Finally, although DGL is
functional in flavor, users usually define their own
iterators using imperative languages like C++, and it

1101

void aggSum::open()

local (I:Iterator)

01 I.open();

02 outputRow = new Row(dim(I.outputRow));

03 for (i = 0; i < dim(outputRow); i++)

04 outputRow[i] = 0;

bool aggSum::getNext()

local (I:Iterator)

01 moreResults = I.getNext()

02 if (moreResults) outputRow += I.outputRow;

03 return moreResults;

Figure 6: Defining a new primitive iterator.

is easier to integrate components written in the same
language.

2.5.1 Defining new Primitives

To add a new primitive iterator to DGL, we im-
plement in C++ a derived sub-class from the
base class Iterator that defines the methods open

and getNext, and compile it into a new library,
which is subsequently linked into the final exe-
cutable. We next show how to implement a new
iterator. Consider aggSum, which incrementally re-
turns the sum of all prefixes of its input itera-
tor. If I=Step(1, 10, 1) ++ [2], then aggSum(I) re-
turns {[1,2], [3,4], [6,6], [10,8], ..., [45,18]}.
Pseudo-code for aggSum is shown in Figure 6. In
our implementation, the base class Iterator defines
a variable outputRow of type Row that holds the current
row and getNext returns a boolean value indicating
whether a new row was generated or an end-of-iterator
was reached. The details are slightly more complex
due to buffering, but we omit those for clarity.

2.5.2 Interface with the RDBMS

We use ODBC to connect to the RDBMS and execute
queries specified by the Query iterator (Query is a thin
wrapper on top of ODBC, which natively supports the it-
erator model). The Persist operator uses ODBC’s mini-
mally logged bulk-loading extensions to maximize per-
formance.

2.5.3 Iterator Buffering

As explained in Section 2.4, an iterator might have
multiple consumers requesting rows at different rates.
Since each consumer must obtain the same sequence of
rows from the shared iterator, we must buffer all rows
sent to fast consumers until the slowest consumer re-
quests them. We keep an adaptive circular buffer of
rows associated to each iterator (see Figure 7). The
buffer maintains a window of the last rows produced
by the iterator (e.g., rows R3 to R7 in the figure).
Each consumer points to the last row it obtained from
the buffer (e.g., consumer C2 already read rows R1

to R5). When a consumer requests a new row and it
does not point to the last valid row in the buffer, the

Free Space

R$ R% R& R' R(R) R*
(fastest consumer)(slowest consumer) Consumer pointerC1 C2 C3

Figure 7: Sharing iterators among several consumers.

consumer’s pointer is advanced and the correspond-
ing row is returned (e.g., if C2 requests a new row,
its pointer moves to and returns row R6). If instead
the consumer points to the last valid row in the buffer
(e.g., C3 in the figure), a new row is first produced
and stored in the circular buffer, and then returned to
the consumer. When the slowest consumer requests a
row (e.g., C1 requesting row R3), the row’s slot in the
buffer is freed and reused. Now suppose C3 requests
five new rows before C1 requests any. In this case,
there is no available buffer space for the fifth row. We
then create a new buffer twice as big as the original
one and move all the elements to this new buffer (en-
suring constant amortized insertion time). When the
slowest consumer requests a row and the buffer capac-
ity falls below 25 percent, we replace the buffer by a
new one half its original size (ensuring constant amor-
tized deletion time). This adaptive behavior of the
buffer is not enough in general, since one consumer
can always be faster than another, and the size of the
circular buffer would grow unbounded. In this case we
swap the buffer to disk after it has grown beyond a
certain size. We keep the original buffer in memory,
but all subsequent “insertions” are written into a tem-
porary sequential file. After consumers exhaust the
in-memory portion of the buffer, they continue scan-
ning the temporary file (we do not use the RDBMS
capabilities for buffering because the OS file system is
a light-weight and flexible alternative for this specific
purpose). To avoid unnecessarily large temporary files,
when the slowest consumer starts scanning the file, we
create a new temporary file for all subsequent inser-
tions. When the slowest consumer reads the last row
of the current temporary file, the file is deleted. For
many real examples, though, consumers request data
synchronously, so there is virtually no impact due to
buffering.

