Optimizing Refresh of a Set of Materialized Views

Nathan Folkert, Abhinav Gupta, Andrew Witkowski, Sankar Subramanian,
Srikanth Bellamkonda, Shrikanth Shankar, Tolga Bozkaya, Lei Sheng

Oracle Corporation
500 Oracle Parkway
Redwood Shores CA 94065
Firstname.Lastname(@oracle.com

Abstract

In many data warehousing environments, it is
common to have materialized views (MVs) at
different levels of aggregation of one or more
dimensions. The extreme case of this is relational
OLAP environments, where, for performance
reasons, nearly all levels of aggregation across all
dimensions may be computed and stored in MVs.
Furthermore, base tables and MVs are usually
partitioned for ease and speed of maintenance. In
these scenarios, updates to the base table are done
using Bulk or Partition operations like add, exchange,
truncate and drop partition. If changes to base tables
can be tracked at the partition Ilevel, join
dependencies, functional dependencies and query
rewrite can be used to optimize refresh of an
individual MV. The refresh optimizer, in the presence
of partitioned tables and MVs, may recognize
dependencies between base table and the MV
partitions leading to the generation of very efficient
refresh expressions. Additionally, in the presence of
multiple MVs, the refresh subsytem can come up
with an optimal refresh schedule such that MVs can
be refreshed using query rewrite against previously
refreshed MVs. This makes the database server more
manageable and user friendly since a single function
call can optimally refresh all the MVs in the system.

Terminology

PMOP: partition maintenance operation.

Conventional Refresh refers to MV refresh using

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment

Proceedings of the 31* VLDB Conference,

Trondheim, Norway, 2005

changes to the base tables stored in materialized view
logs. The logs record images of individual rows that have
changed since the last refresh.

Partition Change Tracking (PCT) Refresh refers to
MYV refresh using only the changed partitions of base
tables of an MV. This refresh method is possible only if
the base tables are partitioned and changes to base tables
are tracked on a partition basis - hence the name, Partition
Change Tracking Refresh.

Enhanced Partition Change Tracking (EPCT) Refresh
refers to PCT based refresh applied to MVs containing
columns that are partition-join dependent on the
partitioning column of the base table.

1. Introduction

We present an approach to optimize refresh [8], [10],
[13], [15] of a single materialized view by taking
advantage of partitioning of base tables and materialized
views. In addition, we present an algorithm to derive an
optimal schedule of refreshing a set of materialized views.
All methods presented in this paper are available in
Oracle Database Release 10g.

2. Schema and Cubes

We use the following example star schema in the rest of
the paper. There is a fact table sales and three dimension
tables — times, product and customers. Sales of each
product (prod_id) sold to a particular customer (cust id)
on a given day (day id) is stored in the sales table. The
schema looks as follows:
— sales (day id, cust_id, prod_id, amount). The
sales table is partitioned by range on day id (a
date column) such that each partition contains a
month of data. Partitions are named
correspondingly as SALES JAN 2003 PART,
SALES FEB 2003 PART, .., etc.

1043

- times (day_id, month, quarter, year): contains
the hierarchy (day id -> month -> quarter ->
vear). Assume that day_id records days.

— Customer (cust_id, city, state): contains the
hierarchy (cust_id -> city -> state).

— Product(prod_id, package, group): contains the
hierarchy (prod_id -> package -> group).

The hierarchy relationships present in the dimension
tables (i.e., month rolls up to a quarter, city rolls up to a
state, etc) can be defined using Oracle Dimension objects
[3], [14]. For example, the rollup relationship present in
the times table can be defined using the following
DIMENSION statement:

CREATE DIMENSION timeidim
LEVEL day IS times.day id
LEVEL month IS times.month
LEVEL quart IS times.quarter
LEVEL year IS times.year
HIERARCHY calendar (
day CHILD OF month CHILD OF
quart CHILD OF year)

In OLAP environments, analysts use cubes [2], [5], [9]
over the star schema. We distinguish between two
representations of the cube: Rollup Cube and Federated
Cube.

The Rollup Cube stores rolled up aggregation values
along all dimensional hierarchies in a single MV. For
example:

CREATE MATERIALIZED VIEW rollup_cube_mv AS
SELECT year, quarter, month, day id, state,
city, cust id, group, package,

prod id, sum (amount) amt
FROM sales s, times t,customer c, product p
WHERE s.day id =t t.day id AND s.cust id =
c.cust_id AND s.prod id = p.prod id
GROUP BY
ROLLUP (year, quarter, month, day id),
ROLLUP (state, city, cust id),
ROLLUP (group, package, prod id)

An alternative way of representing a Cube is storing each
grouping in a separate MV. The Federated Cube is a
collection of MVs each representing an aggregation over
one level from each dimension. For example, the
following are two such MVs in a Federated cube:

Q0:
CREATE MATERIALIZED VIEW quart city pack mv
AS
SELECT quarter, city, package,
sum (amount) amt
FROM sales s, times t,customer c, product p
WHERE s.day id =t t.day id AND s.cust id =
c.cust_id AND s.prod id = p.prod id
GROUP BY quarter, city, package

CREATE MATERIALIZED VIEW
year city pack mv AS
SELECT year, city, package,sum(amount) amt
FROM sales s, times t,customer c, product p
WHERE s.day id =t t.day id AND s.cust id =
c.cust_id AND s.prod id = p.prod id
GROUP BY year, city, package

A full Federated Cube in our example schema consists of
80" separate MVs. We concatenate the levels from each of
the dimensions (<time customer product mv>) to
designate the individual MVs.

In many cases, users prefer a Federated Cube over a
Rollup Cube: it usually takes less space since the null
values of rolled up columns [9] are not stored. Bitmap
indexes created over cubes for efficient querying are also
more compact for a federated cube as they don’t index
null values and therefore are much smaller in size.

