
Bridging the Gap between OLAP and SQL

Jens-Peter Dittrich1,∗ Donald Kossmann1,2 Alexander Kreutz2

1ETH Zurich 2i-TV-T AG
Switzerland Germany

www.dbis.ethz.ch www.i-tv-t.de

Abstract

In the last ten years, database vendors have
invested heavily in order to extend their prod-
ucts with new features for decision support.
Examples of functionality that has been added
are top N [2], ranking [13, 7], spreadsheet
computations [19], grouping sets [14], data
cube [9], and moving sums [15] in order to
name just a few. Unfortunately, many mod-
ern OLAP systems do not use that functional-
ity or replicate a great deal of it in addition to
other database-related functionality. In fact,
the gap between the functionality provided by
an OLAP system and the functionality used
from the underlying database systems has
widened in the past, rather than narrowed.
The reasons for this trend are that SQL as
a data definition and query language, the re-
lational model, and the client/server archi-
tecture of the current generation of database
products have fundamental shortcomings for
OLAP. This paper lists these deficiencies and
presents the BTell OLAP engine as an exam-
ple on how to bridge these shortcomings. In
addition, we discuss how to extend current
DBMS to better support OLAP in the future.

1 Introduction

The key observation that motivates this work is that
modern industrial strength OLAP systems implement
a great deal of database functionality which would ide-
ally be provided by the underlying database product.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

A typical and prominent example is SAP’s Business In-
formation Warehouse product (BW). Essentially, BW
implements a full-fledged query processor on top of
the SQL query processor provided by the underlying
DBMS. SAP BW is just one example: all OLAP sys-
tems we are aware of follow the same approach, in
particular, our own product BTell.

It is unfortunate for both sides that OLAP systems
make so little use of the functionality of a DBMS, even
more so as DBMS vendors have made significant in-
vestments in the past to improve OLAP capabilities
of their systems [9, 14, 19, 5, 6, 17]. There are historic
reasons for this situation [4] because certain develop-
ments in OLAP systems precede the latest amend-
ments to DBMSes. There are also technical reasons,
due to missing functionality in state-of-the-art DBMS
products. In addition, there are also economic rea-
sons because OLAP vendors do not want to become
dependent on non-standard functionality provided by
certain DBMS vendors.

1.1 Contributions

The purpose of this paper is to explore the missing
functionality and show how it can be implemented,
using as an example the reporting component of i-TV-
T’s BTell product. In summary, this paper makes the
following contributions:

1. The Gap: We list the shortcomings of current
DBMS for building OLAP engines and reporting
front-ends.

2. Bridging the Gap: We present i-TV-T’s OLAP
and reporting engine as an example on how to
bridge these shortcomings.

3. Closing the Gap: We present a wish-list on how
current DBMS technology should be extended to
better support OLAP and reporting front-ends in
the future.

∗Former affiliation, 2003–2004: SAP AG, BW OLAP tech-
nology

1031

Figure 1: BTell reporting front-end (HTML)

Based on our work, we hope to revive discussions on
the suitability of SQL for modern OLAP systems.

This paper is structured as follows: the following
section presents the requirements of a modern OLAP
system using BTell as an example. After that, Sec-
tion 3 identifies the problems encountered when build-
ing a OLAP and reporting engine on top of current
DBMS technology. Section 4 presents how these prob-
lems are solved in i-TV-T’s BTell product. Finally,
Section 5 presents a wish-list on how current DBMS
should be extended to better support OLAP.

2 Features of Modern OLAP Systems

As an example for a modern OLAP system, we use
the BTell product of i-TV-T AG. BTell is a platform
for the development of Web-based information sys-
tems. It has been used, among others, for the devel-
opment of e-Procurement applications (e.g., forecast-
ing, standard cost analysis, factory service agreements,
electronic tenders and auctions) and massive multiple-
player games (e.g. stock market simulations, business

development games). As of 2004, more than 100,000
users in Europe have worked on various applications
built on the BTell platform. Currently BTell is used to
build a large e-Procurement tool for Unilever in USA,
Canada, and Puerto Rico. The applications typically
implement a large number of business processes and
very complex and flexible reporting. The users range
from power users that use the software everyday to
users that sporadically use the software, e.g., to down-
load a pre-canned report.

In this work, we focus on the reporting component
of BTell which is used to give users a live view on their
business data. Figure 1 shows an example report gen-
erated by BTell for a ‘savings project’ application (all
numbers are fake). This application manages infor-
mation of projects that help to reduce the costs of an
enterprise. Each project is carried out by a team and
reduces costs for products of a particular brand, for a
particular factory, in a particular country or business
unit, thereby making use of certain strategies (e.g.,
outsourcing).

The report of Figure 1 shows for each team, its tar-

1032

get savings, the number of projects it is involved in and
the actual savings by brand and subcategory. This is
a typical report that a user of that application might
generate. It shows some features that a modern OLAP
system must provide:

a.) Multi-dimensional Pivot Tables: In Figure 1,
‘sub-category’ and ‘brand’ are pivoted; that is,
each brand (‘142-SURF PWD’, ‘148-SURF LIQ’,
etc.) is given its own column, subcategories (‘Fab-
ric Cleaning’, ‘Fabric Conditioning’) are repre-
sented by a set of columns (one for each brand).

b.) Moving Sums: For each subcategory, the total
of all savings of all brands in that subcategory is
shown. These totals can also be pivoted.

c.) Split Results: Depending on user settings, re-
ports are divided into several pages so that the
user is not flooded with too much information. In
Figure 1, the report is divided into two pages and
only the first page is displayed. Users can navi-
gate to the second page by clicking on ‘Page 2’ in
the top part of the page.

