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Abstract

Grid computing has the potential to drastically
change enterprise computing as we know it today.
The main concept of grid computing is viewing
computing as a utility. It should not matter where
data resides, or what computer processes a task.
This concept has been applied successfully to aca-
demic research. It also has many advantages for
commercial data warehouse applications such as
virtualization, flexible provisioning, reduced cost
due to commodity hardware, high availability and
high scale-out. In this paper we show how a large-
scale, high-performing and scalable grid-based
data warehouse can be implemented using com-
modity hardware (industry-standard x86-based),
Oracle Database 10g and the Linux operating sys-
tem. We further demonstrate this architecture in a
recently published TPC-H benchmark.

1. Introduction

Grid computing has the potential to drastically change en-
terprise computing as we know it today. The main concept
of grid computing is viewing computing as a utility. It
should not matter where data resides, or what computer
processes a task. It should be possible to request informa-
tion or computation and have it delivered — as much as is
needed, and whenever it is needed. This is analogous to the
way electric utilities work, in that one does not know where
the generator is, or how the electric grid is wired. One just
asks for electricity and gets it. The goal is to make comput-
ing a utility — a commodity, and ubiquitous. This, however,
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is the view of utility computing from a user’s point of view.
From an implementation point of view, grid is much more
— it is about data virtualization, resource provisioning and
availability.

Virtualization enables components on all levels, such as
storage devices, processors and database servers, to col-
laborate without creating rigidity and brittleness in the sys-
tem. Rather than statically determining where a database
physically locates its data or which exact server the data-
base runs on, virtualization enables each component of the
grid to react to change more quickly and to adapt to com-
ponent failures without compromising the entire system.
Provisioning ensures that all those that need or request re-
sources are getting what they need. Once resources are vir-
tualized, they can be dynamically allocated for various
tasks based on changing priorities. Both hardware re-
sources and data need to be allocated to databases and ap-
plication servers. Most importantly, resources are not
standing idle while tasks are not being serviced. High
availability and scalability ensures that all the data and
computation will always be there — just as a utility com-
pany must always provide electric power — even when sys-
tems are scaled out.

Research institutes have embraced the idea of grid
computing for some time. Taking advantage of idle com-
puting resources around the globe, academic grids have
been established to solve complex computational problems.
For instance, SETI@home, a project at the University of
California at Berkeley, uses idle PCs on the Internet to
mine radio telescope data for signs of extraterrestrial intel-
ligence [1]. It uses a proprietary architecture consisting of
a data server, located at U.C. Berkeley, which sends about
350 KB of radio frequency data at a time to subscribed
computers. These computers run a client program as a
background process, as a GUI application, or as a screen
saver, and results are returned to the data server. In No-
vember 2004, IBM, along with representatives of the
world’s leading science organizations, launched the World
Community Grid. Similar to SETI@home, it consolidates
the computational power of subscribed computers around
the globe. In its first project it is directing its computing



power to research designed to identify the proteins that
make up the human proteome and, in doing so, to better
understand the causes and potential cures for diseases like
malaria and tuberculosis [8]. SETI@home and the World
Community Grid are architectures that scavenge computing
cycles of a completely distributed set of idle, heterogeneous
servers. This concept can be applied very successfully to
problems that are of common interest to the “world com-
munity”— the data (radio waves, human protein) is not sub-
ject to any security concerns since it is readily available.
Most importantly, the outcome (discovery of extraterres-
trial life or cures for diseases) is of everybody’s interest.
The tasks sent to nodes in these grids involve highly com-
putational problems on a relatively small data set — 350 KB
in SETI@home, for example — keeping computers easily
busy for days with low network requirements. Ob-
jectGlobe [9], similar to other projects like Jini [10], Mari-
posa [11], Garlic [12] or Amos [13], have studied distrib-
uted query processing. They constitute infrastructures that
facilitate distributed processing of complex queries execut-
ing multiple operators from different sites while also deal-
ing with security concerns. ObjectGlobe takes this concept
further into an open environment. TPC-H-like data ware-
house applications execute large joins and sort operations,
making it necessary to tightly couple the nodes of a distrib-
uted system such as the data warehouse grid we are propos-
ing in this paper. The above projects propose a framework
for highly distributed systems rather than tightly connected
systems.

Applying the above concepts directly to corporate data
warehouses is appealing but difficult because of data secu-
rity concerns and network performance problems. Corpo-
rate data warehouses contain business intelligence that
must not be made known to competitors. Also, the results
are generally not in the public interest. Although network
bandwidth is increasing, computing table joins of terabyte-
sized tables between nodes connected via the Internet is not
feasible. Businesses rely on having business intelligence
delivered at a determined time. The characteristics of grid
computing are very appealing for today’s corporate data
centers. Companies must respond to accelerating business
changes fueled by churning market demands, an increas-
ingly dynamic global economy and constant technological
innovations. Traditionally, data warehouses have been de-
ployed as a series of islands of systems that cannot easily
share resources; this results in significantly underutilized IT
systems and soaring costs. Grid-based data warehouses can
solve this dilemma.

This paper presents technologies from HP and Oracle
that leads the way to large-scale data warehouse grids that
deliver high performance while providing flexible provi-
sioning, high availability and resource virtualization. As
the prices for Linux-run commodity hardware (industry-
standard x86-based) have dropped steadily and as the per-
formance and reliability of these systems have improved
enormously, the industry is taking a serious look at industry
standard server-based grid configurations for large-scale
data warehouse applications. In addition, Oracle’s shared-
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disk architecture is ideal for the key features of data ware-
house grids: virtualization, provisioning and availability.
The myth that shared-disk implementations have scaling is-
sues for large-scale data warehouses is addressed by a 12-
node published 1000-GB scale factor TPC-H benchmark,
which delivers performance comparable to equally sized
Symmetrical Multi-Processing (SMP) systems. New tech-
nologies used in this benchmark, such as InfiniBand, HP
high performance storage arrays and Oracle Grid support,
overcome these scalability issues. This benchmark demon-
strates a milestone on the path toward a true grid. Even
though this benchmark did not exercise all of the aspects of
grid computing, it addresses scalability, performance and
total cost of ownership (TCO).