There are obvious variations of the Rollup and Federated
cubes which contain only a subset of the groupings due to
space constraints. A useful example of a partial Rollup
Cube is one which rolls up on all dimensions except time.
The non-rolled up time level is then used as a partitioning
column. For example consider the following materialized
view using Oracle partitioning syntax:

CREATE MATERIALIZED VIEW
rollup cube month mv AS
PARTITION BY RANGE (month)

(
PARTITION VALUES LESS THEN ‘M1 20037,
PARTITION VALUES LESS THEN ‘M2 20037,

)
SELECT month, state, city, cust id, group,
package, prod id,sum (amount) amt
FROM sales s, times t,customer c, product p
WHERE s.day id =t t.day id AND s.cust id =
c.cust_id AND s.prod id = p.prod id
GROUP BY month,
ROLLUP (state, city, cust id)
ROLLUP (group, package, prod id)

In this paper we focus on refresh of (partial) cubes that are
partitioned by the time dimension or any other dimension
serving as a granule of data warehouse maintenance. We
assume that each partition contains data from a single
time granule. For example, in the rollup cube _month_mv
cube, each partition contains a month of data. We use
symbolic partition names, like

" There are 5 levels in time dimension (day, month,
quarter, year and all years). Similarly, there are 4 levels in
customer dimension and 4 levels in product dimension.
5x4x4 = 80 groupings.

1044

ROLLUP_CUBE _MONTH M1 2003 MV for the first
month (January) partition.

Of course, the proposed refresh method works if time
level partitions are coarser. For example, each partition of
rollup_up _cube_mv can contain multiple months instead
of storing a single month as described above.

3. Motivation

Consider a manufacturer supplying products packaged in
different ways to be sold at its various retail outlets. All
the sales data is centrally collected in a database server in
a star schema described earlier for decision support and
analysis. Every month, new data is added to the sales
table corresponding to sales data received from the
retailers for the previous month. Users are interested in
the total sales of the current quarter for earnings
announcement and previous quarters for comparative
analysis. The sales analysts are also interested in tracking
monthly sales to measure growth with respect to the
previous month and also the same month of the previous
year. These analyses are required at different levels of the
dimensional hierarchy. Hence, there is a need to
materialize a “cube” to slice and dice data along various
dimensions of interest for fast responses to such queries.

Let’s assume there is a Federated Cube materialized in the
database. The MVs quart city pack mv and
year _city_pack mv are part of the cube. Each of the
materialized views comprising the cube has to be
incrementally refreshed to keep it in sync with the data in
the sales table. It is common practice to store base data as
a rolling window of time (for instance, last 24 months) in
the warehouse. Hence the M Vs are also stored as a rolling
window of time. In the example discussed, every month a
new partition of data is added to the sales table and the
data for the oldest month is removed and possibly
archived. We assume that the lowest level of time granule
is day.

After these rolling window operations, the above MVs
can be refreshed using the following observations:

quart_city_pack_mv:

— If quart _city pack mv is partitioned on quarter,
one option of refreshing is to truncate the
affected partitions and recreate them. Only two
quarters of data in the MV are affected. These
quarters can be identified by the following
simple query on times dimension table:

SELECT DISTINCT quarter
FROM times t
WHERE

1045

<predicate on day id for the
affected partitions of sales table>

Truncating a partition is an instantaneous
operation since it requires simple changes to the
quart_city_pack _mv storage meta-data. Inserting
new data is also relatively fast since it can be
appended in new storage segments. However,
recreating data to be inserted is expensive as it
requires aggregating data of all the quarters in
the affected MVs.

The method of refresh described above uses join
dependency of quarter column in the MV on the
partitioning column day id of sales.

year_city_pack_mv —
changes to partitions
2003 and 2005

-~ Another option is to apply the deltas from the
sales table to the MV. This works well if number
of rows to be updated is small. However, update
can be expensive since it requires a join of
aggregated delta from SALES table with the MV
quart _city_pack mv. In Oracle, this method of
refresh is called conventional incremental
refresh.

1
i SALES —
| en| 0| 2 0 < | |
b =) 2 fz ““““““ < i i partitioned by
NEEFE g2/ monthon
1 day_id
T i
|
: ol en| en| en| <t| | <t < .
, IS IS ESIES PSP RS RS quart_city_pack_mv —
I S PSP EN S PR P B s
! R EEEEREEE partitioned by quarter
1
NS
! .
| year_city_pack_mv —
, T
H | < partitioned by year
h ol 9
(=] k=1
: NN
L e e e
ﬂ Remove Jan’03, Add Jan’05
T ________________TI‘_____t ___________ K
I o ezo = Tuncate
R I T —— 22518 Jan'03, Add
Ll o Bl S >
Rk 828§ Jan05
1
A
archive quart_city_pack_mv —
on| cnf enf en| <t| | | < W) o e
e el O O O D D S changes to partitions
FEEEEEERE Q1'03 and Q1°05

Ideally, the database server should explore all
possible options of refreshing a particular MV and
pick the cheapest method.

year_city _pack mv:

— The method for refreshing year city pack mv is
similar to those for quart city pack mv. 1f
refresh of quart city pack mv is done prior to
refresh of year_city_pack _mv, then,
year_city_pack_mv can be refreshed by rewriting
refresh expressions against quart city_pack _mv
by exploiting the functional dependency of year
on quarter (i.e. quarter determines year). Since
functional dependencies are expensive to
validate in real time, Oracle provides syntax to
declare the functional dependencies using
DIMENSION [3], [14] statements. These
dependencies are not validated, but can be used
for optimizing queries.

If functional dependencies are used for refresh, the data
contained in the materialized view may no longer be
valid. Therefore, we introduce a new state for
materialized views called frusted state. A materialized
view in trusted state can be used to rewrite a user query
only if the user session has been enabled to go against
trusted MVs.