Obviously, BTell has a number of features which are
not shown in Figure 1, but which are also crucial for
the success of a modern OLAP system:

a.) Interactive Controls: With simple clicks, more
moving sums can be generated, additional metrics
can be displayed, and dimensions can be added or
removed. Furthermore, pivoting and un-pivoting
as well as drill-down and roll-up are controlled
by simple GUI features. For example, clicking on
‘Body’ in the ‘team’ column will allow the user
to get the project information for each member of
the team.

b.) Selection lists: It is possible to specify selections
by the use of condition boxes. For instance, it
is possible to generate a report that includes all
brands except the brand ‘148-SURF LIQ’.

c.) Layout: Specific color encodings (e.g. traffic
lights) can be used in all reports. Furthermore,
reporting orders can be redefined (e.g., group the
teams according to certain criteria rather than
listing them in alphabetical order).

d.) Downloads, Graphics: A report can be down-
loaded to Excel. Furthermore, bar charts, pie
charts, speedometers, etc. can be generated.

e.) Pre-canned reports: The reports can be stored
as bookmarks and then be re-evaluated with a
simple click. Furthermore, bookmarks can be sent
to other users (e.g. managers) by email so that
these users can trace the latest results.

While there has been significant progress on DBMS
products, e.g., on Pivot Tables [3] and integration
of spreadsheet functionality [19], this progress is not
enough in order to implement all these OLAP features
directly using a DBMS. There are fundamental short-
comings which will be described in the next section.

3 The Gap: Why SQL is not Enough

Most of today’s OLAP platforms rely on a relational
database (ROLAP) which is used to store a historical
snapshot of integrated data from several underlying
OLTP systems. The snapshot is either stored in spe-
cialized schemas like the Star or Snowflake Schema;
or in flat views like Operational Data Stores (ODS).
The functionality of the RDBMS is extended by each
OLAP vendor (like SAP or i-TV-T) through a pro-
prietary OLAP engine built on top of the RDBMS as
displayed in the following Figure:

OLAP Client OLAP Client

OLAP Engine

RDBMS/SQLRDBMS/SQL

This architecture is used to perform a two-step (fil-
ter/refine) data processing strategy:

1. Filter: The RDBMS retrieves a superset of the
data that is actually needed. The RDBMS is only
used to perform heavy data processing tasks like
pre-aggregation and joins.

2. Refine: The OLAP engine uses the superset to
compute the exact result to each query.

There are several reasons why vendors choose a two-
step architecture:

1. Though SQL has been extended with a variety of
important new OLAP operators, e.g. the Cube [9],
these operators are still not provided with each
RDBMS. Therefore, OLAP vendors tend to sup-
port only the minimal set of SQL that is sup-
ported by all RDBMS vendors.

2. Even systems that implement the latest SQL stan-
dard lack important OLAP features. As a con-
sequence, system architects use only the common
set of functionality that is provided by all RDBMS
vendors. Everything else will be implemented in-
side the OLAP engine, even those tasks that could
be performed by certain RDBMS products.

1033

Profits
State Customer Product Profit

S1 C1 P1 1.0
S1 C1 P2 1.0
S1 C1 NULL 2.0
S1 C2 P1 1.0
S1 C2 P2 1.0
S1 C2 NULL 2.0
S1 NULL NULL 4.0
S2 C1 P1 1.0
S2 C1 P2 1.0
S2 C1 NULL 2.0
S2 C2 P1 1.0
S2 C2 P2 1.0
S2 C2 NULL 2.0
S1 NULL NULL 4.0
NULL NULL NULL 8.0

:

Profits
State Customer Product Profit

S1 C1 P1 1.0
S1 C1 P2 1.0
S1 C1

P
2.0

S1 C2 P1 1.0
S1 C2 P2 1.0
S1 C2

P
2.0

S1
PP

4.0
S2 C1 P1 1.0
S2 C1 P2 1.0
S2 C1

P
2.0

S2 C2 P1 1.0
S2 C2 P2 1.0
S2 C2

P
2.0

S2
PP

4.0PPP
8.0

:

Profits
State Customer Product Profit

P1 1.0
C1 P2 1.0P

2.0
S1 P1 1.0

C2 P2 1.0P
2.0PP
4.0

P1 1.0
C1 P2 1.0P

2.0
S2 P1 1.0

C2 P2 1.0P
2.0PP
4.0PPP
8.0

a) The result of a ROLLUP operation b) Interpreting NULL-values c) Interpreting adjacent similar
as multi columns values as multi rows

Figure 2: The result of a ROLLUP and its ‘interpretations’

In summary, commercial OLAP engines tend to re-
implement considerable database functionality. They
perform database-like tasks like pivot computation,
post-aggregation, hierarchy operations, semantic cor-
rectness checks, caching, etc. The OLAP engines
bridge the gap between the relational world of the
RDBMS and the multidimensional analysis required
by the user.

The following sections (3.1–3.3) identify three of
these gaps. After that, Section 4 present how these
gaps are bridged in BTell. Finally, Section 5 presents
a wish-list on how to close the gap, i.e., how to ex-
tend current RDBMS to better support OLAP in the
future.

3.1 Non-Relational Data Model

This section shows that the tabular relational model is
not always suitable for OLAP because OLAP systems
must present query results as part of a GUI. We ar-
gue that a non-relational, cell-oriented representation
of data is more appropriate to present query results
than the relational model. Furthermore, the relational
model is not able to unambiguously represent certain
values.

SQL 99 introduced two new operators for OLAP:
CUBE and ROLLUP [9]. These operators compute mul-
tiple groupings as well as intermediate aggregates and
sums. The difference between the two operators is that
CUBE creates all existing aggregates whereas ROLLUP
creates only the subset of CUBE corresponding to a hi-
erarchy of columns.

