
Semantic Adaptation of Schema Mappings when Schemas Evolve
Cong Yu∗ Lucian Popa

congy@umich.edu
Dept. of EECS, Univ. of Michigan

lucian@almaden.ibm.com
IBM Almaden Research Center

Abstract
Schemas evolve over time to accommodate the changes in
the information they represent. Such evolution causes in-
validation of various artifacts depending on the schemas,
such as schema mappings. In a heterogenous environment,
where cooperation among data sources depends essentially
upon them, schema mappings must be adapted to reflect
schema evolution. In this study, we explore the mapping
composition approach for addressing this mapping adapta-
tion problem. We study the semantics of mapping compo-
sition in the context of mapping adaptation and compare
our approach with the incremental approach of Velegrakis
et al [21]. We show that our method is superior in terms
of capturing the semantics of both the original mappings
and the evolution. We design and implement a mapping
adaptation system based on mapping composition as well
as additional mapping pruning techniques that significantly
speed up the adaptation. We conduct comprehensive exper-
imental analysis and show that the composition approach is
practical in various evolution scenarios. The mapping lan-
guage that we consider is a nested relational extension of
the second-order dependencies of Fagin et al [7]. Our work
can also be seen as an implementation of the mapping com-
position operator of the model management framework.

1 Introduction
Independent data sources are often heterogeneous even when
they cover the same information domain, as reflected in the adop-
tion of different schemas for describing the data. Despite the
difficulties of dealing with such heterogeneous data, cooperation
among data sources, with the goal of providing a comprehen-
sive and cohesive view of the information, has become more and
more important, for many applications. Schemas and schema
mappings are two fundamental metadata ingredients that are at
the core of such cooperation. Schemas describe the structure and,
to some extent, the semantics of data at the data sources, while
schema mappings describe relationships between data sources.
Schema mappings can be used to transform data between two
different schemas (data exchange or translation [6, 20]), or to
translate queries over one schema to queries over a different
schema [13, 22]. In particular, they can be used in answer-

∗ Supported in part by NSF under grant IIS-0219513, by NIH under grant
LM08106-01; work partially done while at IBM Almaden Research Center.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or special permission
from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

ing queries over a mediated schema that unifies multiple source
schemas (data integration [8, 10]).

Schema mappings are often specified using high-level declar-
ative formalisms that describe the correspondences between dif-
ferent schemas at a logical level. Such logical mappings can be
viewed as abstractions for the more complex physical specifi-
cations (e.g., XQuery or XSLT scripts) that operate at the data
transformation runtime. Such abstractions are easier to under-
stand and to reason about, and still capture most of the informa-
tion needed to generate the physical artifacts. This philosophy
of abstract representation, which we follow here, is adopted by
many recent data exchange and integration systems. In particular,
GAV (global-as-view), LAV (local-as-view), and, more gener-
ally, GLAV (global-and-local-as-view) assertions have been used
in data integration systems for query answering and rewriting
(see [8, 10] for two surveys). Similarly, source-to-target tuple-
generating dependencies (s-t tgds) have been used for specifying
data exchange between relational schemas [6]; moreover, nested
(XML-style) s-t tgds have been used in the Clio data exchange
system [18] as the underlying representation for transformations
between XML schemas. Schema mappings can often be derived
semi-automatically [16, 18] based on the outcome of schema
matching algorithms [19].

Schemas of data sources invariably evolve over time due to
various reasons. For example, the incorporation of new data not
captured by an existing schema will require the introduction of
new schema structures. Once schemas change, the mappings be-
tween these schemas, together with the physical artifacts that
were generated based on them, may become invalid. A typi-
cal solution is to regenerate the mappings and then regenerate
the depending artifacts. However, even with the help of map-
ping generation tools, this process can be costly in terms of hu-
man effort and expertise, especially for complex schemas. More-
over, there is no guarantee that the regenerated mappings pre-
serve the semantics of the original mappings. A better solution is
to design algorithms that reuse the original mappings and (semi-
)automatically adapt them into a set of mappings that are valid
with respect to the new schemas and, moreover, reflect the se-
mantics of the original mappings and the schema evolution. This
process is called mapping adaptation under schema evolution.