In this paper, we present the concepts of join dependency
and trusted MVs and propose the use of join dependency,
functional dependency, MV partitions and query rewrite
to optimize refresh of MVs. If a complete Federated cube
is created on the schema discussed above, 80 materialized
views will be required. Increasing the number of levels in
dimensions and increasing number of dimensions can
require the creation of hundreds of materialized views. It
is a nightmare to find the correct order of refreshing such
materialized views. Therefore, we present a simple API
that can be used to refresh all the materialized views that
depend on a set of changed tables. Internally, an MV
refresh scheduler (see Section 5) computes an optimal
order of refreshing the MVs and minimizes the overall
refresh time by exploiting dependencies and hence
enabling optimal rewrites.

4. Optimizing Refresh of a single MV

In Oracle Database Release 9i, Oracle provided an MV
refresh mechanism called the Partition Change Tracking
(PCT) refresh. It tracks partition maintenance operations
(PMOPs) like ADD and DROP PARTITION as well as
DML changes to the base data on a partition basis. If an
MYV contains the partitioning key of changed base tables
and is partitioned by these keys, then based on this
tracking information, we generate very efficient refresh
expressions by issuing truncate partition operations on the

affected MV partitions followed by a bulk INSERT into
these partitions. We have observed multi-fold
performance improvements for large changes to the base
tables when using this technique compared to the
conventional MV log-based refresh.

Unfortunately, PCT refresh has limited applications
because in many scenarios, MVs are partitioned at
different time granules than the base data. This section
describes extensions to the PCT refresh that allows PCT
refresh to be applied to MVs containing columns that are
join dependent on the partitioning column of the base
table. This improved refresh also supports query rewrite
of the refresh expressions using un-enforced functional
dependencies. We refer to this PCT refresh as Enhanced
PCT refresh (EPCT).

We note that EPCT can be used not only when a partition
operation has been performed on a base table, but also
when a significant portion of a partition has been updated
with a conventional DML such as Insert or Delete.

4.1. Use of join dependencies

Consider a SQL query block Q of an MV defined on a
partitioned table T. Partition-Join Dependent
Expression on T is an expression consisting of columns
from tables directly or indirectly joined through equi-joins
to a partitioned table T on its partitioning key. The tables
containing these expressions and the tables in the join
path from these tables to T are called PJoin-Dependent
tables. For example, in quart city part mv, the quarter
column is PlJoin-Dependent on the partitioning key,
day id, of sales table. Observe that the value of partition
key determines the value of PJoin-Dependent Expression.
Hence, if an MV is partitioned by a PJoin-Dependent
column and if we add or delete a partition in T, then we
can easily determine affected partitions in the MV by
executing the constrained form of Q. This is the intuition
behind Enhanced PCT refresh.

EPCT refresh is enabled if the MV has, in its select list,
expressions which are PlJoin-Dependent on the
partitioning column(s) of a base table that has changed.
Below, we consider two methods of refreshing an MV
exploiting PJoin-Dependency. Assume a partitioned base
table T has changed.

EPCT refresh with DELETE and PJoin-Dependency

There are 2 phases in Enhanced PCT refresh:

Delete phase removes all the affected rows from the MV.
Insert phase inserts the recomputed rows into the MV.

Both phases make use of a sub-query predicate on the
base tables to remove and compute the affected rows in
the MV. The predicate takes the following form:

1046

Ql:
<pj depend exp list> IN
(SELECT <pj depend exp list>
FROM <tab list>
WHERE <join pred> AND <part pred>)

Here,

e <pj depend exp list> is the list of expressions in the
SELECT list of the MV which are PJoin-Dependent
on the partitioning columns of the changed table T

e <tab list> is the list of PJoin-Dependent tables on
table T

e <join_pred> is the predicate which joins the tables in
<tab_list>

e <part pred> is the predicate identifying the changed
partitions in T

For example, consider quart city _pack mv from our
example in Section 2 (see Q0). Assume that partition
SALES JAN 2003 PART corresponding to January-
2003 of the sales undergoes a series of DML operations.
EPCT refresh of the MV has to re-compute all the data in
the affected MV quarter. The quarter column of the MV is
PJoin-Dependent on the partitioning key of the sales,
hence the DELETE phase refresh statement is:

Q2:
DELETE quart city pack mv
WHERE quarter IN
(SELECT quarter
FROM times t
WHERE (t.day id >= ’01-01-2003" AND
t.day id < 702-01-2003")

The corresponding INSERT phase refresh statement is:

Q3:
INSERT INTO quart city pack mv
SELECT quarter,city,package, sum(amount) amt
FROM sales s, times t,customer c, product p
WHERE s.day id=t t.day id AND s.cust id =
c.cust _id AND s.prod id = p.prod id AND
t.quarter 1IN
(SELECT quarter
FROM times t
WHERE t.day id >= ’01-01-2003" AND
t.day id < "02-01-2003")
GROUP BY quarter, city, package

Observe that the IN sub-query references only times table
and not the changed sales table. The times table is
connected in the MV definition by equi-joins to the
partitioning columns of sales, so it is sufficient to transfer
the changed range to the times table only. This removes
an expensive join from the sub-query. This join pruning
technique is used when the sub-query predicate of QI is
employed for refresh. Hence <tab_list> from Q1 will not

contain the changed table T as we transfer constant
partition predicates on T to its closest equi-joined table
and prune T from Q1.

We note that the above refresh expressions are general
and can be used independent of whether the MV is
partitioned or not.

EPCT refresh with TRUNCATE and Join Dependency

If the MV itself is partitioned® and its partitioning
columns are PJoin-Dependent on the partitioning columns
of a changed base table and no other table has changed,
the refresh system can issue TRUNCATE instead of
DELETE. Note that we assume that only one table T has
changed which is usually the case for a data warehouse
with a rolling window on a fact table. PJoin-Dependent
refresh expressions when multiple base tables have
changed exist, but are much more complex and hence not
shown.