For example, if we do a ROLLUP on State, Customer
and Product, i.e.,

SELECT State, Customer, Product, sum(Profit)
FROM Profits
GROUP BY ROLLUP (State, Customer, Product)
ORDER BY State, Customer, Product;

we receive the table displayed in Figure 2a.

Example 1: (Multi Column Results) Figure 2a
contains all rows from the base table Profits as well as

additional rows containing NULL-values. These NULL-
values have to be ‘interpreted’ as sums, since SQL does
not provide a special format for sum. Figure 2b shows,
how these NULL-values are interpreted over one or mul-
tiple columns, respectively. The problem is that SQL
also uses NULL-values for outer joins. In this case, the
NULL-value is interpreted as ‘value does not exist’. To
disambiguate between the two different semantics of
the NULL-value, SQL 99 introduced a special column
function named GROUPING(). If GROUPING() is called
with a NULL-value representing a sum, 1 is returned, 0
if it has different semantics. Since OLAP-queries typ-
ically contain outer joins, GROUPING() has to be used
with a combination of CASE to ensure correctness. This
makes SQL cumbersome and error-prone and simply
not expressive enough for OLAP applications.

Example 2: (Multi Row Results) The ROLLUP
operation in the previous example used an ORDER BY
statement to sort the relation lexicographically on
columns State, Customer and Product. Note, that
relations are defined as sets, i.e., Profits ⊆ State ×
Customer × Product × Profit. If we sort a relation
into a sequence, it is not a relation anymore. In other
words, a relation is not a sequence but a set.

Figure 2b shows the sorted output of the ROLLUP-
operation. Many key columns contain similar values in
consecutive rows, i.e., similar values are repeated for
each row. This is another interpretation convention of
SQL. It means, that these values represent an entry
that spans multiple rows, i.e., a multi row entry. Fig-
ure 2c visualizes this interpretation. Adjacent similar
values are merged to form a multi row cell.

These multi row entries are neither supported by
SQL nor by the relational model.

Example 3: (Column Orders) Figure 2c shows a
drill-down by State, Customer and Product. In other
words: Profits are first drilled-down by State, then
each value of the State column is drilled-down by Cus-
tomer. After that, each value of the Customer column
is drilled-down by Product.

1034

If the columns were in a different order1, say Cus-
tomer, State, Product, we would see a different table.
The order of columns implicitly defines a 3-level hierar-
chy, where State is the root and Product the leaf level.
Neither the order of columns nor inter-column hierar-
chical dependencies are part of the relational model.

Example 4: (Pivot Tables) A pivot table is a
2-dimensional representation that displays values on
both the x- and the y-axis. For example, a pivot table
with State and Customer on the y-axis and Product on
the x-axis looks as follows (another example is given
in Figure 1):

Profits
Product

State Customer P1 P2
P

S1 C1 1.0 1.0 2.0
S1 C2 1.0 1.0 2.0
S1

P
2.0 2.0 4.0

S2 C1 1.0 1.0 2.0
S2 C2 1.0 1.0 2.0
S2

P
2.0 2.0 4.0PP
4.0 4.0 8.0

The above issues on multi row results, multi col-
umn results and column orders fully apply to pivot
tables. However, since pivot tables can be seen as a
2-dimensional extension of a roll-up, things get even
more complicated. For example, the pivot table con-
tains three columns for the Profit measure, one for
each value appearing in the Product column and a
totals column. In addition, the pivot table in the ex-
ample contains more aggregate values. For instance,
the values ((S1—S2),

P
,(P1—P2)) are not part of the

ROLLUP in Figure 2.
Currently, SQL does not support pivot tables. Re-

cently, two new operators PIVOT and UNPIVOT have
been proposed as first-class RDBMS operators [3].
However, the proposal in [3] is not sufficient because
columns must be explicitly defined as part of the query,
i.e., no dynamic pivot tables are allowed. In addi-
tion, only one pivot dimension is possible. Given these
shortcomings and since only one DBMS vendor has
started to work on this topic, OLAP vendors are forced
to implement this important feature in their OLAP en-
gine.

The next section will explore additional deficiencies
of SQL that are related to the client-server architecture
of multi-tiered OLAP systems.

3.2 Client/Server Architecture

This section shows that the current client/server com-
puting model has problems when used for OLAP.

Example 5: (Navigation) An important paradigm
of OLAP is the concept of navigation. Typically, a
user starts analyzing data by selecting an initial query.
This query consists of a set of dimensions on the x- and
the y-axis as well as a set of filter conditions. After

1A table with n key columns has n! different column orders.

that, the user modifies the query in an interactive fash-
ion by adding or removing columns (drill-down and
roll-up), adding or removing filter conditions (slicing),
moving columns from the y- to the x- axis (dicing) and
so on.

This navigational pattern is best described by a
graph representation, where the current selection of di-
mensions and filter conditions corresponds to a node,
i.e., the current state of the OLAP query. The edges
represent transitions between different states:

Dimensions:

Customer
Product

Dimensions:

Customer
Roll-up

Drill-down

Dimensions:

R
oll-upD

rill-dow
n D

ril
l-d

ow
n

R
ol

l-u
p

by Product

by
C

ustom
er

by
C

us
to

m
er

, P
ro

du
ct

The transition from one state to another is unambigu-
ously defined by the parameters of the transition. It
is not necessary to resubmit the entire query.

In contrast, the query language that is used to de-
clare OLAP queries, SQL, is stateless by definition. At
each step, the entire query is resubmitted again and
again. No knowledge of previously submitted queries
of a user is preserved.