3 Annotated Schemas Using DGL

In this section we discuss a thin layer on top of DGL
that allows annotating the SQL CREATE TABLE statement
to additionally specify how to populate the created
table. The syntax is as follows:

CREATE TABLE T (col1 type1, ..., coln typen)

[other CREATE TABLE options]
POPULATE N AS ((col1

1, ... col1

n1
) = expr1,

...

(colk
1, ... colk

nk
) = exprk)

1102

where N is an integer that specifies an upper bound
on the size of the created table, each column colj in T

is mentioned exactly once in the POPULATE clause, and
expri is a DGL expression with some additional syntac-
tic sugar (see below). A database specification consists
of a batch of annotated CREATE TABLE statements and
it is processed as follows. First, each table is created
omitting the POPULATE clause in its CREATE TABLE state-
ment. Then, a single DGL program is built from all
the POPULATE annotations. Finally, the DGL program is
evaluated, populating database tables as a side effect.

In addition to plain DGL expressions, each expri in
a CREATE TABLE statement can refer to columns of any
other table in the batch (including the table that expri

is populating) as if they were iterators. Temporary
columns that are not part of the created table can
be specified as well. Finally, Query iterators can refer
to any table in the batch and also to the additional
column id that is generated automatically by Persist.
The only restriction is that the DAG associated to the
resulting DGL program must be acyclic.

We now discuss through a series of examples how a
DGL program is automatically generated from a batch
of CREATE TABLE statements, significantly simplifying
the task of the end-user. Consider the following simple
specification:

CREATE TABLE Test (a INT, b INT, c INT, d INT)

POPULATE 10000 AS (

(a, d) = myFunc(100),

b = c - 1,

c = a + d)

The generated DGL program defines one iterator for
each expression in the specification above, combines
each iterator in the right column order, truncates the
result to 10000 rows, and persists it into table Test.
Columns used within expressions are referred to as
projections of the corresponding iterators. The result-
ing program is as follows:

LET Test_ad = myFunc(100),

Test_c = Test_ad[0] + Test_ad[1],

Test_b = Test_c - 1,

Test = Top(Test_ad[0] ++ Test_b ++

Test_c ++ Test_ad[1],

10000)

IN Persist(Test, "Test")

Evaluating this DGL program persists the specified
data distribution into table Test. A set of multiple
CREATE TABLE statements is treated in the same way.
A single program is generated and the main expres-
sion combines each individual Persist primitive using
the operator ++. In this way DGL can handle specifica-
tions in which some columns depend globally on the
set of values of other columns, as shown in the next ex-
ample (when Query primitives refer to the tables being
populated, an additional mapping is applied).

CREATE TABLE R (a INT, b INT, c INT, d INT)

POPULATE 10000 AS (

(a,b) = myFunc1(10),

c = myFunc2(20),

d = myFunc3(30))

CREATE TABLE S (f INT, g INT)

POPULATE 5000 AS (

f = myFunc4(40),

g = Query("SELECT AVG(b+c)

FROM R

GROUP BY a"))

In this situation we generate an additional expres-
sion that combines columns R.a, R.b, and R.c (we place
a Top operator to ensure that the right number of rows
is persisted) and persist it as a temporary table in the
database. This temporary table is then used by the
query that generates column S.g4. Note that we only
temporarily persist R.a, R.b, and R.c instead of using
the final populated table R to allow specifications in
which columns from two tables mutually depend on
each other without forming a cycle in the DAG. Of
course, if there is a partial order for the creation of
tables in the batch, a simple optimization is possible
in which the intermediate table is not created at all.