EPCT refresh using TRUNCATE also consists of two
phases, but the first phase uses TRUNCATE (instead of
DELETE) to remove the changed rows from the
materialized view. To get a list of MV partitions to be
truncated, we use an Oracle internal function,
PARTNAME, which for a given partitioned table maps
its partitioning key to the partition name. The following
query gets the names of the affected MV partitions:

Q4:
SELECT DISTINCT
PARTNAME (<mv_name>, <partition exp list>)
FROM (SELECT DISTINCT <partition_exp_list>
FROM <tab list>
WHERE <join pred> AND <part pred>)

Here, <mv name> is the MV being refreshed,
<partition_exp list> is the list of <pj depend exp list>
expressions in Q1 that are also the partitioning columns of
the MV. <tab_list>, <join_pred> and <part_pred> are the
same as in query Q1.

Once the partitions to be truncated are identified, we
generate the corresponding TRUNCATE statements and
then construct the INSERT-SELECT statement which re-
computes the affected MV partitions. The INSERT query
goes against the data in base table partitions that affect
these MV partitions. Note that the INSERT-SELECT
statement will populate freshly truncated partitions. In this
case, Oracle uses an optimized bulk insertion that loads
data into new extents of a partition that is more efficient
than conventional row-by-row insert since no undo logs
are created.

* Range or List partitioning is supported.

1047

If there is more than one MV partition to populate, then
instead of issuing an INSERT query for each partition that
may also lead to multiple scans of the same base table, we
use a (ANSI SQL) MULTI-TABLE INSERT-SELECT
[14] statement whose targets are affected MV partitions.
Each branch of this statement inserts into an individual
MV partition obtained from Q2.

For example, assume that quart city pack mv 1is
partitioned by quarter, and that partition
SALES JAN 2003 PART of the sales table has
undergone a series of DML operations. We determine the
affected MV partition using:

05:
SELECT DISTINCT
PARTNAME (quart city pack mv, quarter)
FROM (SELECT DISTINCT quarter
FROM times
WHERE (t.day id >= ’01-01-2003" AND
t.day id < "02-01-2003")

Assume that the PARTNAME function returns partition
name QUART CITY PACK Q1 PART. Then, the
TRUNCATE statement is:

Q6:
ALTER TABLE quart city pack mv
TRUNCATE PARTITION quart city pack gl part

To construct the INSERT statement, we first retrieve
partition boundaries (‘Q1_2003” and ‘Q2 2003”) of this
partition from dictionary based on the partition name. The
INSERT statement is then:

Q7:
INSERT INTO quart city pack mv
PARTITION quart city pack gl part
SELECT
quarter, city, package, sum(amount) amt
FROM sales s, times t,customer c, product p
WHERE s.day id =t t.day id AND s.cust id =
c.cust _id AND s.prod id = p.prod id
AND t.quarter >= ‘Ql 2003’ AND
t.quarter < ‘Q2 2003’
GROUP BY quarter, city, package

Note that in this case only a single partition of MV is
affected, so we used INSERT-SELECT rather than
MULTI-TABLE insert. Also, note that we used the
boundary of the partition in the refresh query.

MV partitions may be larger than the affected data in the

MV. For example, quarter partitions in

quart_city_pack _mv may contain two or more calendar

quarters. In such a scenario, there are 2 options:

e Use TRUNCATE that will end up removing a lot
more data but is very fast. The corresponding
INSERT will also end up re-computing more data.

e Use DELETE to remove only the data corresponding
to the affected partitions. This DELETE will be
slower than TRUNCATE but the corresponding
INSERT will compute only the affected MV rows.

We decide between the two options based on the
optimizer provided cost estimates of the refresh
expressions — see Section 4.4.

Restrictions on EPCT

There are some restrictions on applicability of EPCT
based on the structure of query block Q defining the MV.

e The <pj depend exp list> expressions from QI
should not be rolled up in the GROUP BY of Q as the
dependency is lost due to NULLs generated by
rollup.

e If the Q has window functions [20] in the select list
or a SQL MODEL clause [18], their PARTITION
BY columns should include a common subset of the
PJoin-Dependent expressions. This guarantees that
partitions of window functions or SQL MODEL
clause are PlJoin-Dependent on the partitioning
columns of the base table. This gives us an
opportunity to refresh MVs containing window
functions or SQL Model clause incrementally — an
option not available before.

4.2. Use of functional dependencies and query
rewrite

Oracle provides query rewrite [3] with MVs which in
most cases is a superset of rewrites presented in [6], [7],
[12], [16], [15], [19]. The rewrite is controlled by two
session parameters: query rewrite_integrity, controls
integrity of rewrite and supports ENFORCED (rewrite
with enforced constraints only) and TRUSTED (rewrite
with declared but not enforced constraints) rewrites.
Query rewrite_enabled controls if rewrite occurs and is
FALSE (no rewrite), TRUE (cost based query rewrite), or
FORCE (forced rewrite). We have made query rewrite
available for refresh expressions.

Consider two MVs, month _city pack mv and
quart _city_pack mv that belongs to the federated cube
discussed in Section 2. If month_city pack mv has
already been refreshed, the INSERT statement Q7 for
refreshing of quart city pack mv can be rewritten as:

Q8:
INSERT INTO quart city pack mv
PARTITION quart city pack gl part

SELECT
quarter, city, package, sum(amount) amt
FROM month city pack mv mv,

(SELECT DISTINCT month, quarter

FROM times) t

1048

WHERE mv.month = t.month AND
t.quarter >= ‘Ql1 2003’ AND
t.quarter < 'Q2 2003’

GROUP BY quarter, city, package

Observe that month_city pack mv MV doesn’t contain
required quarter column, hence, the rewrite engine uses a
join back of the MV the dimension table times to get the
quarter values. The join-back wuses the functional
dependency that months rollup to quarters. The resulting
data is then aggregated to get sales data at quarter level.