Example 6: (Caching) In a three-tier architecture,
each tier (client, application server and DBMS) main-
tains separate caches. These caches are used to store
data received from other tiers or results computed for
other queries. All caches and data stores outside the
DBMS must be kept in sync manually. This again is
labor intensive and error-prone.

Figure 3 depicts the three tiers as well as their asso-
ciated data stores and caches. The DBMS stores the
base tables. These tables are joined and aggregated to
compute views. Some of them are stored, i.e. material-
ized [10], on the DBMS tier. Then, the OLAP engine
at the application tier stores a subset of these views.
It uses them to compute cubes, roll-ups and pivot ta-
bles. Some of the results are stored in a separate cache
on the application tier. Finally, the client tier stores
a subset of the results computed by the OLAP engine.
The client further processes the data to produce for-
matted reports in HTML, XML or MS Excel. Some of
these reports are also cached on the client tier.

The Figure shows that, from a bird’s eye perspec-
tive, all three tiers perform the same task:

1. Receive and store some input data.

1035

OLAP Client
{ Cubes, Rollups, Pivots }

{ HTML, XML, Excel }

OLAP Engine
{ Cubes, Rollups, Pivots }

{ Materialized Views }

RDBMS/SQLRDBMS/SQL
{ Materialized Views }

{ Tables }

Figure 3: The 3 tiers and their associated caches and
data stores

2. Perform algebraic query processing and optimiza-
tion on the data.

3. Store some output data, send some of it to other
tiers.

The punch line is that each tier has specific caching
logic and that the DBMS cache which would be useful
for all tiers is in the DBMS cage and cannot be used on
the different tiers. As a result, standard DBMS logic
must be replicated at all tiers.

3.3 Computability of Aggregates

In this section, we show that the GROUP BY statement
does not always produce the correct result. This prob-
lem is called the problem of summarizability and was
first identified in [18]. [16] presents a detailed overview
on the problem and provides three necessary condi-
tions for summarizability. [11, 12] study summariz-
ability for selected classes of heterogeneous schemas.

In order to implement summarizability correctly,
the DBMS must be aware of the functional dependen-
cies between columns, even in those cases, where base
tables are joined and aggregated to create new views:
it is not enough to consider functional dependencies
on the base relations only. Since current DBMS op-
timizers do not support this feature, summarizability
awareness has to be provided by the OLAP engine.
The following examples show how the lack of this fea-
ture results in wrong query results.

Example 7: (Unexpected Results) Consider a re-
source planning application of a freight shipping com-
pany. The following Figure shows a table Trucks, con-
taining data on trucks and their capacity; and a table
Transports, containing company names, city and the
required capacity.

SELECT Make, sum(capacity)
FROM (SELECT *

FROM Trucks NATURAL JOIN Transports)
GROUP BY Make;

Trucks
Make Capacity

Ford 10.0
VW 10.0

Transports
Company City Capacity

BigComp NYC 10.0
BigComp LA 10.0

↓ SELECT *
FROM Trucks NATURAL JOIN Transports;

PossibleTransports
Make Company City Capacity

Ford BigComp NYC 10.0
Ford BigComp LA 10.0
VW BigComp NYC 10.0
VW BigComp LA 10.0

↓
SELECT Make, sum(Capacity)
FROM PossibleTransports
GROUP BY Make;

Trucks (Aggregate)
Make Capacity

Ford 20.0 E
VW 20.0 E

Both tables are joined by a natural join2. The resulting
table PossibleTransports contains a list of possible
truck-transport pairs.

Now, the user asks for a GROUP BY on the Make
column of PossibleTransports using sum as the
aggregation function. The resulting table Trucks
(Aggregate) has the same structure as the source ta-
ble Trucks. However, it contains different, i.e. unex-
pected, data entries in the Capacity column; for ex-
ample, the query result indicates that the capacity of
a Ford is 20 whereas it really is only 10.

The source of this irritation is that the Possible-
Transports table, an intermediate query result, is not
normalized and, thus, contains data redundancies. If
such an intermediate query result is aggregated, data
items from the base tables are used multiple times.
As a consequence, the measures in the result of the
GROUP BY query are wrong. Modern OLAP systems
can detect such situations and are able to compute
the expected result; this, however, comes at the addi-
tional price to carry out the aggregation in the OLAP
engine, rather than pushing the whole query down to
the DBMS.

Example 8: (Sales) OLAP measures are typically
related to a unit and only values of the same unit can
be aggregated. The awareness for units is another fea-
ture that SQL and state-of-the-art DBMS are lacking
in order to adequately support OLAP applications. In

2The natural join is used for sake of simplicity. In a
real application, we would perform a theta join using θ =
Trucks.Capacity ≥ Transports.Capacity as the predicate.

1036

the following, we will consider a sales application with
the following simple table representing sales profits:

Profits
State Customer Product Profit Unit

S1 C1 P1 1.0 MM USD
S1 C1 P2 1.0 MM USD
S1 C2 P1 1.0 MM USD
S1 C2 P2 1.0 MM EUR
S2 C1 P1 1.0 MM EUR
S2 C1 P2 1.0 MM USD
S2 C2 P1 1.0 MM EUR
S2 C2 P2 1.0 MM EUR

The following query should result in an ERROR:

SELECT Customer, sum(Profit)
FROM Profits
GROUP BY Customer;

However, standard DBMS will execute this query
and return the wrong result. (Alternatively, a user-
defined aggregation function needs to be executed.)
Again, an OLAP system will consider the peculiarities
of units and make sure that all aggregates are carried
out correctly.