A comprehensive method for incremental mapping adaptation
was established in [21]. Its main idea is to incrementally change
the mappings each time a primitive change occurs in the source
or target schema. The method, however, has a few drawbacks.
First, when drastic schema evolution occurs (i.e., significant re-
structuring in one of the original schemas) and the new schema
version is directly given, it is unclear how feasible it is to extract
the list of primitive changes that can describe the evolution. Such
scenarios often occur in practice, especially in scientific fields
(e.g., HL7 Clinical Document Architecture, Swissprot, MAGE-
ML, and their many schema versions, used in health-care and

1006

bioinformatics1). We also point out later that the set of primi-
tive changes in [21] is not expressive enough to capture complex
evolution. Second, even when such a list of changes can be ob-
tained, applying the incremental algorithm for each change in
this potentially very long list will be highly inefficient. Finally,
there is no guarantee that after repeatedly applying the algorithm,
the semantics of the resulting mappings will be the desired one.

A more general approach, which has been suggested in
[2, 3, 21] is to describe the schema evolution itself as mappings
and to employ mapping composition to derive the adapted map-
pings. While attractive in principle, there is so far no concrete
study that demonstrates the practicality of such approach, due
to the many challenges involved, including: how to represent
schema evolution as mappings; what is the right mapping lan-
guage; what is the semantics of such mapping composition; and
how mappings can be efficiently composed. In this paper, we ad-
dress these challenges and offer a systematic study and compre-
hensive evaluation of how mapping composition can be applied
to solve the mapping adaptation problem.
Main contributions and paper outline I. We study the
mapping-based representation of schema evolution and show that
it is more flexible and expressive than the change-based represen-
tation (Section 2); II. We explore the semantics of mapping com-
position and its application to mapping adaptation (Sections 2
and 3); III. We show that our prior mapping-based query rewrit-
ing algorithm [22] can be applied to implement the hierarchical
mapping composition that we need for mapping adaptation (Sec-
tion 4); IV. We design mapping pruning algorithms to improve
the performance of mapping adaptation (Section 5), and pro-
vide a comprehensive evaluation of the resulting system, show-
ing its scalability and practicality (Section 6). Our work is part
of a recent effort for building a meta-data management system,
called Criollo, jointly started between IBM Almaden Research
and IBM Software Group.
Related work The ubiquity of schemas and schema mappings
has recently motivated the developing of frameworks for manag-
ing such metadata objects. Bernstein et al have introduced such
a framework [2, 3], called model management. Our work can
be seen as part of this model management framework. Recently,
two studies show the limitations of existing mapping languages
(GLAV and s-t tgds) for mapping composition, and provide com-
position algorithms within a limited context [12] or with a lan-
guage extension [7]. Our work uses the results in [7] and applies
them to the hierarchical model and the mapping adaptation con-
text. A more detailed view on how our work relates to existing
work on mapping composition and query rewriting is given in
Section 2.2. Besides [21], which we discussed earlier, [1, 11]
study schema evolution in the object-oriented databases context.
However, the focus there is to recognize schema changes and
produce transformations to keep the data up to date. Another
closely related work is the EVE [9] system, which is the first
to define and address the problem of adapting view definitions
when the schema of base relations change. However, the sup-
ported changes are limited and evolution can only appear at the
source side.

2 Motivation and Overview
In this section we motivate and give an overview of our
composition-based approach to mapping adaptation. We start

1http://www.hl7.org/; http://www.ebi.ac.uk/swissprot/; http://www.mged.
org/Workgroups/MAGE/mage-ml.html

s

p

SuppPart

Source:

p

o

PartOrder

s

o

SuppOrder

Target:

li

s

p

o

qty

LineItem

Source’:

m

(a)

SuppPart:
s p
s’ p

PartOrder:
p o
p o’

SuppOrder(1):
s o
s o’
s’ o
s’ o’

SuppOrder(2):
s o
s’ o’

LineItem:
l1 s p o q1
l2 s’ p o’ q2

Source: Target:Source’:

(b)

Figure 1: (a) Mapping scenario and evolution. (b) Data example.

with an overly simplified relational example that is enough to
show the motivation for mapping composition and its advantages
over the related approaches (Sections 2.1 and 2.2). Motivated
by the need to support XML data, we then present the nested
relational model, nested schemas and mapping language, upon
which our solutions are based (Section 2.3).