The organization of this paper is as follows: Section 2
defines the Oracle and HP vision for a data warehouse grid.
It further explains how large-scale grid-based data ware-
houses can be built using industry standard hardware out-
lining the necessary hardware architectures and hardware
features that are supported in HP, such as shared-disk stor-
age, high-performance interconnect, and high-performance
computers. Section 3 outlines the features in Oracle Data-
base 10g to implement a scalable shared-disk data ware-
house grid. Finally, Section 4 gives an in-depth analysis of
a published 1000-GB TPC-H benchmark [2] with the em-
phasis on how the HP and Oracle hardware and software
features were used to achieve high performance.

2. Large-Scale Data Warehouse Grids

The goals of grid computing are closely aligned with capa-
bilities and technologies that Oracle and HP have been de-
veloping for years. Oracle’s latest RDBMS release, Oracle
Database 10g, provides substantial grid computing technol-
ogy. Figure 1 shows how Oracle and HP envision grid
computing by orchestrating many small servers and storage
subsystems into one virtual computer. There are three lev-
els of abstraction: the first level contains server nodes, the
second level contains database applications and the third
level contains storage subsystems. This three-level archi-
tecture, which allows for a very flexible grid implementa-
tion, requires a shared-disk implementation. Shared-disk
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Figure 1: Large-Scale Data Warehouse Grid




architectures are characterized by all nodes having access
to all data in the database. Hence, there is only one data-
base — logically and physically. In a shared-nothing archi-
tecture the database is divided into partitions. Each server
node has exclusive access to a single partition, and only
one server node may own and access a particular partition
at a time.

Both architectures share many advantages. They are
able to use commodity hardware to reduce TCO. They can
overcome the natural limitations of SMP systems, which
can be scaled up by adding hardware such as processors,
memory or disk arrays, but are limited by the resources
available on a single server. Today’s largest commercially
available SMP systems (Sun Fire(TM) E25K servers) are
limited to 144 CPUs (72 dual-threaded processors) [14]. In
contrast, grid systems can be scaled out virtually without
limits by adding additional server nodes.

In addition to the above advantages, shared-disk archi-
tectures provide dynamic resource sharing between applica-
tions of one database and between databases and provision-
ing by virtualization of resources. Another advantage of a
shared-disk architecture is the increased availability.
Availability is critical for today’s large-scale data ware-
houses, which provide business-critical services and must
therefore operate 24x7. Adding or removing additional
systems (scale-out) can be done without interrupting the
system as a whole.

2.1. Advantages of Grid-Based Data Warehouses

2.1.1 Commodity Hardware

Performance and reliability of Linux-run commodity hard-
ware-based systems (industry-standard x86-based) have
improved enormously while prices have dropped steadily.
TPC-H results show that commodity hardware-based sys-
tems can deliver the same performance as large SMP sys-
tems at half the price [3,4].

HP ProLiant servers provide features differentiating
them from the competition; the number and variety of op-
tions and features available for these servers has grown rap-
idly, and continues to grow. Development of the ProLiant
servers illustrates HP’s consistent efforts to provide cus-
tomers with the world’s broadest industry-standards-based
server portfolio and industry-leading innovation in areas
such as management, availability, security and virtualiza-
tion. For instance, the ProLiant DL585 servers used in the
TPC-H benchmark are 4U rack-optimized 4-way servers
created for large data center deployments requiring enter-
prise-class performance, uptime and scalability, plus easy
management and expansion. They offer customers running
32-bit applications increased performance and memory ad-
dressability. While allowing IT organizations to protect
their large x86 investments, the servers also provide a path
to more powerful, 64-bit computing to meet evolving busi-
ness needs for greater processing power and performance.
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2.1.2 Scale-Out vs. Scale-Up

Scalability is the ability of a system to maintain desired
performance levels as it grows. This is necessary when a
system expands to accommodate increased data or a larger
number of concurrent users. A system can be either scaled
up or scaled out. Traditionally, data warehouse applica-
tions have been deployed on scale up (high-end SMP) sys-
tems. In recent years, the industry has observed another
trend: scale-out configurations. This is fueled by a drop in
prices for commodity hardware and its improvement in per-
formance and reliability.

Scale-up is achieved by adding devices — typically
processors, memory, disks and network interface cards — to
an existing database server. This is also referred to as ver-
tical scaling or vertical growth. Multiple services or appli-
cations can be serviced by a single node, which reduces the
total administration costs. Server capacity can be easily in-
creased in a server with sufficient expansion capability by
adding CPUs, memory and other components. Software li-
censing costs may be lower, since the software is hosted on
only one server. On the other hand, all services will be un-
available if the server is down. The availability of the
server is limited and depends on server resources. If the
server load is maximized or the server fails, then the ser-
vices may be discontinued until the server is replaced with
a more capable or operational server. The scalability of the
server is limited, and depends on server resources. If it is
running at maximum capacity, it cannot be scaled up. The
only alternative would be to replace the existing server.
Typically, the initial expense of scale-up server is higher
than the 4-CPU industry-standard server used for scale-out.
This is due to the larger capabilities and often more com-
plex architectures of large SMP servers.
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Figure 2: Scale-Up vs. Scale-Out

Scale-out is achieved by adding servers and distributing the
existing database application across all of the servers. A
scale-out architecture has the potential for scalable and
high-hosting highly available services, allowing capacity
improvements without interruptions. Servers can be main-
tained and supported much more easily, since services do
not need to go down in order to add or remove a server for
repair or replacement. There are linear and predictable
costs associated with scaling out an application across mul-
tiple servers. On the other hand, depending on the initial
performance requirements, the cost per server and the cost



of infrastructure may be higher than the implementation on
one server. Software licenses may be higher when licenses
are sold on a per-server basis. Also, management may in-
crease for each server added to the array if appropriate best
practices are not defined for the environment. This paper
explores the potential of a scale-out architecture to host
scalable and highly available applications.