Additionally, we use an optimization that avoids
buffering the iterators for columns R.a, R.b, and R.c,
since they would be already persisted in the RDBMS
due to S.g. For that purpose, we create a proxy itera-
tor that simply performs a sequential scan over the
temporary table created by Persist. Each original
consumer of columns R.a, R.b, or R.c is changed so
that it consumes rows from this proxy iterator. The
resulting program for the above specification is shown
next.

LET R_ab = myFunc1(10),

R_c = myFunc2(20),

R_d = myFunc3(30),

S_f = myFunc4(40),

tmp1 = Persist(Top(R_ab ++ R_c), 10000),

tmp1Proxy = Query ("SELECT * FROM <<0>>",

tmp1),

S_g = Query ("SELECT AVG(v1+v2)

FROM <<0>>

GROUP BY <<0>>.v0",

tmp1)

R = Top(tmp1Proxy ++ R_d, 10000),

S = Top(S_f ++ S_g, 5000),

IN Persist(R, "R") ++ Persist(S, "S")

Note that the initial annotation on the CREATE TABLE

statement is much simpler to understand and write
than the corresponding DGL program. In Section 4 we
show several examples that use annotated schemas to
specify complex database distributions.

4If the input to a Query operator is already “Persisted”,
we do not create a second copy in the database, but reuse the
original one.

1103

4 Evaluation
We now illustrate how to generate several data distrib-
utions previously proposed in the literature using DGL

annotations.

4.1 Benchmarks

We start by showing how to populate the relations of
three benchmarks described in [11]. We note that the
relations of these benchmarks are somewhat simple to
generate and mostly produce tables with no complex
correlations.

Wisconsin

The Wisconsin Benchmark [5] was proposed in the
early eighties to test the performance of the major
components of a RDBMS, using relations with well-
understood semantics and statistics. The following
is a partial specification using DGL to generate table
TENKTUP of this benchmark.

CREATE TABLE TENKTUP (...)

POPULATE 10000 AS (

unique1 = Permutation(10000),

unique2 = Step(0, 10000, 1),

four = unique1 mod 4,

onePercent = unique1 mod 100,

oddOnePercent = onePercent * 2 + 1, ...)

where Permutation is defined as follows:

Permutation(n) =

LET tmp= PERSIST(Uniform(0, 1))

IN Query("SELECT id FROM <0> ORDER BY v0",tmp)

In [11, 12] an alternative procedure is used to gener-
ate permutations, which is based on congruential gen-
erators that return dense uniform distributions. While
this alternative is less costly (and we could have easily
implemented it in DGL) it can only be used to gener-
ate one different permutation (others are just circular
shifts). In our experiments we use the slower but more
flexible alternative described above.

AS3AP

The AS3AP Benchmark [17] is a successor of the Wis-
consin Benchmark and gives a more balanced and real-
istic evaluation of the performance of a RDBMS. In ad-
dition to the tests performed by the Wisconsin Bench-
mark, AS3AP tests utility functions, mix batch and in-
teractive queries and emphasize multiuser tests. From
a data generation perspective, AS3AP introduces non-
uniform distributions in some columns, but columns
remain independently generated from each other. We
now show a partial DGL specification for the UPDATES

table in the AS3AP benchmark.

CREATE TABLE UPDATES (...)

POPULATE 10000 AS (

key = 1 + Permutation(10000),

signed= 100000 * Permutation(10000) - 50000000,

float= 100000 * Zipfian(1.0, 10) - 500000000,

double= Normal(1, 0), 0, 1, [0], ...)

We note that the actual specification states that
the value 1 must not appear in column key to allow
“not-found-scans” for a value within the range of the
attribute. For simplicity, we omit the value 0 instead,
which conveys the same functionality but makes the
specification slightly simpler. Both columns signed

and float are specified to be sparse, so that the dis-
tinct values are stretched to the range [−5 ·108, 5 ·108]
and thus can be used to phrase queries with relative
selectivities that are a function of the database size.