2.1 The Mapping Adaptation Problem

Consider the following example, based on the TPC-H schema,
where an e-commerce application stores information about sup-
pliers and the parts they supply in a SuppPart relation and in-
formation about orders and the parts they order in a PartOrder
relation. These two relations are part of the schema Source in
Figure 1(a). The following constraint from schema Source to
schema Target (also shown in Figure 1) expresses the fact that
orders, together with all their potential suppliers (i.e., those that
can supply the relevant parts), must be exported into the target
relation SuppOrder:

(m) SuppPart(s, p) ∧ PartOrder(p, o) → SuppOrder(s, o)

In general, we allow the left-hand side of such constraint to have
a conjunction of relational atoms over the source, and the right-
hand side to have a conjunction of relational atoms over the tar-
get schema. All variables on the left are universally quantified.
Although not in this example, there may be variables in the right-
hand side that do not appear on the left. Such variables are exis-
tentially quantified and are typically used to handle those parts
of the target schema that do not have a correspondence from
the source schema. This class of assertions are known as sound
(open-world) GLAV mappings [10] or s-t tgds [6]. A schema
mapping is a set of such assertions.
Schema evolution Assume now that the raw data arrive from an
external source in the form of tuples (li, s, p, o, qty), relating an
order o and a part p with an available supplier s. Rather than split-
ting and inserting the data into the two relations, SuppPart and
PartOrder, a decision is made by the application to store the
incoming tuples, as they are, in a LineItem relation, which be-
comes the new schema Source’. This reorganization can save
the cost of extra data processing, and the cost of maintaining the
two original relations. However, the mapping m that depends on
schema Source must now be changed (migrated) to use schema
Source’.

As mentioned, one solution is to regenerate a new mapping
based on Source′ and Target, by re-establishing correspon-
dences between the schemas (schema matching), and regenerat-
ing the mapping that embodies the actual semantics of the trans-
formation (mapping generation). We refer to this method as the
blank-sheet approach. Besides being costly for large schemas,
this approach suffers in that the original mapping is not consid-
ered during the regeneration. Hence, the semantics embedded in
the original mapping may be lost. A better approach is to reuse
the original mapping and adapt it in a way that (1) preserves the

1007

intention of the original mapping, and (2) takes into account all
the schema changes, so that the adapted mapping is valid with
respect to the new schema.
Incremental approach and change-based representation
(CBR) One such method was established in [21]: the main idea
is that schemas often evolve in small, primitive, steps2; after each
such step, the schema mapping can be incrementally adapted by
applying local modifications. We apply their incremental algo-
rithm to our example by evolving Source into Source′ us-
ing one possible sequence of primitive changes. We refer to
such a representation of schema evolution (i.e., a list of primi-
tive changes) as change-based representation (CBR). Based on
the changes, we explain how mapping m is adapted according to
[21] (without giving the full details of that algorithm, which also
operates on a different syntax).
• Move SuppPart/s to become PartOrder/s. The map-

ping m has a reference to SuppPart/s in the target side.
This will be changed to a reference to PartOrder/s. Also,
the second source atom must be changed to reflect this new
attribute in PartOrder. The resulting mapping is:

(m) SuppPart(p) ∧ PartOrder(s, p, o) → SuppOrder(s, o)

• Delete SuppPart/p and then Delete the relation
SuppPart (we merge two steps into one here). The
atom that involves SuppPart is dropped.

• Rename PartOrder to LineItem and Add
LineItem/li and LineItem/qty (we merge three
steps here). The only source atom is changed to refer to
LineItem (with two additional variables). We obtain:

(mi) LineItem(li, s, p, o, qty) → SuppOrder(s, o)

Deficiencies of the incremental approach The incremental ap-
proach, designed to handle a few primitive changes, is intuitive
and efficient for such cases: the mapping is minimally changed
so that it becomes syntactically valid with respect to the new
schema and still reflects the schema correspondences (i.e., s�→s
even when s moves from SuppPart to PartOrder). How-
ever, once we try to apply this algorithm to non-incremental evo-
lution, we are faced with several issues (some of them already
noted in [21]). First, the algorithm must be reapplied after each
primitive change. This can become inefficient since we often
need a long list of changes to represent non-incremental evo-
lution scenarios. Even for our example, we need 6 primitive
changes. Moreover, the list of changes may not be given and may
need to be discovered (in the common case when we do not know
how one schema evolved into another). If we do such discovery
then there may be multiple lists of changes with the same effect
of evolving the old schema into the new one. The work in [21]
did not study whether their algorithm is confluent (i.e., whether
the resulting mapping is independent of which list of changes is
given).