2.1.3 Provisioning

Provisioning means allocating resources where they are
needed. With Oracle’s shared-disk architecture resources
can be virtualized. This enables enterprises to dynamically
allocate resources for various enterprise tasks based on
changing business priorities, reducing underutilized re-
sources and decreasing overcapacities. Data warehouse
applications can easily share compute and data resources by
migrating between servers of the grid to leverage available
resources. Schedulers on the grid track resource availabil-
ity, and assign resources accordingly.

For instance, in a business intelligence environment, to
increase the productivity of data analysts during the day,
most resources should be allocated to online analytical
processing (OLAP) queries against data marts, while re-
sources for reporting queries against the data warchouse
should be limited. Let’s assume that the data warehouse is
synchronized twice a day with an operational data store as
part of an extraction transformation and load (ETL) task.
Hence, during short periods, it is imperative that resources
are assigned to the ETL process. With a shared-disk-based
business intelligence grid, resources can be assigned to da-
tabases and applications without shutting down databases.
In our example above, during the day, most nodes of the
grid can be assigned the OLAP applications, while only a
few are assigned to reporting queries. Twice a day, when
the ETL application runs, nodes can be temporarily de-
tached from the OLAP database and assigned to the ETL
application. At night, when no OLAP activity exists most
nodes can be assigned to answer reporting queries. This
can be specified in the query or application.

2.1.4 Availability

Another advantage of shared-disk grid architectures is their
increased availability. Availability is critical for today’s
large-scale data warehouses, which provide business-
critical services and must therefore operate 24x7. For in-
stance, Amazon.com’s online recommendation system is
fed by an industry-standard grid data warehouse system. A
shared-disk grid increases availability by employing multi-
ple symmetrical systems sharing the same data. In addition
to increased availability, symmetrical systems lead to an
increase in computing power. Nodes can fail without com-
promising the availability of the entire system. They can
also be extended or shrunk without bringing down the en-
tire system, increasing system availability through system
(hardware and software) upgrades.
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2.2 Hardware Requirements of a Shared-Disk Grid

2.2.1 Storage

A shared-disk cluster architecture is characterized by all
nodes sharing all the data in the database, which necessi-
tates a storage area Network (SAN). HP SAN provides the
data communication infrastructure and management fea-
tures for most demanding scale-out clusters. In a SAN,
server nodes can be added and removed while their data
remains in the SAN. Multiple servers can access the same
storage for more consistent and rapid processing. The stor-
age itself can be easily increased, changed, or reassigned.
In a SAN, multiple compute servers and backup servers can
access a common storage pool. Properly designed SAN
storage is highly available, allowing many servers to access
a common storage pool with the same degree of availability
A typical SAN is assembled from adapters, SAN
switches, and storage enclosures. Fibre Channel host bus
adapters are installed into hosts like any other PCI host bus
adapters. SAN switches provide scalable storage connec-
tivity of almost any size. Storage enclosures place the array
controller capabilities close to the physical disk drives.

2.2.2 High-Speed Inter-Node Communication

Data warehouse queries tend to involve complex, long run-
ning operations. In a shared-disk grid configuration, they
are broken down into smaller sub-queries, which are dis-
seminated to participating nodes of the grid. Upon comple-
tion, the results of these sub-queries are forwarded to other
nodes for further processing or coalesced into the final re-
sult. Performance for these operations is directly correlated
to the speed of the inter-node connection.

In a grid configuration, the network connecting the in-
dependent computing nodes is called the interconnect. In a
data warehouse grid, a low-latency, high-throughput inter-
connect is critical for achieving high performance. During
typical data warchouse queries, such as join operations and
data load, it is important to effectively pass messages and
to transfer data blocks between nodes. It is not uncommon
for queries to require more than 100 MB/s throughput per
node. The two most commonly available cluster intercon-
nect technologies on industry-standard hardware are Giga-
bit Ethernet (GigE) and InfiniBand (IB).

Cluster technology is beginning to be adopted by main-
stream customers, and performance between nodes will
largely determine the performance scalability. Although
Ethernet technology is ubiquitous in IT organizations, a
dedicated IB fabric not only significantly increases overall
performance, but more than justifies the additional cost.

3. Grid Support Within Oracle Database 10g

In Oracle Database 10g, users at separate nodes can access
the same database while simultaneously sharing resources
with all other nodes, yielding benefits such as increased
transaction processing power and higher availability of
multiple nodes. Also, scaling out with multiple nodes en-



ables a cluster to overcome the limitations of a single node,
such as memory, CPU or I/O-bandwidth. This enables the
grid configuration to supply much greater computing
power. These features make Oracle 10g the ideal platform
for grid-based data warehouses.

In a grid-based data warehouse, the execution of any
particular operation must adapt to the resources available to
it at the time it starts (automatic resource allocation). For
instance, if a SQL operation is the only operation running
in a grid, it should be given all resources. In contrast, if
there are multiple SQL operations running, each should be
given the same amount of resources without overloading
the grid. This is important in scale-out situations — while
the grid grows, new resources should be made available to
operations without any user intervention, especially without
changing the SQL text.

Furthermore, for a grid system, it is important to sup-
port features like rapid recovery from failures, support for
physical and logical standby databases, online maintenance
operations, sophisticated diagnosis and repair of failure
conditions and transparent application failover. Oracle Da-
tabase 10g provides these features.

3.1 Dynamic Resource Allocation

Under the term dynamic resource allocation fall many fea-
tures within the Oracle RDBMS. This paper, however, fo-
cuses on those that are applicable to grid-based data ware-
house systems — determining the optimal execution model
for parallel query processing, choosing the optimal degree
of parallelism, minimizing inter-node processing and per-
forming interprocess communication efficiently.

Most data warehouse SQL operations are executed in
parallel; that is, operations are divided into smaller portions
necessary to run in parallel in multiple processes. This is
called parallel execution or parallel processing, a feature
most RDBMS implementations offer today. The next sec-
tions explain how Oracle Database 10g optimally performs
parallel processing in grid data warehouses by utilizing all
available resources, dynamically choosing the degree of
parallelism and minimizing inter process communication.