If the query rewrite is enabled for the refresh session,
query rewrite engine will automatically rewrite the MV
query on base tables to go against the already refreshed
materialized views. We note that while rewriting, Oracle
may have many candidate MVs to rewrite against. For
example, quart city pack mv can be rewritten against
day city pack mv as well as the much smaller
month_city_pack_mv. Our rewrite engine uses simple
heuristics to choose the best candidate MV with least cost
(sum of sizes of the MV and all the tables on the join back
list) for rewrite.

Trusted MVs

When an MV is refreshed, we can use other already fresh
MVs for rewriting the refresh queries, as mentioned
above. Query Rewrite [3] can use functional dependencies
defined in Oracle Dimensions and others like foreign key
relationships, join equivalence, etc. Some of the
dependency contraints may not be enforced. For example,
Oracle Dimensions only declare, rather than enforce, the
rollup dependencies between various data elements.
Similarly, the primary key foreign key (PK-FK)
relationships can also be declared as RELY only
constraints, which are not enforced by the database.
Refresh wusing declarative constraints may lead to
incorrect results if the declaration made is actually
violated in the data. However, users employ such
constraints frequently when constraints are guaranteed by
the applications and these declarative constraints do not
impose expensive RDBMS validation.

Oracle MV refresh system provides a new option to the
user to use un-enforced constraints during refresh. The
refresh property of an MV can be either set at the creation
time of the MV or altered later. The allowed values of the
property are TRUSTED and ENFORCED. A frusted MV
can use un-enforced relationships like functional
dependencies defined in Oracle Dimensions or PK-FK
constraints in the RELY only mode for refresh. An
enforced MV can only be refreshed using validated
relationships known to return correct data. The
declaration of this property by the user controls the use of
TRUSTED constraints when query rewrite is enabled.

Once a trusted MV has gone through refresh using un-
enforced functional dependencies, it may, in abnormal
situations, contain incorrect data. Therefore, we make it
available for query rewrite_integrity in TRUSTED mode
only.

4.3. Dynamic Partition Pruning

Oracle supports a performance enhancement technique
called partition pruning. In a query, if there is a predicate
on the partitioning column of a table, Oracle will try to
limit access to the table only to the selected partitions. For
example, in

SELECT quarter FROM times
WHERE (day id >= "01-01-2003" AND
day id < 702-01-2003")

Oracle optimizer will create a plan which accesses only
single partition, SALES JAN 2003 PART, of the sales
table. In the above case the optimizer can derive the
relevant partition at compile time by analyzing the query
predicate and partition boundaries of SALES table. We
refer to this optimization as static partition pruning.

The EPCT refresh queries described in prior sections use
sub-query predicates (see Q1) for partition pruning. For
example, consider the SELECT query from Q3:

Q9:
SELECT
quarter, city, package, sum (amount) amt
FROM sales s, times t,customer c, product p
WHERE s.day id=t t.day id AND s.cust id =
c.cust id AND s.prod id=p.prod id AND
t.quarter IN
(SELECT quarter
FROM times t
WHERE t.day id >= ’01-01-2003" AND
t.day id < 702-01-2003")

The sales table is partitioned by day id and is joined to
the times table on its partitioning key via t.day id. There
is a sub-query predicate on times. This sub-query
predicate can be evaluated and we could get the
corresponding values of f.day d column, and hence the
s.day_id, via join transitivity. These values can then be
used to prune partitions of the sales table. We refer to this
technique as Dynamic Partition Pruning as the pruning
values have to be retrieved by executing a query at run-
time. In this particular case, the following query will be
evaluated to get the values of day id to do partition
pruning on sales table:

Q10:
SELECT day id FROM times
WHERE quarter IN
(SELECT quarter
FROM times t
WHERE t.day id >= ’01-01-2003" AND

1049

t.day id < 702-01-2003")

Since this pruning methodology requires execution of an
extra query, we compare the cost of evaluating this query
with the cost of scanning the complete sales table before
deciding to do dynamic partition pruning.

In the refresh expressions that use QIl, we perform
dynamic partition pruning on any partitioned table T
joined directly or through other tables to the sub-query
predicate <part_pred>.

Dynamic and static partition pruning are performed after
query rewrite, hence rewritten queries also benefit from
these techniques. For example, consider rewritten query
Q8. If the MV, month city pack mv, is partitioned by
month, we use the predicate on the in-line view ¢ to trigger
dynamic partition pruning on the MV. The query is
similar to QI0 except that we select months
corresponding to quarters Q1 2003 and 02 2003 from
the times table.

4.4. Chosing the optimal refresh method

When a materialized view is incrementally refreshed, the
refresh system decides between conventional refresh and
PCT refresh.

If there are PMOPs on the base tables, conventional
incremental refresh can not be used as the PMOPs are not
recorded in MV logs and the only available refresh
method is (E)PCT. If there are no PMOPs on the base
table, then the refresh system has to decide between
conventional and PCT refresh and the decision is based on
the cost estimates of the respective refresh methods.

If the MV is itself partitioned and its partitions are not
fully contained in base table partitions, the refresh system
can also choose between issuing TRUNCATE followed
by an (bulk) INSERT and issuing DELETE followed by
an INSERT. As described in 4.1, TRUNCATE is faster
than DELETE, but it might end up removing more data
than DELETE and hence, the refresh process will have to
compute and load more data as a part of INSERT. The
Oracle refresh system interacts with the optimizer to
choose the best option. Oracle refresh system generates
refresh expressions for conventional refresh, PCT refresh
using TRUNCATE and PCT refresh using DELETE. It
then uses the costs of these refresh expressions estimated
by the optimizer to choose the best refresh option.

5. Scheduling Refresh of MVs

While refreshing a set of materialized views, there are
opportunities for improving the performance of refresh of
certain materialized views by rewriting their refresh
expressions against other materialized views in the refresh
set. Using the query optimizer and considering all

applicable methods of refresh for each materialized view,
we can construct an optimal schedule for refreshing the
entire set.

We start the construction of the schedule by creating the
Best Refresh graph, a dependency graph where each node
represents a materialized view in the refresh set, and each
edge represents containment of another materialized view
in the refresh set in the best rewrite of that materialized
view.