Furthermore, somewhat surprisingly, the semantics of the
above mapping mi may not be the expected one. Consider the
instances in Figure 1(b). The middle instance, under Source,
includes two suppliers (s and s′) that both supply a certain
part (p) and two orders (o and o′) that both ask for the same
part (p). The left instance, under Source′, consists of two
LineItem tuples that are consistent with Source data. The
relation SuppOrder(1), under Target, includes all pairs
that the original mapping m requires to exist in SuppOrder,
based on Source data: each order is paired with all suppli-
ers since they all supply the relevant part. In contrast, the re-

2Including move/copy/rename/delete elements and add/delete constraints.

lation SuppOrder(2) contains the pairs that the incrementally
adapted mapping mi requires to exist in SuppOrder, based on
Source′ data. Notably, mi loses the fact that o should also be
related to s′, and o′ should also be related to s.

Thus, mi does not quite capture the intention of the original
mapping, given the new format of the incoming data. Part of the
reason this happens is that the new Source’ data does not nec-
essarily satisfy a join dependency that is explicitly encoded in
the original mapping m. There are other examples where the in-
cremental approach falls short in terms of preserving the seman-
tics. Furthermore, the same goes for the blank-sheet approach.
Indeed, on the previous example, if we just match the common
attributes of Source’ and Target, and regenerate the map-
ping based on this matching, we would obtain the same mapping
mi as in the incremental approach. A systematic approach, with
stronger semantic guarantees, is clearly needed.

2.2 Our Approach: Mapping Composition and Mapping-
Based Representation (MBR)

The previous example showed one of the pain points of the incre-
mental approach: the lack of a precise criterion under which the
adapted mapping is indeed the “right” result. The adapted map-
ping was given by the algorithm itself and there was no a priori
semantic definition to validate the implementation.

In this paper we take the approach where the schema evolution
itself is quantified as a mapping rather than a list of changes. This
mapping-based representation (MBR) of schema evolution is a
more general, more declarative and more precise representation
of how data at the new schema relates to data at the old schema.
Arbitrary (non-incremental) schema evolution can be tackled as
long as such evolution is expressed as a mapping. Moreover, this
enables a precise and simple definition of mapping adaptation as
the composition between the mapping describing the evolution
and the original mapping.

Back to the example in Figure 1, the obvious mapping from
Source’ to Source is the following set of constraints, de-
scribing how data in LineItem relates to data in SuppPart
and PartOrder, respectively:

(e1) LineItem(l, s, p, o, q) → SuppPart(s, p)
(e2) LineItem(l, s, p, o, q) → PartOrder(p, o)

In order to obtain the new mapping from Source’ to Target,
we compose {e1, e2} with {m} by simply substituting the refer-
ences to SuppPart and PartOrder in m with corresponding
references to LineItem:

(ma) LineItem(l1, s, p, o1, q1) ∧ LineItem(l2, s2, p, o, q2)
→ SuppOrder(s, o)

Mapping ma has now the same semantics as the original map-
ping m, in the following precise sense: applying {ma} to a
Source’ instance yields the same Target instance as apply-
ing first {e1, e2} to the given Source’ instance, followed by
applying {m} to the resulting Source instance. This can be
easily verified for the data example shown in Figure 1(b).

Obtaining such composition, for schema evolution, is the fo-
cus of this paper. Several remarks are in order now to better
explain and delineate our current work from existing work on
mapping composition and query rewriting:
• Further extensions to the above mapping language are neces-

sary to deal with nested/XML schemas.
• While the above composition looks similar to query unfolding

techniques, mapping composition poses its own set of chal-
lenges. A main difference is the incompleteness of mappings

1008

that can manifest via the existentially quantified variables that
may occur in the target side. Because of this, GLAV mappings
may not compose [12, 7]. On the other hand, an extension to
this language that includes second-order functions suffices to
provide composability [7]. We will consider such extension in
here, too.