3.1.1 Parallel Processing in an Oracle Grid System

One of the most challenging tasks for grid-based data
warehouse systems is to perform parallel processing effi-
ciently. In Oracle Database 10g, processes executing on a
portion of the data are called parallel execution servers'.
One process, known as the parallel execution coordinator,
parses each SQL statement to optimize and parallelize its
execution. After determining the execution plan of a

! The term “server” is used to describe a process that works on a
portion of the entire SQL operation
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statement, the parallel execution coordinator decides the
parallelization method for each operation in the execution
plan. The coordinator must choose whether an operation
can be performed in parallel and, if so, how many parallel
execution servers on which nodes to enlist. Then, it dis-
patches the execution of an operation to several parallel
execution servers and coordinates the results from all of the
Server processes.

In detail, the parallel execution coordinator dynamically
divides the work into units called granules. One granule at
a time is sent to a single parallel execution server. How
granules are generated depends on the operation. For in-
stance, for a table scan, granules are generated as ranges of
physical blocks of the table to be scanned. The mapping of
granules to execution servers is determined dynamically at
execution time. When an execution server finishes with
one granule, it gets another granule from the coordinator if
there are any granules remaining. This continues until all
granules are exhausted, that is, the operation is completed.

The number of parallel execution servers used for an
operation is the degree of parallelism (DOP). The default
DOP for any operation is set to twice the number of CPUs
available: DOP 2 x #CPUs

3.1.2 Inter- and Intra-Operation Parallelism

Data warchouse SQL statements usually perform complex,
multiple table access, join and sort operations. The Oracle
RDBMS applies a producer/consumer model to data opera-
tions. This means only two operations in a given execution
tree need to be performed simultaneously. Each operation
is given its own set of parallel execution servers. There-
fore, both operations have parallelism. Parallelization of an
individual operation where the same operation is performed
on smaller sets of rows by parallel execution servers
achieves what is termed intra-operation parallelism. When

SELECT T, id MAX (T;.val)
FROM T,, T,

WHERE T,.id= T,.id
GROUP BY T, id;

maximum

two operations run concurrently on different sets of parallel
execution servers with data flowing from one operation into
the other is called inter-operation parallelism. Consider the
following simple join between two tables T1 and T2 aggre-
gating on one column.

Assuming that the DOP for this operation is 64 this
query is parallelized in the following fashion (see Figure 3
for the query’s execution plan). Each parallel execution
server set (S1 and S2) consists of 64 processes. S1 first
scans the table T1 while S2 concurrently fetches rows
from S1 building the hash table for the following hash join
operation (inter-operation parallelism).



After S1 has fin-

Parallel ished scanning the en-
Execution tire table T1, it scans
Coordinator the table T2 in paral-
lel. It sends its rows to

parallel execution

Group servers in S2, which
By then  perform the
Sort probes to finish the
hash-join in parallel.

After S1 is done scan-

ning the table T2 in

parallel and sending

T1id=T2id the rows to S2, it

switches to performing
the GROUP BY in par-
allel. This is how two
server sets run concur-
rently to achieve inter-
operation parallelism
across various opera-
tors in the query exe-
cution plan while achieving intra-operation parallelism in
executing each operation in parallel.

Another important aspect of parallel execution is the re-
partitioning of rows while they are sent from parallel exe-
cution servers in one server set to another. For the query
plan in Figure 2, after a server process in S1 scans a row of
T1, which server process of S2 should it send it to? The
partitioning of rows flowing up the query tree is decided by
the operator into which the rows are flowing. In this case,
the partitioning of rows flowing up from S1 performing the
parallel scan of T1 into S2 performing the parallel hash-
join is done by hash partitioning on the join column value.
That is, a server process scanning T1 computes a hash
function of the value of the column T1.1id to decide the
number of the server process in S2 to send it to. Depending
on the table partitioning, Oracle can optimize this operation
using partial or full partition-wise joins, minimizing inter-
process communication (see Section 3.4)

In a grid environment, each node hosts a subset of the
parallel server processes. In a 16-node, 4-CPU-per-node
configuration, each node holds approximately 64 parallel
servers. The entire system may hold 1024 parallel servers.
The query coordinator prepares the execution depending on
resource availability in the grid. In addition to the usual
query parsing, query plan generation and query paralleliza-
tion steps, query optimization must also determine which
DOP to choose and on which node to execute the query.

Full Table
Scan T1

Full Table
Scan T2

Figure 3: Parallel Execution
Plan EP1

3.2 Dynamic Degree of Parallelism

In a grid environment, the degree of parallelism cannot be
static — it must be adjusted according to resource availabil-
ity (servers, memory, disk I/O, etc.). Resource availability
changes in two ways. At any given time in a grid, more or
fewer systems can be available to a user for running SQL
operations. This could be because resources are shared be-
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tween multiple applications and/or different users in a grid,
or because the system scaled out. Since the DOP is directly
related to the number of CPUs, the DOP adjusts automati-
cally as new nodes are added to the system. The DOP for
an 8-node 4-CPU-per-node grid is 64 (see Section 3.1). If
the number of nodes doubles to 16, the DOP is automati-
cally adjusted to 128. Similarly, if nodes are eliminated
from the grid, the DOP decreases proportionally.

The second way system resources can be different de-
pends on how many operations are actually running on the
system. Usually, there are many users connected concur-
rently to a data warehouse system issuing queries at any
given time. To optimize execution time for all users and to
utilize all system resources, Oracle Database 10g dynamic
parallelism allows for adjusting the degree of parallelism
before each operation starts (Adaptive Multiuser Algo-
rithm). When a system is overloaded and the input DOP is
larger than the default DOP, the Adaptive Multiuser Algo-
rithm uses the default degree as input. The system then
calculates a reduction factor that it applies to the input
DOP. For instance, using a 16-node 4-CPU-per-node grid,
when the first user enters the system and it is idle, it will be
granted a DOP of 128. The next user entering the system
will be given a DOP of 64, the next 32, and so on. If the
system settles into a steady state of, let’s assume, 16 con-
current users, all users will be given a DOP of 8, thus divid-
ing the system evenly among all the parallel users.