5.1. Creating best rewrite graph:

The first step in the construction of the graph is finding
the best refresh expression for each materialized view.

For each materialized view, we determine all the refresh
methods applicable for that materialized view. The
different methods include incremental conventional
refresh, PCT refresh using DELETE, PCT refresh using
TRUNCATE and complete refresh. Complete Refresh is
always possible for an MV, although other refresh
methods are not always applicable.

Each refresh method will have a set of associated SQL
DML and DDL expressions implementing the refresh.
For example, a complete refresh might use a DDL
TRUNCATE statement followed by the INSERT
statement that defines the materialized view. A PCT
refresh might use a series of TRUNCATE statements or a
DELETE statement to empty partitions or subsets of a
materialized view, followed by an INSERT statement
repopulating those partitions with fresh data from the
defining query.

For each of these expressions, we will use the query
optimizer to estimate the total cost for executing that part
of the refresh. The query rewrite phase of the optimizer
will attempt to find other materialized views that could be
used to improve performance. The cost of executing all
expressions will be summed together to find the total cost
of that refresh method, which can then be compared
against other refresh methods available for that
materialized view.

For the purposes of building the Best Refresh graph, the
optimizer performs a few specialized operations during
the estimation of this cost.

For query rewrite, we assume that all the materialized
views contained in the refresh set (excluding the current
materialized view) are in a "fresh" state and hence,
available for rewrite for the current refresh expression,
provided that other query containment requirements are
satisfied. For each expression that we cost, we collect the
materialized views in the refresh set that are rewritten
against the optimized query.

1050

For the case of deferred build materialized views (MVs
that are not yet populated and thus lack statistics), we use
the cardinality of the defining query against the base data
to estimate the cost of rewriting against that materialized
view. In some cases, if there has been a significant
change in the base data since the last refresh of a
materialized view, we might consider defining query
cardinality as well, since the existing statistics for the
materialized view before refresh may be significantly
different than the actual statistics for the materialized
view after refresh.

Once we have determined the best refresh method
available for the materialized view by comparing the total
costs of the expressions implementing each of its
available refresh methods, we use the list of materialized
views rewritten against the expressions of the best refresh
method to create rewrite dependency edges in the Best
Refresh graph.

5.2. Finding an acyclic graph:

Data Warchouses that can expect to benefit most from
such a refresh scheduling service are those that store
rollups over different dimensions and at different levels of
the dimensional hierarchy in several distinct materialized
view containers, with the larger MVs closer to the base
being partitioned on the same dimension (though possibly
at a different level in the dimensional hierarchy) as the
base tables, thus allowing efficient PCT refresh with
rewrite against other materialized views. In such cases,
we would expect the Best Refresh graphs to be acyclic
and tree-shaped, with each node having at most one
incoming edge.

But while we expect that in most practical cases the Best
Refresh graph will be acyclic, there may be cases where
cyclical dependencies occur. One case where this might
arise would be where two materialized views are defined
on the same base query. The best refresh method for each
will rewrite against the other, creating a cycle in the
graph. In order to schedule refresh, however, we want to
have an acyclic graph, so we will need a means to
eliminate cyclical paths from the Best Refresh graph.

We start by analyzing the Best Refresh graph using
Tarjan's algorithm [17] for finding strongly connected
components. A strongly connected component (SCC) is a
set of nodes where each node is connected to all the nodes
in the set (including itself) by some path over the edges.

We then traverse the graph, and, when encountering
SCCs, break the cycles by removing, arbitrarily or
heuristically, edges from within the SCC until the nodes
contained in the SCC are no longer strongly connected.

In practice, it rarely makes a difference in overall cost of
the refresh set which edge is removed, provided that after
a node is liberated from the SCC, its rewrite dependencies
are recomputed, but this time only considering MVs that
do not have incoming paths from that node.

If no SCCs are present (i.c., the graph is already acyclic),
the schedule will be the same as the original graph, and
will represent the optimal topological ordering for refresh,
with respect to how the optimizer itself estimates the cost
of queries and chooses M Vs to rewrite against.

If SCCs are present, the schedule produced may not be
optimal, because we do not exhaustively determine the
best node to use to break the cycle. As noted above,
however, this has not had a significant effect in practice.

5.3. Executing the refresh:

The easiest implementation of refresh schedule execution
is to simply topologically sort the acyclic graph in some
deterministic way and then successively refresh each MV
in the ordered list. This will ensure that while refreshing
an MV, all the MVs that are used for rewriting its best
refresh expressions will be available for rewrite.

Since nodes on separate branches in the schedule are
independent, we have an opportunity to use concurrency
during execution.

The simplest concurrency scheme would proceed as an
ordinary traversal of the original graph. We would find
source nodes that have no incoming edges from MVs that
have not been refreshed. The MVs in the source set can
be refreshed concurrently by spawning a separate process
or thread. When an MV refresh is finished, we determine
if any of its dependent nodes are now source nodes and
then submit them for refresh. This would proceed until
the entire schedule graph had been traversed, at which
point all MVs would have been refreshed.

The problem with this concurrency scheme is that it does
not consider the resources required to execute each of
these refreshes, including both memory resources and
processing resources. The number of processes available
for concurrent refresh may be limited in the system. Each
refresh might be executed in parallel, and there may be a
limited number of processes available for parallel
operations. Large refreshes may consume significant
memory resources for sorts or other intermediate
computations, and thus may be most efficient to execute
by themselves but impossible to execute simultaneously
given the available resources in the system.

There are many possible load balancing algorithms to
balance resources between concurrently running jobs. The

1051

estimated cost of the refresh, found during the
construction of the Best Refresh graph, can be leveraged
to aid in producing an intelligent plan for resource
allocation.