Set Query

The Set Query Benchmark [13] was designed to mea-
sure the performance of a new class of systems that
exploit the strategic value of operational data in com-
mercial enterprises. While the queries in the Set Query
benchmark are complex, the data generation program
is surprisingly simple (specifically, each column is pop-
ulated independently with uniformly distributed inte-
ger values). We now show the DGL specification for the
BENCH table in this benchmark.

CREATE TABLE BENCH (...)

POPULATE 1000000 AS (

KSeq = Step(1, 1000000, 1),

K500K = UniformInt(1, 500000),

K250K = UniformInt(1, 250000),

...,

K2 = UniformInt(1, 2)

)

4.2 Research papers

In this section we present an –incomplete– sample of
data distributions recently used in the literature to
validate novel cardinality estimation techniques.

The M-Gaussian synthetic distribution [7, 10, 15]
consists of a predetermined number of overlapping
multidimensional gaussian bells. The parameters for
this distribution are: the domain for the gaussian cen-
ters (Lo, Hi), the number of gaussian bells p, the stan-
dard deviation of each gaussian distribution sigma, and
a Zipfian parameter z that regulates the total number
of rows contained in each gaussian bell. This distrib-
ution is specified below:

M-Gaussian(Lo, Hi, sigma, z, p) =

LET centerList = Top(Uniform(Lo, Hi), p)

indexes = Zipfian(z, p),

centers = TableApply(centerList, indexes)

IN Normal(centers, sigma)

where centerList generates p random gaussian centers,
indexes generates N indexes (which point to some cen-
ter) and centers is an iterator that returns a stream of
centers taken from centerList (for efficiency we store

1104

the gaussian centers in an in-memory table, since by
definition there are a small number of them). Finally,
we apply a Normal transformation to the centers to ob-
tain the desired distribution. Using the function de-
fined above, the two dimensional data set used in [7]
is generated as:

CREATE TABLE Test (x REAL, y REAL, z REAL)

POPULATE 1000000 AS (

(x,y,z)= M-Gaussian([0,0,0], [1000,1000,1000],

[25,25,25], 1.0, 25)

)

M-Zipfian distributions were introduced in [14] and
subsequently used in [1, 7], among others. Each dimen-
sion has a number of distinct values, and the value sets
of each dimension are generated independently. Fre-
quencies are generated according to a Zipfian distribu-
tion and assigned to randomly chosen cells in the joint
frequency distribution matrix. The following DGL func-
tion returns cell indexes for a two-dimensional Multi-
Zipfian distribution:

M-Zipfian2D (N1, N2, z) =

LET indexes = Zipfian(z, N1*N2),

mapIndexes= TableApply(Permutation(N1*N2),

indexes)

IN mapIndexes/N2 ++ mapIndexes%N2

where indexes chooses a random number between 1
and the number of cells in the joint distribution follow-
ing a Zipfian distribution, mapIndexes applies a random
permutation to the values in indexes, and the main ex-
pression unfolds each number in the two-dimensional
coordinates of a cell. The result of M-Zipfian2D is a
stream of cell-indexes, which can then be mapped to
a valid element in the data domain.

A different data generation procedure derived from
Zipfian distributions was used in [9]. Essentially, the
data generation program [8] produces N rows in d con-
secutive clusters of values whose frequencies follow a
Zipfian distribution. A simple DGL specification for
this generator is:

TPCH-Zipf (N, z, d) =

Duplicate(Step(1, d, 1), ZipfianD(N, z, d))

where ZipfianD generates at each step the i-th fre-
quency of an ideal Zipfian distribution with parameter
z (1 ≤ i ≤ d) for a total of N rows.

In the context of statistics on query expressions [6],
we needed to generate data that exhibited dependen-
cies between filter and join predicates. We used a gen-
erator that populated a fact table R with a foreign-key
to a dimension table S. We wanted that the number
of matches in S from the foreign-key join from R fol-
low a Zipfian distribution, and also that a column c

in S maintained the number of elements in R that were
joined with the corresponding row in S. The following
DGL specification generates such distribution:

CREATE TABLE R (r INT, s REAL, ...)