3.3 Inter-Process Communication

Inter-process communication (IPC) refers to sending data
and control messages between parallel execution processors
of a grid. IPC is very high during data warechouse opera-
tions when join, sort and load operations are performed in
parallel. Oracle uses a message-based protocol with its
own flow control. Messages between processes on the
same node are passed on using shared memory. Messages
between processes on different nodes are sent using an op-
erating-system-dependent IPC protocol. Oracle supports a
variety of protocols and wires. With Linux, Oracle sup-
ports Ethernet and IB. The protocols that can be run on
Ethernet are TCP/IP and UDP/IP. 1B supports TPC/IP,
UDP/IP, and uDAPL. Performance of the different proto-
col/wire combinations differs significantly.

Grid-based data warehouses demand a high-
performance IPC. The amount of interconnect traffic de-
pends on the operation and the number of nodes participat-
ing in the operation. Join and sort operations use IPC more
than simple aggregations because of possible communica-
tion between parallel execution servers. The amount of in-
terconnect traffic varies significantly, depending on the dis-
tribution method. Partial partition-wise joins (see next sec-
tion), in which only one side of the join is redistributed, re-
sult in less interconnect traffic, while full partition-wise
joins (see next section), in which no side needs to be redis-
tributed, result in the least interconnect traffic.

The amount of interconnect traffic also depends on how
many nodes participate in a join operation. The more
nodes that participate in a join operation, the more data



needs to be distributed to remote nodes. For instance, in a
4-node grid cluster with 4 CPUs on each node to maximize
load performance with external tables, the DOP is set to 32
on both the external and internal tables. This will result in
8 parallel server processes performing read operations from
the external table on each node, as well as 8 parallel server
processes performing table creation statements on each
node. On the other hand, if there are 4 users on average on
the systems issuing queries, it is very likely that each user’s
query will run locally on one node, reducing the number of
remote data distributions to almost zero.

3.4 Decreasing Inter-Process Communication

Oracle Database 10g minimizes IPC traffic for large join
operations, significantly improving performance and scal-
ability for grid-based data warehouse operations. The most
important features are partition-wise joins and node local-
ity. In the default case, parallel execution of a join opera-
tion by a set of parallel execution servers requires the redis-
tribution of each table on the join column into disjoint sub-
sets of rows. These disjoint subsets of rows are then joined
pair-wise by a single parallel execution server. If at least
one of the tables is partitioned on the join key, Oracle can
avoid redistributing partitions of this table.

3.4.1 Full and Partial Partition-Wise Join

Partition-wise joins minimize the amount of data ex-
changed between parallel execution servers. In a grid data
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Figure 4: Full Partition-Wise Join

warehouse, this significantly reduces response time by lim-
iting the data traffic over the interconnect (IPC), which is
the key to achieving good scalability for massive join op-
erations. Depending on the partitioning scheme of the ta-
bles to be joined partition-wise, joins can be full or partial.
A full partition-wise join divides a large join into
smaller joins between a pair of partitions from the two
joined tables. For the optimizer to choose the full partition-
wise join method, both tables must be equipartitioned on

their join keys. That is, they have to be partitioned on the
same column with the same partitioning method. Parallel
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execution of a full partition-wise join is similar to its serial
execution. Instead of joining one partition pair at a time,
multiple partition pairs are joined in parallel by multiple
parallel query servers. The number of partitions joined in
parallel is determined by the DOP.

Figure 4 illustrates the parallel execution of a full parti-
tion-wise join between two tables, T1 and T2, on 4 nodes.
Both tables have the same degree of parallelism and the
same number of partitions (32). As illustrated in the pic-
ture, each partition pair is read from the database and
joined directly. There is no data redistribution necessary,
thus minimizing IPC communication, especially across
nodes. Defining more partitions than the degree of parallel-
ism may improve load balancing and limit possible skew in
the execution. If there are more partitions than parallel
query servers, each time one query server completes the
join of one pair of partitions, it requests another pair to join.
This process repeats until all pairs have been processed.
This method enables the load to be balanced dynamically
when the number of partition pairs is greater than the de-
gree of parallelism (for example, 128 partitions with a de-
gree of parallelism of 32).

Unlike full partition-wise joins, partial partition-wise
joins can be applied if only one table is partitioned on the
join key. Hence, partial partition-wise joins are more
common than full partition-wise joins. To execute a partial
partition-wise join, Oracle Database 10g dynamically
repartitions the other table based on the partitioning of the
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Figure 5: Partial Partition-Wise Join

partitioned table. Once the other table is repartitioned, the
execution is similar to a full partition-wise join. The redis-
tribution operation involves exchanging rows between par-
allel execution servers. This operation leads to intercon-
nect traffic in grid environments, since data needs to be re-
partitioned across node boundaries.

Figure 5 illustrates a partial partition-wise join. It uses
the same example as in Figure 2, except that T2 is not parti-
tioned. Before the join operation is executed, the rows
from T2 are dynamically redistributed on the join key as il-
lustrated by the arrows from the database into P1-P32. For



readability, not all arrows are drawn. During this redistri-
bution, data is sent from one parallel server to another par-
allel server using IPC.

3.4.2 Node Locality

Another feature in Oracle to reduce IPC traffic is node lo-
cality. If the Adaptive Multiuser Algorithm determined the
DOP to be less than or equal to double the number of CPUs
per node, queries are run locally on one node. Which node
gets to execute the operation is dynamically determined by
the load on each system at that time. As resources are be-
coming available and the DOP is larger than double the
number of CPUs per node, operations are executed on mul-
tiple nodes. However, Oracle Database 10g always tries to
limit the number of nodes executing one operation. This is
advantageous because it minimizes the interconnect re-
quirements. For instance, if there are 16 users running on a
16-node 4-CPUs-per-node grid, the DOP for each operation
is 8. Hence, each operation runs on one node. If the num-
ber of user drops to 8, each operation is run on two sys-
tems.