The approach we use traverses the graph as above,
examining each node. If a node’s cost exceeds a
threshold representing the cost at which a single refresh
typically requires the majority of system resources to run
efficiently, determined by experiment, we run that MV
alone but with full parallelism. Since the federated cube
schemas most benefited by this approach have very large
root MVs with the branch and leaf MVs successively
smaller, any nodes that fall above the threshold are the
first nodes encountered, and thus all such MVs are
refreshed one at a time at the beginning of the refresh set.

Nodes whose cost falls below the threshold are executed
concurrently. Because at low levels in the federated cube
tree we may have relatively few branches relative to
available processors, when small numbers of cubes are
available, we would like to allocate each a number of
processors to run in parallel and concurrently. Towards
the leaves, however, there are typically more source MV
available for refresh than processors. These MVs are also
typically very small, especially since they are rewriting
against rolled up data rather than base data. So we want
to run as many of these concurrently as possible, typically
in serial since parallelism does not offer performance
gains against such small refreshes.

Our algorithm to perform this balancing of resources
between refresh nodes is as follows:

get source nodes

if any source nodecost exceeds threshold
refresh node MV with full parallelism
return

for each node 1..n, ordered by cost
if nodecost/runningsum*processes < 1

break
runningsum += nodecost
k++
for each node k..1
p = floor (nodecost/runningsum*processes)
processes -= p
runningsum -= nodecost

refresh node MV with parallelism = p

Available nodes whose cost falls below the threshold are
ordered by cost, and then, from largest to smallest, are
added to an execution set until the expected number of
parallel processes available for its execution (i.e., the cost
of the refresh divided by the total sum of costs multiplied
by the number of processes available) falls below one.

At that point, processes are allocated to the nodes in the
execution set by allocating the share of processes from the

smallest to the largest. The processes are allocated to the
cheapest nodes first because fractional shares of processes
will be aggregated and allocated to the more expensive
refreshes.

Because costing estimates are imperfect, we do not want
to wait for an entire set of refreshes to finish before
starting a new one, as otherwise an unexpectedly
expensive refresh could tie up idle processes by
preventing their reallocation. Instead, we run this
function whenever a refresh job finishes and resources
become available again. The drawback is that subsequent
calls to this function will have few available processes,
since only the processes from a single job are freed.

Typically this does not matter. Close to the root, there
are usually few available source nodes with fairly
expensive MVs rewriting against the large root MV. So
when any of these jobs finishes, a large number of
processes becomes available, and the new source MVs,
which are smaller since they are more rolled up, may still
have resources available to run in parallel. Further out in
the federated cube tree, however, where we have large
numbers of leaf nodes with very small MVs, we typically
only have one or two processes to balance between when
running this function, so we end up running them
concurrently but without parallelism.

6. Unified Refresh API

DBA intervention required with our refresh API is
minimal. Because the schedule is generated automatically
before each refresh, the DBA does not need to construct
an ad hoc schedule for refresh using rewrite and maintain
it as the schema evolves. Because the construction of the
graph uses the query rewrite capability of the RDBMS
itself, the DBA does not need to determine what rewrite
the refresh will use in order to estimate the order in which
to perform the refresh. Because all refresh methods are
estimated and compared using the query optimizer, the
DBA does not need to do any calculations or guesswork
in deciding which refresh method to use for each MV in
the refresh set. All of this is done automatically.

The DBA needs to submit only the desired list of MVs to
be refreshed, and the system automatically finds the best
schedule using the best refresh methods based on the
DBMS’s own query rewrite and query optimizer engines.

7. Performance Comparison

We conducted experiments on the APB benchmark [1]
populated with 5.0 density data. The APB schema has a
fact table with 4 hierarchical dimensions: channel with 2
levels, time with 3 levels, customer with 3 levels and
product with 7 levels. We defined 168 MVs as part of a

1052

“federated cube” corresponding to a level combination for
each of the 4 dimensions’. The fact table and MV's were
partitioned on the time dimension. The fact table has 62
million rows which together with MVs expand to a total
of 350 million rows. The experiments were conducted on
a 24 CPU, 366 Mhz shared memory machine with a 24GB
of memory.

Experiment 1: Building MVs using complete refresh.
The performance of building the 168 MVs using complete
refresh improved more than 6 times in Oracle Database
10g compared to the naive method of building the MVs
from the detail data in Oracle Database 9i. The naive
method spawned maximum number of refresh jobs
allowed by the system in a random order.

Experiment 2: Incremental refresh of all MVs.

In this experiment, we measured the time taken to
incrementally refresh all the MVs after inserting 1 new
month of data into the fact table. Fact table has sales data
for 17 months and we have inserted data for the 18"
month, or 3.5 million rows. Our results show that refresh
in Oracle 10g is 5 times better than in Oracle 9i.

Experiment 3: EPCT vs. Conventional Refresh.

This experiment compares the performance of EPCT
refresh methods with the conventional refresh method.
Number of rows inserted into the fact table is varied from
1000 to 3,000,000 and the time taken to refresh the MV
on quarter, channel, customer, and product level is
measured. This MV is partitioned on quarter and has 22
million rows. The results of this experiment are shown in
Figure 1.

Figure 1: EPCT vs. Conventional Refresh

500
P 4
400 | ~— ¢~ Conventional 7
— m —EPCT Delete I
—— A— —EPCT Truncate P
300 | o
Time ///
200 | 7
7[—-~/’4'»*74I'fﬁfgl
100 .
A A — A --—--——A4A
0 : ‘ ‘
0 1000 2000 3000

Rows inserted (in thousands)

Our results show that EPCT wusing truncate and
conventional refresh perform closely when few thousands

3 TIME dimension doesn’t have “ALL” level in its
definition unlike other dimensions of APB schema. So,
we have also created MVs with “ALL” level in TIME
dimension and hence have 168 MVs.

of rows are inserted into the fact table. As expected, both
EPCT refresh method’s performance doesn’t vary much
on the number of rows inserted. Conventional refresh
performance deteriorates as more and more rows are
inserted into the fact table. EPCT with delete is more
expensive than EPCT with truncate as we had to delete
rows from the entire partition (one quarter) of the MV.
Truncate is much faster in this case and hence EPCT with
truncate is better. If the MV partition has data for more
than one quarter, then EPCT with delete can be faster for
cases involving fewer rows.