POPULATE 1000000 AS (

r = Step(1, 1000000,1),

s = Zipfian(1.0, 50000),

...)

CREATE TABLE S (s INT, c INT, ...)

POPULATE 50000 as (

(s, c) = Query("SELECT s, count(*)

FROM R

GROUP BY s"),

...)

where the Query iterator in S returns all distinct values
in R as well as their counts, which is precisely what we
wanted to generate.

4.3 Complex Dependencies

TPC-H [16] is a decision support benchmark con-
sisting of business-oriented data and ad-hoc queries.
Data populating the database has been chosen to
have broad industry-wide relevance while maintaining
a sufficient degree of ease of implementation. While
TPC-H defines rich schema, the standard data gen-
eration tool is rather simple. Almost all columns
are uniformly generated and, and with some excep-
tions, all columns are uncorrelated. (The exceptions
are o totalprice, which is functionally determined
by l discount, l extendedprice, and l tax, and date

columns in table lineitem, which satisfy precedence
constraints.) We next use the schema of TPC-H and
show how to specify some complex dependencies for
a TPC-H like database. For clarity, we present small
fragments of DGL instead of the full specification.

Figure 8(a) specifies that order arrivals follow a
Poisson distribution starting in ’1992/01/01’. We use
a Poisson iterator that returns inter-arrival times and
aggregate it using aggSum (defined in Section 2.5.1).
Finally, we add ’1992/01/01’ to the resulting iterator.

Figure 8(b) models the fact that the number of
line items for a given order follows a Zipfian distribu-
tion (i.e., there are some very large orders and many
small ones). Additionally, the ship date of an item oc-
curs after 1 ≤ k ≤ 10 days of the order date, where
k follows a Zipfian distribution with z = 1.75. Fi-
nally, the commit and receipt dates of an item follow a
two-dimensional normal distribution centered around
5 days after the ship date5. We define l orderkey by
selecting all keys from orders and duplicating them
a certain number of times (specified by a Zipfian dis-
tribution). We specify a temporary column tmpDate

that is not persisted into the database. Instead, we
use tmpDate to define l shipdate, which in turn defines
both l commitdate and l receiptdate.

5Receipt and commit dates could be earlier than the
ship date. To avoid this rare situations we can add a MAX

operator so that l commitdate and l receiptdate always
occur after l shipdate.

1105

Figure 8(c) shows how to model that the discount
of each line item is correlated to the number of such
parts sold globally. Specifically, let |P | be the number
of parts equal to that of lineitem that are globally sold.
If |P | is beyond 1000, the discount for the lineitem is
25%. Otherwise, the discount is |P | ∗ 0.025%. We
use a Query iterator that computes the total number
of each distinct part value in LINEITEM, and then join
this “aggregated” table with the partially generated
LINEITEM, computing the discount of each row. Note
the final order clause in the Query iterator (ORDER BY

L.id). This is required to guarantee that the “dis-
count” iterator is in sync with the other columns in
lineitem, since the join in the Query iterator might be
non order-preserving.

Assuming that customers pay an order whenever it
is closed, we define the debt of a customer as the total
price of all their still-open orders. Figure 8(d) speci-
fies that the 100 customers with the largest debt have
a balance that is normally distributed around three
times their respective debts with a standard deviation
of 25000. The remaining customers’ balances follow a
normal distribution around half its debt with a stan-
dard deviation of 500. We first generate the customer
keys using a Query iterator that additionally returns
the “debt” of each customer in a temporary column
tmpDebt. We then generate c acctbal as the union
of two iterators. The first one gets the top 100 rows
from tmpDebt and produces the corresponding normal
distribution, while the second one does the same to
tmpDebt’s 101-th row and beyond (using iterator Skip).