3.4.3 Dynamic Partition of Grid Resources

Types of operations in a data warehouse range from long-
running periodic reporting queries over OLAP-type queries
to data maintenance operations. For some data warehouses,
it is possible to dedicate a specific time period to each of
the above operations. In this case, the entire system either
calculates reporting queries, or is available for online users
or for data maintenance operations. However, some data
warehouses, especially globally operating systems, cannot
afford to dedicate the entire system to specific tasks, but
must run them concurrently. In Oracle Database 10g it is
possible to dedicate a subset of the grid to specific tasks.
This can be done dynamically without shutting down the
system. For instance, during peak hours, the system can be
available for OLAP users. During off hours, 20% of the
system is dedicated to occasional user queries while 40% is
dedicated to reporting queries and 40% is dedicated to data
maintenance operations.

So far we have assumed that the entire grid runs one da-
tabase. It is also possible to run multiple databases on the
same grid. These databases, sharing the same disk subsys-
tem, can take advantage of further features in Oracle Data-
base 10g, such as Transportable Tablespaces. Transport-
able Tablespaces offers grid users an extremely fast
mechanism to move a subset of data from one Oracle data-
base to another. It allows Oracle data files to be unplugged
from a database, moved or copied to another location and
then plugged into another database. Unplugging or plug-
ging a data file involves only reading or loading a small
amount of metadata. Transportable Tablespaces also sup-
ports simultaneous mounting of read-only tablespaces by
two or more databases.

If data needs to be shared as it is created or changed,
rather than occasionally shared in bulk, Oracle Streams can
stream data between databases or nodes in a grid. It pro-
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vides a unique method of information sharing, combining
message queuing, replication, events, data warehouse load-
ing, notifications and publishing/subscribing. It also:

e Keeps two or more copies in sync as updates are applied
e Captures database changes

Propagates database changes to subscribing nodes
Applies changes

Detects and resolves any conflicts

Can be used directly by applications as a message queu-
ing feature, enabling communications between applica-
tions in the grid

4. Industry-Standard TPC-H on a Shared-
Disk Grid Configuration

TPC-H, the industry’s leading decision support benchmark,
exemplifies decision support systems (DSSs) that examine
large volumes of data, execute queries with a high degree
of complexity and provide data used to answer critical
business questions. It consists of a suite of business-
oriented ad-hoc queries and concurrent data modifications.
The queries and the data populating the database have been
chosen to have broad industry-wide relevance. Queries are
run in two ways to simulate a single-user and multi-user
environment: First, queries are submitted by a single
stream. In this test, each query has all resources available,
running massively in parallel (single-user or power test).

Then, multiple streams are run concurrently, each running

one query at a time (multi-user or throughput test). Sys-

tems that want to excel in a TPC-H benchmark run have to
prove that they can handle both the single and multi-user
tests.

The TPC-H performance metric is called the TPC-H
Composite Query-per-Hour ~ Performance Metric
(QphH@Size). It reflects multiple aspects of the system’s
capability  to  process  queries. The  TPC-H
Price/Performance metric is expressed as $/QphH@Size,
where $ is the 3-year cost of ownership of the hardware and
software components. In addition, there is a timed portion
of database load time reported as a secondary metric. The
TPC-H benchmark specification is available at
http://www.tpc.org/tpch/.

This section gives a detailed overview of the recently
released 1000-GB TPC-H benchmark by HP and Oracle. It
demonstrates that:

e Clustered ProLiant systems with AMD Opteron—x86
processors deliver performance comparable to large SMP
systems

e Large-scale data warehouses can be successfully de-
ployed using an industry-standard hardware grid configu-
ration to deliver world record performance

e The Linux operating system (Red Hat Enterprise Linux
AS 3) handles the throughput and processing demands re-
quired to achieve the benchmark result

e Oracle Database 10g delivers consistent,
performance query execution in grid environments

high-



This result builds on an earlier 3000-GB TPC-H
benchmark result on an 8-node HP ProLiant cluster to
demonstrate the commitment of HP and Oracle to this ar-
chitecture. The benchmark proactively supports current
and potential customers that are considering industry-
standard hardware running Linux for data warehouses.

4.1 Benchmarked Configuration

The benchmarked configuration was a 12-node ProLiant
DL58S5 cluster connected to a 14.7-TB storage fabric SAN
(Figure 6), comprised of 12 HP StorageWorks SAN Switch
2/16s (SAN Switch 2/16) and 48 HP StorageWorks Modu-
lar Smart Array 1000 (MSA1000) devices. Each HP ProLi-
ant DL585 server contained 6 dual-port HP StorageWorks
Fiber Channel 2214DC Host Bus Adapters (HBAs). Each
port connects to one of 12 SAN Switch 2/16s. Each SAN
Switch 2/16s has 4 HP StorageWorks MSA1000s con-
nected to it.

Node 1
hp
ProLiant DL 585

InfiniCon
InfinlO 3016

Node 12
hp
ProLiant DL 585

Figure 6: TPC-H Benchmark Configuration

Each server was configured with one InfiniCon Systems
InfiniServ 7000 Host Channel Adapter (IB controller) con-
nected to an InfiniCon Systems InfinlO 3016 switch (IB
switch), used as cluster interconnect, as shown in Figure 6.
The cluster interconnect protocol was UDP/IP over IB. The
IB interconnect was chosen because it provides higher per-
formance and lower latency than Gigabit Ethernet. The In-
finiCon3016 switch is one of several roughly equivalent
products to implement this approach. Each server has two
on-board GigE NICs, each connected to a HP ProCurve
4148gl switch. One ProCurve 4148¢gl switch was used for
cluster manager communication (cluster heartbeat) and the
other was used for user connectivity.