4 BTell: How to Bridge the Gap?

Ideally, today’s RDBMS products and SQL should be
extended to solve the problems mentioned in the previ-
ous section. The relational model should be extended
to support order, hierarchies, multi-columns, multi-
rows and multi-dimensional concepts like pivot ‘ta-
bles’. The client/server paradigm should be broadened
to provide support for a more open query processing
model. Last but not least, SQL should be extended to
model functional dependencies and units — not only
at table, but also at query, view and result level — in
order to guarantee correct results.

Since all this is not likely to happen in the near fu-
ture, OLAP vendors, like i-TV-T, have invented their
own solutions. In the following, we sketch some of
BTell’s solutions to these problems.

4.1 Operator Model

In this section, we first introduce the multi-
dimensional operator model of BTell. After that, we
explain how BTell’s operators are used to provide effi-
cient caching and pivot computation.

Query processing in BTell is based on an operator
model. In contrast to standard relational operators,
we distinguish two classes of operators:

1S The first class takes one or more input stream(s)
and returns a single output stream. These opera-
tors are non-blocking operators, i.e., iterators that
comply with the open-next-close interface [8].

3S The second class takes one or more input
stream(s) and returns three output streams.
These operators are blocking operators.

The streams of the 1S operators contain mixed data
that may apply to one of the axis’ or both of them. In
contrast, the three streams of the 3S operators have
the following semantics: the first stream contains data
for the x-axis; the second, data for the y-axis; and the
third stream data, that applies to both the x-axis and
the y-axis.

Example: Recall the pivot table from the previous
examples:

Profits
Product

State Customer P1 P2
P

S1 C1 1.0 1.0 2.0
S1 C2 1.0 1.0 2.0
S1

P
2.0 2.0 4.0

S2 C1 1.0 1.0 2.0
S2 C2 1.0 1.0 2.0
S2

P
2.0 2.0 4.0PP
4.0 4.0 8.0

For this pivot table, BTell generates an x-stream
containing tuples (S1,C1,2.0), (S1,C2,2.0), (S1,

P
,4.0),

etc.; a y-stream containing tuples (P1,4.0), (P2,4.0);
and an xy-stream containing tuples (S1,C1,P1,1.0),
(S1,C1,P2,1.0), (S1,C2,P1,1.0), (S1,C2,P2,1.0), etc., re-
spectively. This means, BTell splits the pivot into cells
that are valid only on the x-, y-, or on both axis. This
strongly facilitates pivot computation as will be ex-
plained in Sections 4.4.

4.2 Pipelining

Figure 4 shows the pipeline of BTell OLAP. The oper-
ators displayed as boxes are 3S operators. The opera-
tors displayed as circles are 1S operators.

Query processing is triggered by the clients. The
client creates a ReportOptions instance, which col-
lects the parameters of the query, like dimensions to
display, filter conditions, etc. The ReportOptions are
sent to BTell’s OLAP engine which passes them to
the top-level operator of the pipeline, e.g., the Excel
Convert operator. For the moment, we will assume
that the pipeline does not contain cached data. There-
fore, each operator will call its parent operator until
the Fetch operator is reached. The Fetch operator
sends SQL-queries to the RDBMS and retrieves the
result rows. The result is then split into three streams
(x, y and xy) and sent to the next operator. The
next 3S operators perform caching, filtering, sorting
and grouping. After that, 1S operators perform pivot
computation and post-processing on the pivot tables.

4.3 Caching

The main idea of caching in BTell is to mix
standard query operators and special OLAP
operators with caching operators3. Therefore,

3The same approach has recently been applied in a different
context to better utilize instruction cache performance [20].

1037

Cache

Sort

Group

Drill-down Filter

Filter

Observable Result Cache

Cache

Fetch

Split

Format

Link

Align

XML

Convert

Cell

Merge

HTML

Convert

Excel

Convert

x xy y

x, xy, y

x xy y

merged data

3S operators

1S operators
RDBMS

Client Client Client

Btell OLAP

Engine

Pivot

x xy y

x xy y

x xy y

x xy y

x xy y

x xy y

x xy y

Figure 4: The processing pipeline of BTell’s OLAP Engine

all 3S operators support a special operation
must reevaluate(ReportOptions). The semantics
of this operation are as follows: each time the report
options change must reevaluate(ReportOptions)
may be called on an operator to determine whether
that operator would now compute a different result
for the given options. In the latter case, true is re-
turned, false otherwise. Like that, must reevaluate
weaves caching into the operator model. This greatly
facilitates the implementation of the cache update
policies.

4.4 Pivot Tables

We will now sketch the algorithm that is used by the
3S operators to compute pivot tables.

4.4.1 Pivot Computation

The following algorithm extends the algorithm pro-
posed in [9] to the 3S operator model. The main
idea of the our algorithm is to apply two lexicograph-
ical sorts on the data. Assume we have a table with
columns c1,..,ck,ck+1,..,cd, where d is the total number
of columns. We want to compute a pivot table with
columns c1,..,ck on the y-axis and columns ck+1,..,cd
on the x-axis, respectively. The pivot algorithm works
as follows:

1. Y-Sort: Sort the data using columns

ck+1,..,cd,c1,..,ck as the lexicographical com-
pare order.

2. Y-Group: Compute moving sums of all rows by
simply iterating column-wise through the data.
Each group change generates a moving sum.

3. X-Sort: Sort the data plus the newly created
moving sums using c1,..,ck, ck+1,..,cd as the lexi-
cographical compare order.

4. X-Group: Compute moving sums of all columns
by simply iterating row-wise through the data.
Each group change generates a moving sum.

Steps 3 and 4 can be swapped with 1 and 2. This will
produce the same result.