Finally, Figure 8(e) models the fact that all parts
in an order are sold by suppliers that live in the same
nation as the customer. For this example we assume
that l orderkey was already generated with some dis-
tribution and we generate the complementary distrib-
utions for l suppkey (a random supplier from the same
nation as the orders’ customer), and l partkey (a ran-
dom part from that supplier). We first define a tempo-
rary column tmpNation which consists of the nations of
the corresponding orders’ customers. Then, we define
l suppkey with a Query iterator that uses the extended
SQL CROSS APPLY and newId operators (CROSS APPLY in-
vokes a table-valued function for each row in the outer
table expression and returns a unified result set out
of all of the partial table-valued results, while newId

returns a random identifier for each row in the result).
This iterator selects at random one row from SUPPLIER

that has the same nation as each row in tmpNation. A
similar iterator selects a random part from each ele-
ment in l suppkey.

4.4 Data Generation

We next show preliminary results of actual data gen-
eration runs to analyze the performance of DGL. Fig-
ure 9 shows, for each of the examples in the previous
section, the total time required to create and popu-

CREATE TABLE ORDERS (...) POPULATE N AS (
o_orderdate = ’1992/01/01’ + aggSum(Poisson(5)),
...)

(a)

CREATE TABLE LINEITEM (...) POPULATE N AS (
(l_orderkey, tmpDate) = Duplicate(

Query("SELECT o_orderkey, o_orderdate FROM ORDERS"),
Zipfian(1.0, 1000)),

l_shipdate = tmpDate + Zipfian(1.75, 10),
(l_commitdate, l_receiptdate) = Normal([0,0],[1,1]) +

[5 + l_shipdate, 5 + l_shipdate],
...)

(b)

CREATE TABLE LINEITEM (...) POPULATE N AS (
l_discount =

Query("SELECT CASE WHEN pTotals.pCount>1000 THEN 0.25
ELSE pTotals.pCount*0.00025

END
FROM LINEITEM L,

(SELECT l_partkey, COUNT(*) as pCount
FROM LINEITEM
GROUP BY l_partkey) as pTotals
WHERE L.l_partkey = pTotals.l_partkey
ORDER BY L.id"),

...)
(c)

CREATE TABLE CUSTOMER (...) POPULATE N AS (
(c_custkey, tmpDebt) =

Query("SELECT o_custkey, sum(o_totalprice) as sumPrice
FROM ORDERS
WHERE o_orderstatus=’O’
GROUP BY o_custkey
ORDER BY sumPrice desc")

c_acctbal = Union (Normal(Top(TmpDebt, 100) * 3, 25000),
Normal(Skip(TmpDebt, 100) / 2, 500)

)
...)

(d)

CREATE TABLE LINEITEM (...) POPULATE N AS (
tmpNation = Query(" SELECT c_nationkey

FROM LINEITEM, ORDERS, CUSTOMER
WHERE l_orderkey=o_orderkey

AND o_custkey=c_custkey
ORDER BY LINEITEM.id "),

l_suppkey = Query(" SELECT S.s_suppkey
FROM LINEITEM CROSS APPLY (

SELECT TOP 1 s_suppkey
FROM SUPPLIER
WHERE s_nationkey = tmpNation
ORDER BY newId()) as S "),

l_partkey = Query(" SELECT PS.ps_partkey
FROM LINEITEM CROSS APPLY (

SELECT TOP 1 ps_partkey
FROM PARTSUPP
WHERE ps_suppkey = s_suppkey
ORDER BY newId()) as PS")

...)
(e)

Figure 8: DGL specifications for complex correlations.

late 1GB worth of data (the “Complex” database in
the figure implements all the partial specifications in
Figure 8). We used Microsoft SQL Server as the un-
derlying RDBMS and measured the time it took to
populate the different tables without building any in-
dex structures. We see that all generators but Complex
finish in under 7 minutes (note that Baseline populates
a dummy 1GB database with constant values, so its
execution time is a lower bound to generate a 1GB
database). The reason that Complex takes around 13
minutes to finish is that due to complex correlations,
some large intermediate results must be materialized
before generating the final tables (around 4 minutes
were spent materializing temporary tables).