4.1.1 Server

The ProLiant DL585 is an x86 4-way server, based on
AMD Opteron processor technology. Each ProLiant
DL585 server was configured with four 2.2-GHz/1-MB
AMD Opteron Model 848 processors (Figure 7). The de-
sign of the DL585 server is optimized for the AMD Op-
teron 8000 series chipset and the AMD 800 series of Op-
teron microprocessors.
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The AMD Opteron processor implements the x86 in-
struction set with a 64-bit memory space. The processor
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Figure 7: Detailed Server Configuration

runs 32-bit x86 programs in native mode without applica-
tion code changes, and provides a 64-bit mode for running
64-bit applications. The processor provides program-
controlled execution in either 32-bit or 64-bit mode; 32-bit
applications can run on top of a 64-bit operating system.
The compatibility for 32-bit jobs is in the microcode, which
imposes only a small penalty for the conversion to a fixed-
length instruction set.

The ProLiant DL585 supports 64 GB of memory. In
the benchmarked configuration, 8 GB of memory per
server was selected because Oracle Database’s System
Global Space (SGA) does not require large amounts of
memory in decision support systems. For the same reason,
a 32-bit version of Oracle Database 10g was used.

In ProLiant DL585, HyperTransport links, a universal
high-speed chip-to-chip communications technology, is
used to interconnect processors and memory. Applications
that require high-bandwidth, low-latency access to system
memory — for example, contain large sort operations com-
mon in data warehouse queries — benefit significantly from
fast memory access. Oracle Database inter-process com-
munications within a node, which is implemented using
shared memory, also benefit from fast memory access. The
ProLiant DLS585 supports cache-coherent non-uniform
memory access (ccCNUMA). As each processor contains its
own memory controller, when a processor accesses mem-
ory on its own local memory system, the latency is rela-
tively low, especially when compared to a similar SMP sys-
tem. If a processor accesses memory located on a different
processor, then the latency will be higher. Many operating
systems and databases servers can take advantage of
ccNUMA.

HyperTransport links are also used to connect a proces-
sor to an I/O subsystem. The ProLiant DL585 server con-
tains eight 64-bit PCI-X slots. In the benchmarked configu-
ration, six of the slots were used for Fibre Channel storage
adapters, one was used for an IB adapter and one was un-
used. Typical business-critical queries that require large se-
quential scans and large multi-table joins gain significantly
from ProLiant DL585’s high performance I/O subsystem.



4.1.2 Storage

The HP StorageWorks product set provides strong read
performance suitable for DSS applications. It can be
configured to support a large number of high-performance,
low-cost Fibre Channel connections between the nodes
and the arrays.

In the benchmarked configuration, the servers and
storage arrays were interconnected using the SAN Switch
2/16s, a 16-port Fibre Channel storage switch that offers 2-
GB connectivity for an entry-level SAN, and the ability to
grow to a large SAN infrastructure. Features such as
redundant power supplies and cooling make it ideal for
supporting corporate infrastructure implementations. Each
SAN Switch 2/16s had 12 servers and 4 MSA1000s
connected to it. The benchmarked configuration can be
extended to support higher throughput (adding more
storage arrays) and larger scale-out configurations (adding
more servers) by using SAN switches with higher port
counts or by interconnecting multiple SAN Switch 2/16s
devices.

The storage array wused in the benchmarked
configuration was the MSA1000, a 2-GB Fibre Channel
storage system designed for entry-level to midrange SAN
environments that provides low-cost, scalable and high-
performance storage. With the addition of two more drive
enclosures, it can control up to 42 drives, at present
allowing for a capacity of 12 TB; more spindles result in
higher random throughput. In the benchmarked
configuration, four 36-GB, 15-krpm Ultra320 disk drives
per MSA1000 were choosen to achive the targeted
price/performance balance.

One of the key factors that helped in achieving the high
I/O throughput was the HP Drive Array Technology used
in the MSA1000. The Drive Array Technology distributes
data across a series of individual hard drives to unite these
physical drives into one or more higher-performance
logical arrays and volumes. Distributing the data allows for
concurrent access from multiple drives in the array,
yielding faster I/O rates with no overhead on the server.
HP Drive Array Technology also supports fault-tolerant
configurations that protect against data loss due to drive
failures. Depending on the performance and application
requirements, logical drives in the array can be set to a
different level of fault tolerance. The RAID configuration
methods supported by the MSA 1000 Controller include:

m No fault tolerance/data striping (RAID 0)

m Drive mirroring and striping (RAID 10)

m Distributed data guarding (RAID 5)

m Advanced data guarding (RAID ADG)

Further data protection can be achieved by assigning
one or more online spares to any fault-tolerant array. The
Automatic Data Recovery feature rebuilds data onto a spare
or replacement drive when another drive in the array fails
in the background.

HP Drive Array Technology for MSA1000s supports
various stripe sizes. The stripe size of the array refers to
the size of the stripes written to each disk. Striping im-
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proves performance by splitting up files into small pieces
and distributing them to multiple hard disks.

In the benchmarked configuration, each MSA 1000 had
two RAIDO? (data striping) volumes of four 36-GB, 15-
krpm Ultra320 disk drives hosting data files. Eight
MSAT1000s had two additional 36-GB, 15-krpm Ultra320,
RAID10-protected drives hosting database redo log files.
The RAIDO volumes were created using a stripe size of 256
KB; this stripe size was chosen to match with the I/O re-
quest that Oracle Database 10g issues. Oracle Database
10g issues I/O requests in chunks of the Oracle Database
parameters multi_block read count (number of blocks in
one request) and db_block size (size of a database block).
To achieve the best read performance, the array 10/request
(stripe size [256 KB)] * number of disks [4]=1 MB) and
Oracle database 1/O request size (multi_block read count
[64] * db block size [16 KB]=1 MB) were set to be the
same.

The TPC-H database was partitioned efficiently to re-
duce overall amount of data required by the queries. The
benchmarked configuration had 96 data volumes, two per
MSA1000s. All tables of TPC-H schema, except nation
and regions, were evenly distributed over these data vol-
umes. Oracle was configured to use a DOP of 96.