• There are two different semantics that can be associated with
mappings and, consequently, with composition. The first,
which we call relationship semantics, is the one under which
mappings are constraints required to hold between pairs of in-
stances over the source and the target schema. Under this se-
mantics, multiple pairs of instances (I, J) and (I, J ′) may sat-
isfy the relationship (i.e., we do not have functionality). The
second semantics, which we call transformation semantics, is
the one under which mappings are viewed as transformations
from source to target: given a source instance I , there is a
canonical way of computing (by chasing) a unique target in-
stance J . This transformation semantics follows the data ex-
change line of work in [6, 7, 22].

• We argue that for schema evolution the transformation seman-
tics is more useful and more intuitive. In contrast, the rela-
tionship semantics, which is the focus in [7, 15, 17], is of-
ten too general and the result of composition is syntactically
complex. The transformation semantics, which is our focus, is
more challenging to implement due to the need for minimiza-
tion (as in conjunctive query minimization [4]).

• We show that our algorithm given in [22] to rewrite queries
over a target schema based on a source-to-target mapping can
be tailored to handle mappings (rather than target queries). We
show that we obtain a mapping composition algorithm that is
correct for the transformation semantics.

• Mapping composition poses increased scalability challenges
when compared to usual query rewriting approaches. This
is due to the fact that mappings between schemas must of-
ten cover the entire schema, while queries usually access only
parts of a schema and typically produce simple output. For-
tunately, the mapping composition that is needed for schema
evolution can benefit from special optimizations. One of
our main contributions is to formalize such optimizations and
make the composition approach practical.

• While we concentrate here on mappings that have a direction
(source-to-target), the recent work in [17] studies composi-
tion of schema mappings that are given by arbitrary embedded
dependencies over two schemas. While more general, their
framework also poses greater computational challenges: they
show several negative results, and give a composition algo-
rithm that terminates under certain conditions. Schema evolu-
tion is not specifically addressed in their work.

2.3 Nested Mapping Framework

In this section, we introduce nested schemas and illustrate the
mapping language extensions that allow us to handle evolution
scenarios involving XML and hierarchical sources. These exten-
sions follow closely the internal schema language and mapping
language that we have developed in our previous work on Clio
schema mapping generation [18], mapping-based query rewrite
[22], and incremental mapping adaptation [21].

Consider the mapping scenario between schemas Source
and Target in Figure 2. The schemas are shown in a nested
relational representation (to be defined shortly) that can be used

orderkey

parts: Set ofSet of
partkey

Order: Set ofSet of

Source:

partkey

suppliers: Set ofSet of
supp: ChoiceChoice
US_supp
foreign_supp

Part: Set ofSet of

orderkey

supp_contact

phone

email

OrderUSSupp: Set ofSet of

Target:

cid
phone
email

Contact: Set ofSet of

m

Source’:

lineitem

orderkey

partkey
suppkey
qty

LineItem: Set ofSet of

suppkey

phone
email
nation

Supplier: Set ofSet of
nation=‘US’?

Original mapping
m: foreach o in Order, p in o.parts,

p′ in Part, s in p′.suppliers, i in case s.supp→US supp,
c in Contact

where p.partkey = p′.partkey and i = c.cid
exists os in OrderUSSupp
with os.orderkey = o.orderkey and os.supp contact.phone = c.phone
and os.supp contact.email = c.email

Evolution mapping
e1: foreach l in LineItem, s0 in Supplier

where l.suppkey = s0.suppkey and s0.nation = ‘US’
exists o in Order, p in o.parts,

p′ in Part, s in p′.suppliers, i in case s.supp→US supp,
c in Contact

where p.partkey = p′.partkey and i = c.cid
with o.orderkey = l.orderkey and p.partkey = l.partkey
and i = s0.suppkey and c.phone = s0.phone and c.email = s0.email

e2: similar to e1, but with s0.nation �=‘US’ as source filter, and
i in case s.supp→foreign supp as target choice selection

Figure 2: A more complex mapping scenario and evolution.

as a common data model for both relational schema and XML
Schema. The mapping between Source and Target is a sin-
gleton set containing one logical mapping (m). In general, a
schema mapping M between two schemas S and T will be a set
{m1, . . . ,mk} of logical assertions over S and T that are called
logical mappings (or sometimes, mappings).