We will now briefly discuss the pivot algorithm as
implemented on top of the 3S operator model. The
Sort and Group operators create three separate out-
put streams of data. The y-stream contains tuples
representing the keys displayed on the y-axis as well
as the measure m; the x- and xy-streams contain keys
displayed on the x- and xy-axis, respectively. Thus, y-
stream tuples have then format (<c1,..,ck>, m); the x-
and xy- streams have then format (<ck+1,..,cd>, m) and
(<c1,..,ck,ck+1,..,cd>, m), respectively. For this reason,
the actual Pivot operator simply performs a merge
of the three streams using columns c1,..,cd as the join

1038

keys. The latter join is implemented as a three-way
mid4-outer sort-merge join.

4.4.2 Post-processing

The Pivot operator generates a sorted stream of cells
with format (<c1,..,ck,ck+1,..,cd>,<cell object>) as its
output. After that, the cells are enriched by the 1S
operators. For example, the Format iterator converts
numbers and dates to formatted output strings ap-
plying the user’s regional settings; the Align iterator,
aligns data cells to the right or left margin. Finally,
three different Convert operators convert the cells to
either HTML, XML, or MS Excel.

4.5 Computability of Aggregates

In this section, we present BTell’s algorithm for deter-
mining summarizability of aggregates. To the best of
the authors’ knowledge, BTell is the only product that
performs such kind of summarizability check.

4.5.1 Main Algorithm

The main idea of our algorithm is as follows: First,
the data model as well as functional dependencies be-
tween columns have to be declared in the data dictio-
nary. Second, at runtime the functional dependencies
are exploited to determine whether the current drill-
down is valid.

Recall the table from the running example5:

Profits
State Customer Product Profit

S1 C1 P1 42.00
S1 C1 P2 42.42
S1 C2 P1 11.00
S1 C2 P2 5.00
S2 C1 P1 42.00
S2 C1 P2 42.42
S2 C2 P1 11.00
S2 C2 P2 5.00

For this table, a user might declare a list of functional
dependencies as follows:

{Customer, Product} → Profit

This means, Customer and Product determine the
measures column Profit. But, the column State nei-
ther determines any other column nor does it depend
on any other column.

The following table shows the aggregates, i.e. mov-
ing sums, that are valid for this example:

Profits
State Customer Product Profit is valid?

. . . . YES

. .
P

. YES
.

P
. YESP
. E NO E

4outer is applied to the xy-stream only.
5We have changed the numbers in the ‘Profit’ column to

avoid the trivial functional dependencies caused by a constant
value.

ALGORITHM FunctionalDependencyCheck

Input:
-columns c0,...,cd

-measure m
-set of functional dependencies F1: {ci → cj}
-set of functional dependencies F2: {cj → m}

Output:
-interval T of dimensions, where totals are allowed

(1) Using F1 and F2 compute minimal set
of columns A={ci} that determines m

(2) compute closure A+ of A
(3) start dim = d + 1
(4) ForEach i in {d,...,0}:
(5) If ci ∈ A+:
(6) start dim = i
(7) Else
(8) break
(9) EndIf
(10) EndFor
(11) T = (start dim, d)
(12) return T

Figure 5: FunctionalDependencyCheck Algorithm

BTell’s FunctionalDependencyCheck algorithm is de-
picted in Figure 5. It is invoked with a list of columns
ci to check, one measure m and two sets of functional
dependencies: one containing dependencies between
columns, the other containing dependencies between
columns and the measure. The extension of the al-
gorithm to multiple measures is straightforward and
omitted for reasons of readability. The algorithm re-
turns an interval T that contains the range of columns
where movings sums are valid.

The algorithm works as follows: it starts by com-
puting the minimal set of columns A that determine
the measure m (line 1). After that, the closure A+ of A
is computed, i.e., all functional dependencies that are
implied by A (line 2). The variable start dim is used
to store the first column that may be aggregated. It is
set to d+1 (line 3). Then, the algorithm iterates over
the columns starting at the rightmost column (lines 3–
10). If the current column is determined by the closure
A+ (line 4), the iteration continues and sets start dim
to the current column index (line 5). Otherwise, the it-
eration halts (line 8). The algorithm returns the inter-
val T=(start dim,d) as the result, where start dim
refers to the last valid column that was checked in the
for-loop (lines 11–12).

For our example, the algorithm would compute A as
A = {Customer,Product}. Then, the cover A+ would
be computed as A+ = A. The iteration starts with col-
umn Product. Product is contained in the cover set.
Therefore the iteration continues. The next column
to check is column Customer. Again, this column is
contained in the cover set A+. The next column State,
however, is not contained in the cover set. Therefore,

1039

the iteration halts. T=(1,2) is returned as the result.
This is the expected result.

4.5.2 Extensions

There are some important extensions that have
to be considered when implementing Functional-
DependencyCheck.

Multiple Minimal Sets There are situations, in
which multiple minimal sets exist that determine the
measure m (compare line 1 in Figure 5, also see Exam-
ple 7). For these situations, the algorithm must not
allow moving sums on the entire range of columns.
Therefore, T = (d+1,d+1) should be returned.

Pivot Tables For pivot tables, the algorithm is ap-
plied separately on both drill-down dimensions (x-axis
and y-axis). The result is then combined to determine
placement of moving sums. Note, that a moving sum
might be valid on both axis, on one axis or none of
them.

Units Units are treated separately. There are two
cases: if no unit is present, or the input data set is
restricted to tuples that all have the same unit, values
can safely be aggregated. Otherwise, aggregation is
restricted to those columns that have the same unit,
or can be converted to a common unit.