The MSA1000 Array Accelerator (battery-backed
cache) can increase performance in database configura-
tions. It performs protected posted-write caching and read-
ahead caching, allowing data to be accessed much more
quickly than from disk storage. In protected posted-write
caching, data is written to the cache memory on the Array
Accelerator rather than directly to the drives. The read-
ahead cache detects sequential accesses to the array, reads
ahead data, and stores the data in the cache until the next
read access arrives. If the data is of a sequential nature, the
data can be loaded immediately into memory, avoiding the
latency of a disk access. The MSA1000s in the bench-
marked configuration were configured with 256 MB of Ar-
ray Accelerator Cache, set to 100% read ahead, because of
the read-intensive nature of the queries.

In addition, certain Linux operating system and Oracle
Database 10g features were enabled to improve I/O
throughput. Linux operating system and Oracle Database
10g engines were configured to support asynchronous 1/0,
which allows a process to submit an I/O request without
waiting for it to complete. Because the system does not put
the process to sleep while the I/O request is submitted and
processed, the calling process is able to perform other tasks
while the I/O proceeds. To further enhance I/O throughput,
two of the HP StorageWorks 2214DC driver parameters
were changed from their default. The gl2xintrdelaytimer —
the delay in milliseconds posted prior to generating an in-
terrupt — was set to 0 (default is 3 ms), resulting in no inter-
rupt migration. The ql2xmaxqdepth — number of out-

2 Production systems will usually use RAID10 or higher to ensure
fault tolerance. This was not used in the test to reduce costs and
improve performance.



standing requests per logical unit — was reduced to 24 from
the default value of 32.

4.2 Query Scalability

The Oracle Database 10g grid shows very good query scal-
ability. Figure 8 shows the elapsed time for the power and
throughput runs of the 1000-GB TPC-H benchmark. Bar 0
shows the elapsed time for the power run, while bars 1-7
show the elapsed time for streams 1-7 of the throughput
run. The elapsed time of the power run is 3163 seconds.
The elapsed time of the throughput run varies between
17375 and 19618 seconds. Hence, the ratio between the
power run and the various streams varies between 5.5 and
6.2, indicating that the streams of the throughput run scales
super-linearly. The super-linear behavior occurs because
during a throughput run, the system is utilized more effi-
ciently due to multiple streams that can overlap I/O with
CPU. Also, queries in the throughput run take advantage of
node locality. Instead of running across nodes, which
might saturate the inter-connect, queries run locally on one
node, reducing IPC to a minimum. The good scalability
between the power and throughput run shows that the query
locality feature in Oracle Database 10g works and signifi-
cantly increases performance for multiple users issuing
queries simultaneously.
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Figure 9 shows the query elapsed time scalability of all
22 TPC-H queries from an 8- to a 12-node grid. Please
note that the elapsed times presented in Figure 9 are not
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taken from any published TPC result. They were obtained
during a lab exercise to obtain empirical data as evidence
for grid scalability. Furthermore, the numbers in the x-axis
do not correspond directly to the TPC-H query numbers.
The y-axis shows the scalability in percent. 100 percent
indicates perfect scalability. Any scalability larger than
100% indicates super-scalar behavior. As the chart shows,
some queries scale poorly while other queries show super-
scalar behavior. Overall, the scalability is at about 90%.

5. Conclusion

In this paper, we have shown that the commodity hardware
(industry-standard x86-based) and software components
used in this benchmark are proven cost-effective building
blocks for large-scale DSS grids. Enterprise customers can
now deploy the Oracle Database 10g on HP ProLiant
hardware with Red Hat Linux and obtain high performance
at very low cost compared to an equivalent SMP scale-up
configuration.

With the 1000-GB TPC-H publication, we have demon-
strated that an IB-enabled grid scales to 12 nodes. How-
ever, the architecture and database system support scale-out
to many more nodes, including failover nodes. The
MSA1000 storage fabric and ProLiant cluster size can be
extended to support the higher throughput requirements of
larger scale-out configurations by using SAN switches with
higher port counts or by inter-connecting them. Each
MSA1000 has the capacity of accommodating a maximum
of 42, 300-GB disk drives so that the total storage can be
expanded by a factor of more than 87 from the configured
system without adding extra arrays.

With its 48 AMD Opteron CPUs, the grid demonstrated
exceptional performance. The MSA1000-based storage
SAN enabled throughput of 7.2 GB/sec; additional
throughput is available as disk drives, nodes and faster
SAN switches are added to the cluster. More spindles will
result in higher random throughput. In real-world terms,
this means that customers can extend the warehouse and
add data marts within the same centrally managed storage
environment. The IB technology, compared with the abil-
ity to add I/O throughput, means that the overall configura-
tion can easily reach higher levels of performance.

Customers demand a reasonable return on investment
(ROI) from their data warehouses, as well as a low TCO.
The industry-standard AMD Opteron-based ProLiant serv-
ers help to reduce overall solution cost. Nodes can be
added inexpensively to improve performance or provide
failover redundancy. Oracle Database 10g can then seam-
lessly integrate the extra nodes into the cluster. The
MSA1000 delivers a cost-effective storage subsystem with
a high degree of parallelism, redundancy and performance.

HP and Oracle offer powerful grid management tools.
HP Systems Insight Manager software provides powerful
monitoring and control of HP ProLiant Servers and storage.
Oracle Enterprise Manager 10g, with its grid control capa-
bility, enables all database instances to be managed in par-



allel. This reduces costs and ensures consistent manage-
ment across the cluster.

Typically, DSS at these sizes provides business-critical
services and requires 24x7 availability. The ProLiant serv-
ers and MSA storage offer strong availability and reliability
capabilities. The MSA1000 supports many fault-tolerant
capabilities and features, including advanced RAID protec-
tion, online spares and automatic data recovery. ProLiant
systems and StorageWorks SANs can be configured with
redundant adapters, SAN switches and arrays. Along with
Oracle Database 10g RAC node failover capability, the
benchmark configuration can be extended to better support
mission-critical business intelligence applications.
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