1106

Database Rows Time MB/sec
Baseline - 3’37” 4.72
Wisconsin 4.5M 4’11” 4.08
AS3AP 9.9M 6’42” 2.55
Set Query 15.6M 5’08” 3.32
M-Gaussian 42M 5’51” 2.92
M-Zipfian 50M 6’25” 2.66
JoinCorr 48M 6’02” 2.83
Complex 10.5M 13’12” 1.29

Figure 9: Generating 1GB synthetic databases.

5 Conclusion
In this paper we introduced DGL, a simple specification
language to generate databases with complex synthetic
distributions and inter-table correlations. We showed
that many synthetic distributions proposed earlier in
the literature can be easily specified using DGL. We also
showed that the resulting data generators are efficient.
We believe that DGL is an important first step towards
reusable synthetic databases.

References
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning his-

tograms: Building histograms without looking at
data. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD),
1999.

[2] A. Aboulnaga, J. Naughton, and C. Zhang. Gen-
erating synthetic complex-structured XML data.
In In Proceedings of the International Workshop
on the Web and Databases (WebDB), 2001.

[3] S. Agrawal, S. Chaudhuri, and V. Narasayya. Ma-
terialized view and index selection tool for Mi-
crosoft SQL Server 2000. In Proceedings of the
ACM International Conference on Management
of Data, 2001.

[4] D. Barbosa, A. Mendelzon, J. Keenleyside, and
K. Lyons. ToXgene: a template-based data gen-
erator for XML. In In Proceedings of the In-
ternational Workshop on the Web and Databases
(WebDB), 2002.

[5] D. Bitton, D. J. DeWitt, and C. Turbyfill. Bench-
marking database systems: A systematic ap-
proach. In Proceedings of the International Con-
ference on Very Large Databases (VLDB), 1983.

[6] N. Bruno and S. Chaudhuri. Conditional selec-
tivity for statistics on query expressions. In Pro-
ceedings of the ACM International Conference on
Management of Data (SIGMOD), 2004.

[7] N. Bruno, S. Chaudhuri, and L. Gravano.
STHoles: A multidimensional workload-aware
histogram. In Proceedings of the ACM Interna-
tional Conference on Management of Data, 2001.

[8] S. Chaudhuri and V. Narasayya. TPC-D
data generation with skew. Accesible via ftp at
ftp.research.microsoft.com/users/viveknar/tpcdskew.

[9] S. Chaudhuri and V. Narasayya. Automating sta-
tistics management for query optimizers. In Pro-
ceedings of the International Conference on Data
Engineering (ICDE), 2000.

[10] D. Donjerkovic, Y. E. Ioannidis, and R. Ramakr-
ishnan. Dynamic histograms: Capturing evolv-
ing data sets. In Proceedings of the International
Conference on Data Engineering (ICDE), 2000.

[11] J. Gray. The Benchmark Handbook for Database
and Transaction Systems. Morgan Kaufmann,
1993.

[12] J. Gray et al. Quickly generating billion-record
synthetic databases. In Proceedings of the ACM
International Conference on Management of Data
(SIGMOD), 1994.

[13] P. E. O’Neil. A set query benchmark for large
databases. In Proceedings of the 15th Interna-
tional Computer Measurement Group Conference,
1989.

[14] V. Poosala and Y. E. Ioannidis. Selectivity esti-
mation without the attribute value independence
assumption. In Proceedings of the International
Conference on Very Large Databases (VLDB),
1997.

[15] N. Thaper et al. Dynamic multidimensional his-
tograms. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD),
2002.

[16] TPC Benchmark H. Decision support. Available
at http://www.tpc.org/tpch/spec/tpch2.1.0.pdf.

[17] C. Turbyfill, C. Orju, and D. Bitton. ASAP: A
comparative relational database benchmark. In
Proceedings of Compcon, 1989.

[18] G. Valentin et al. DB2 advisor: An optimizer
smart enough to recommend its own indexes. In
Proceedings of the International Conference on
Data Engineering (ICDE), 2000.

1107