5 How to Close the Gap?

The previous sections have identified the gap between
OLAP and SQL and showed how this gap is bridged in
a commercial product. In this section, we will explore
how to close the gap, i.e., how to extend DBMS to bet-
ter support OLAP and reporting technology in the fu-
ture. The extensions proposed here are not part of the
BTell product; they are, however, currenty discussed
as future development directions of our product.

We think there are two paths to follow: the first
is to extend SQL with new OLAP features. This will
help to close a lot of gaps like summarizabilty, unit
handling, pivot computation and so on. On the other
hand, it is hard to extend SQL with features to rep-
resent non-relational, multidimensional data (compare
Section 3.1). Though the latter could be accomplished
by, e.g., using nested relations, handling OLAP queries
in SQL then would not become much easier.

The second path to follow is to develop a new query
language designed for OLAP from the beginning6.
This new language should be standardized. DBMS
vendors should then provide add-on products to their
DBMSes that translate SQL to that new language and
vice versa. This would, in the long-run, remove the
need to implement proprietary OLAP engines.

6Microsoft has already developed a proprietary language
called MDX (Multi-Dimensional eXpressions). Though MDX
helps to fix some of the problems with SQL, many of the gaps
presented in this paper are not tackled.

In this section, we will sketch how this new query
and data definition language could look like. First of
all, recall that only small amounts of data are trans-
fered between the users client and the OLAP engine.
The heavy data processing tasks are performed only
inside the DBMS or inside the OLAP engine. For this
reason we choose XML as the data return format —
the overhead introduced by XML will not substantially
decrease the performance of our system proposal. Also
note, that XML can already be processed by a huge
number of reporting tools. To provide efficient query
processing on XML data XQuery is currently devel-
oped to become the lingua franca of the XML world.
Just recently powerful OLAP extensions have been
proposed to facilitate analytic queries with XQuery [1].

5.1 Wish List for an Analytical Query Lan-
guage

We will now sketch how an Analytic Query Language
(AQL) should be designed to not only bridge but close
the gaps described in the previous sections of this
work. We assume that XQuery plus the OLAP ex-
tensions proposed in [1] will build the foundation for
such a language. We do not present a complete spec-
ification of these extensions here. We think that this
should be accomplished by the research community
and the W3C XQuery committee. Our primary goal
here is to stimulate discussion on the topic. The fol-
lowing items represent our wish list:

1. AQL should represent all data and metadata
available in the DBMS as XML views. Note, that
the data has neither to be stored nor processed in
XML format inside the DBMS. We only require
XML views in order to provide unified access to
the data.
Impact: This allows to perform all data definition
tasks using XQuery7.

2. AQL should be extended to enable abstract data
definitions.
Impact: This allows to model semantic relation-
ships as well as functional dependencies.

3. AQL should provide a facility to place, i.e. drill-
down, attributes on ‘rows’ or ‘columns’ (just like
MDX).
Example statement:

for $f in //profits
group by $f/state, $f/customer ON ROWS,
$f/product ON COLUMNS
return ...

Impact: This strongly facilitates the semantics of
OLAP queries.

7We assume that update and insert operations will become
available in XQuery in the near future.

1040

4. AQL should provide operators to automatically
generate multi-dimensional pivot, cube and rollup
representations.
Example statement:

for $f in //profits
group by ROLLUP ($f/state, $f/customer) on rows,
ROLLUP ($f/product) on columns
return ...

Impact: This allows to easily compute rollup,
cube and pivot representations.

5. AQL should provide multi-dimensional return for-
mats.
Example statement:
Lets assume we want to compute the following
pivot result:

Profits
Product

State Customer P1 P2
P

S1 C1 1.0 1.0 2.0
S1 C2 1.0 1.0 2.0
S1

P
2.0 2.0 4.0

S2 C1 1.0 1.0 2.0
S2 C2 1.0 1.0 2.0
S2

P
2.0 2.0 4.0PP
4.0 4.0 8.0

We propose, that the statement

for $f in //profits
group by rollup ($f/state, $f/customer) on rows,
rollup($f/product) on columns
return AS MDVIEW

creates the following result:

<profits>
<rows>

<S1>
<C1> <1/><2/><3/> </C1>
<C2> <4/><5/><6/> </C2>
<sum> <7/><8/><9/> </sum>

</S1>
<S2>

<C1> <10/><11/><12/> </C1>
<C2> <13/><14/><15/> </C2>
<sum> <16/><17/><18/> </sum>

</S2>
<sum> <19/><20/><21/> </sum>

</rows>
<columns>

<P1> <1/><4/><7/><10/><13/><16/><19/> </P1>
<P2> <2/><5/><8/><11/><14/><17/><20/> </P2>
<sum> <3/><6/><9/><12/><15/><18/><21/> </sum>

</columns>
<data>

<1> 1.0 </1>
<2> 1.0 </2>
<3> 2.0 </3>
<4> 1.0 </4>
...
<21> 8.0 </21>

</data>
</profits>

Note, that this format preserves both hierarchies,
as well on the x- as well on the y-axis. In addition,
no result tuples of the aggregation get repeated.
Impact: This allows to compute query results that
can easily be postprocessed by a client applica-
tion.

6. AQL should allow to modify existing queries. In
addition, stateful queries and sessions should be
possible.
Example statement:

DEFINE SESSION $s AS
for $f in //profits
group by $f/state on rows,
$f/product on columns
return as mdview

$ret = EVAL($s)

Note, that the DEFINE command does not com-
pute any results. This is only triggered by the
following EVAL statement. Lets assume the user
wants to drill-down on attribute ‘state’. This
means, she has to modify the query. She could
do this as follows:

REDEFINE SESSION $s
INSERT $f/customer$ AFTER $f/state on rows

$ret = eval($s)

Impact: Modifications performed by the user on
the reporting front-end are directly translated
into statements of the query language. It is not
necessary anymore to reissue the entire query.