Experiment 4: Impact of dynamic partition pruning.
In this experiment, we illustrate the impact of dynamic
partition pruning. The graph in Figure 2 shows the
performance of a query joining the fact table with the
TIME dimension. The query has a filter predicate on the
month level of the TIME dimension and aggregates along
the CHANNEL dimension. We varied the predicate
selectivity from 1 to 18 months and measured the
performance with and without dynamic partition pruning.
In all the cases the query ran in serial and used a hash
join.

The performance of the query with pruning is
proportional to the number of partitions selected. Without
pruning the performance is limited by the full table scan
cost of the fact table. As expected, the performance with
and without pruning was identical when all the months
(18 months in Figure 2: Dynamic Partition Pruning) were
selected. The numbers with a parallel plan show similar
behavior.

Figure 2: Dynamic Partition Pruning

150 &
=
— 7
120 | — 7
— - //
- -7
90 - - e
[.7
Time e
60 7
/‘ — - &- - Pruning
30 1 // — ® —No Pruning
P4
.
0o+ * : : :
0 5 10 15 20

Months from TIM E Dimension

8. Conclusion

We presented an approach to optimizing refresh of a
single materialized view by using partitioning of base

1053

tables and materialized views. In addition we showed an
algorithm to derive an optimal schedule of refreshing a set
of materialized views. We demonstrated the performance
benefits of building and maintaining such materialized
views.

9. Acknowledgements

We would like to thank Charles Sperry for his insightful
comments about building and maintaining OLAP cubes.
We are grateful to Jack Raitto and Shilpa Lawande for
their insightful comments about Oracle Materialized View
subsystem. We also like to thank Susy Fan and Saroj
Sancheti for their assistance with the performance
experiments. Finally, we thank John Haydu for his
technical reviews.

References

[1] APB Benchmark Specifications.
http://www.olapcouncil.org/research/APB1R2 spec.pdf

[2] S. Agarwal, R. Agrawal, P.M. Deshpande, A. Gupta,
J.F. Naughton, R. Ramakrishnan, and S. Sarawagi, “On
the computation of multidimensional aggregates”,
Proceedings of 22nd Conference on VLDB, Mumbai
(Bombay), India.

[3]R. G. Bello, et al., “Materialized Views In Oracle”,
Proceedings of 24th Conference on VLDB, New York,
USA.

[4]]. A. Blakeley, P. Larson, and F. W. Tompa,
“Efficiently Updating Materialized Views”, Proceedings
of ACM SIGMOD 1986, Washington D.C., USA, 1986.

[5] D.Chatziantoniou and K.Ross, “Querying Multiple
features of Groups in Relational Databases”, Proceedings
of 22nd VLDB Conference, Mumbai, India.

[6].S. Chaudhuri, R. Krishnamurthy, S. Potomianos, and
K. Shim, “Optimizing queries with materialized views”,
Proceedings of 11th Conference on Data Engineeing,
Taipei, Taiwan, 1995.

[7] S. Cohen, W. Nutt, and A. Serebrenik, “Rewriting
aggregate queries using views ", Proceedings of 18th
ACM PODS Symposium, Philadelphia, USA, 1999.

[8] A. Gupta, I.S. Mumick, and V. S. Subrahmanian,
“Maintaining views incrementally”, Proceedings of the
ACM SIGMOD Conference 1993, Washington D.C.,
USA, 1993.

[9] Jim Gray, Adam Bosworth, Andrew Layman,
Hamid Pirahesh, “Data Cube: A Relational
aggregation operator generalizing group-by, cross-
tab, and sub-total”, Proceedings of 12th Conference
on Data Engineering, New Orleans, Louisiana, USA.

[10] T. Griffin and L. Libkin, “Incremental maintenance
of views with duplicates”, Proceedings of ACM SIGMOD
1995, San Jose, USA, 1995.

[11] W.J. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and
J. Widom, “Performance issues in incremental warehouse
Maintenance”, Proceedings of 26th Conference on VLDB,
Cairo, Egypt, 2000.

[12] A. Levy, A. Rajaraman, and J. J. Ordille,
“Answering queries using views”, Proceedings of 14th
ACM PODS Symposium, San Jose, USA, 1995.

[13] I. S. Mumick, D. Quass, and B. S. Mumick,
“Maintenance of data cubes and summary tables in a
warehouse”, Proceedings of ACM SIGMOD 1997,
Tucson, USA, 1997.

[14] Oracle 9i Datawarehouse manual. Multi-Table Insert

[15] R. Pottinger, A. Levy, “A scalable algorithm for
answering queries using views”, Proceedings of 26th
Conference on VLDB, Cairo, Egypt, 2000.

[16] D. Srivastava, S. Rar, H. V. Jagadish and A. Levy,
“Answering SQL queries using materialized views”,
Proceedings of the 26th Conference on VLDB, Mumbai,
India, 1996.

[17] R. Tarjan, “Dept-first search and linear graph
algorithms,” SIAM J. Computing, 1997.

[18] A.Witkowski, et al., “Spreadsheets in RDBMS for
OLAP”, Proceedings of ACM SIGMOD 2003, San Diego,
USA, 2003.

[19] M. Zaharioudakis, R. Cochrane, G. Lapis, H.
Pirahesh, and M. Urata, “Answering complex SQL
queries using automatic summary tables”, Proceedings of
ACM SIGMOD 2000, Dallas, USA, 2000.

[20] F. Zemke “Rank, Moving and reporting functions
for OLAP” 99/01/22 proposal for ANSI-NCTS.

[21] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J.
Widom, “View maintenance in a warehouse
environment”, Proceedings of ACM SIGMOD 1995, San
Jose, USA, 1995.

1054