7. AQL should allow to create query subscriptions
(aka ative queries).
Example statement:

define session $s as
for $f in //profits
group by $f/state on rows,
$f/product on columns
return as mdview

define function notify(
$res as $s/result,
$metadata as $s/metadata

)
ON $s CHANGED
{

(: code to handle query result $res :)
}

The function notify is called whenever the sub-
scribed query produces a different result. This is
either the case if the underlying data is changed
or the query session gets modifed by a redefine
statement. This mechanism can easily be used by
the client software to redraw the screen: every-
thing that remains to be done is to call redraw

1041

whenever notify is called. In that case no ex-
plicit call to eval is necessary anymore:

define function notify(
$res as $s/result,
$metadata as $s/metadata

)
ON $s CHANGED
{

call redraw_result_screen($res, $metadata)
}

Impact: This statement facilitates implementa-
tion. In addition, this feature greatly facilitates
active warehousing and monitoring applications.

6 Conclusion

Despite all efforts, database vendors are not making
the impact on the OLAP market that they could have.
BI vendors such as SAP, Cognos, or i-TV-T build there
own engines on top of DB products, thereby replicat-
ing a great deal of DB functionality and only using the
very basic SQL 92 functionality (joins, group by and
nested queries). The reason is that DBMS vendors are
still overlooking some of the fundamental deficiencies
of SQL and the relational model. The gap is widening
and more and more stuff is added to OLAP engines
that should ideally be implemented inside the DBMS.
This paper has explored the gap between OLAP and
SQL from a vendor point of view. Our contribution is
threefold: First, we presented the gap vendors are con-
fronted with when building reporting engines on top
of current DBMS technology. Second, we showed how
this gap can be bridged by a commerical OLAP engine,
i-TV-T’s BTell product. Third, we presented a wish
list on how to extend DBMS to close the gap, i.e., how
to better support OLAP and reporting functionality
in the future.

We hope that our work revives discussions in the re-
search community on the suitability of SQL for modern
OLAP systems.

References

[1] K. Beyer, D. Chamberlin, L. Colby, F. Ozcan,
H. Pirahesh, and Y. Xu. Extending XQuery for
Analytics. In ACM SIGMOD, 2005 (to appear).

[2] M. J. Carey and D. Kossmann. Processing Top N
and Bottom N Queries. IEEE Data Engineering
Bulletin, 20(3):12–19, 1997.

[3] C. Cunningham, G. Graefe, and C. A. Galindo-
Legaria. PIVOT and UNPIVOT: Optimization
and Execution Strategies in an RDBMS. In
VLDB, pages 998–1009, 2004.

[4] J. Doppelhammer, T. Höppler, A. Kemper, and
D. Kossmann. Database Performance in the Real
World: TPC-D and SAP R/3. In ACM SIGMOD,
pages 123–134, 1997.

[5] C. D. French. “One Size Fits All” Database Ar-
chitectures Do Not Work For DSS. In ACM SIG-
MOD, pages 449–450, 1995.

[6] C. D. French. Teaching an OLTP Database Ker-
nel Advanced Data Warehousing Techniques. In
IEEE ICDE, pages 194–198, 1997.

[7] F. Geerts, H. Mannila, and E. Terzi. Relational
Link-based Ranking. In VLDB, pages 552–563,
2004.

[8] G. Graefe. Volcano - An Extensible and Par-
allel Query Evaluation System. IEEE TKDE,
6(1):120–135, 1994.

[9] J. Gray, A. Bosworth, A. Layman, and H. Pi-
rahesh. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and
Sub-Total. In IEEE ICDE, pages 152–159, 1996.

[10] H. Gupta, V. Harinarayan, A. Rajaraman, and
J. D. Ullman. Index Selection for OLAP. In IEEE
ICDE, pages 208–219, 1997.

[11] C. A. Hurtado and A. O. Mendelzon. Reasoning
about Summarizability in Heterogeneous Multidi-
mensional Schemas. In IEEE ICDT, pages 375–
389, 2001.

[12] C. A. Hurtado and A. O. Mendelzon. OLAP Di-
mension Constraints. In ACM PODS, pages 169–
179, 2002.

[13] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and
A. K. Elmagarmid. Rank-aware Query Optimiza-
tion. In ACM SIGMOD, pages 203–214, 2004.

[14] ISO/IEC. SQL 1999. 9075-1:1999.

[15] R. Kimball and K. Strehlo. Why Decision Support
Fails and How To Fix It. ACM SIGMOD Record,
24(3):92–97, 1995.

[16] H.-J. Lenz and A. Shoshani. Summarizability in
OLAP and Statistical Data Bases. In SSDBM,
pages 132–143, 1997.

[17] R. MacNicol and B. French. Sybase IQ Multiplex
- Designed For Analytics. In VLDB, pages 1227–
1230, 2004.

[18] M. Rafanelli and A. Shoshani. STORM: A Statis-
tical Object Representation Model. In SSDBM,
pages 14–29, 1990.

[19] A. Witkowski, S. Bellamkonda, T. Bozkaya,
G. Dorman, N. Folkert, A. Gupta, L. Shen, and
S. Subramanian. Spreadsheets in RDBMS for
OLAP. In ACM SIGMOD, pages 52–63, 2003.

[20] J. Zhou and K. A. Ross. Buffering Database Op-
erations for Enhanced Instruction Cache Perfor-
mance. In ACM SIGMOD, pages 191–202, 2004.

1042