Expanded from the previous example, schema Source de-
scribes data about orders, parts, and suppliers. Each Order
contains multiple Parts, which can be supplied by multiple
suppliers that are from either ‘US’ or ‘foreign’ countries (de-
noted by the Choice type of the supp element). The partkey
foreign key associates parts with orders, while the US supp and
foreign supp foreign keys associate the Contact informa-
tion with the suppliers.
Schemas and types In general, a schema is a set of labels (called
roots), each with an associated type τ , defined by:

τ ::= Str | Int | SetOf τ | Record[l1 : τ1,. . ., ln : τn]
| Choice〈 l1 : τ1,. . ., ln : τn〉

Types Int and Str are atomic types (we only list two here). SetOf
types model the repeatable elements of XML Schema, and Record
and Choice types represent the “all” and “choice” model-groups,
respectively. In Figure 2, only SetOf and Choice types are shown
explicitly. We do not consider order: SetOf represents unordered
sets, and the “Sequence” model-groups of XML Schema are rep-
resented as (unordered) Record types.

Intuitively, a logical mapping implements a group of arrows
between the “mapped” schema elements. Such arrows are also
called value correspondences (or V Cs) [16, 18]. The intention
of the above logical mapping m is to map all orders and their
parts, along with the contact information of the US (only) sup-
pliers of those parts, into the target relation OrderUSSupp.
This is made precise by the formula that is associated with m
in Figure 2. We abandon the logic-based notation in favor of

1009

S1:

name

course

Takes: Set ofSet of
sid

name

Student: Set ofSet of

S2:

sid

name

course

Takes’: Set ofSet of

S3:

sid

course

Enrolls: Set ofSet of

m1: foreach t in Takes m2: foreach t in Takes
exists s in Student exists e in Enrolls
with s.sid = F(t.name) and with e.sid = F(t.name) and

s.name = t.name e.course = e.course

e: foreach s in Student, e in Enrolls where s.sid = e.sid
exists t in Takes′
with t.sid = s.sid and t.name = s.name and t.course = e.course

Figure 3: Schema mappings {m1, m2} and {e}, using functions.

a more suitable XQuery-like notation that can easily express
navigation through nested records via record projection (e.g.,
os.supp contact.phone), navigation through set-type elements by
using variables to explicitly iterate over the sets, as well as choice
selection by explicit case bindings.
Mapping language An expression is defined by the grammar
e ::= S | x | e.l, where x is a variable, S is a schema root,
l is a label, and e.l is record projection. A term is defined as
t ::= e | F (t), where F is a function symbol. Then a logical
mapping has the following form:

m ::= foreach x1 in g1, . . . , xn in gn where B1

exists y1 in g′1, . . . , ym in g′m where B2

with e′1 = t1 and . . . and e′k = tk

Each xi in gi (yj in g′j) is called a generator. Each gi (g′j) is
either: (1) an expression e of type SetOf τ , in which case
the variable xi (yj) binds to individual elements of type τ , or
(2) case e→l, where e is an expression of type Choice〈. . . , l :
τ, . . .〉, in which case xi (yj) binds to the element (if any) of type
τ under the choice l of e. The variable (if any) used in gi (or
g′j) must be defined by a previous generator in the same clause.
Any schema root used in the foreach or exists clause must be a
source or target schema root, respectively. The two where clauses
(B1 and B2) are conjunctions of equalities between source terms
(in the case of B1) or target expressions (in the case of B2) over
xi or yj , respectively. We also allow equalities or inequalities
with constants (i.e., selections). In the with clause, each equality
e′i = ti involves a target expression e′i and a source term ti of the
same atomic type.

In the above example, the schema mapping {m} contains no
function symbols. As a different example, consider the schema
mapping {m1,m2} shown in Figure 3. There, the function sym-
bol F appears in both m1 and m2; the term F(t.name) is used to
represent a student id that is associated, via F, with the student
name t.name. It is this term that is “assigned” to the target sid
element in the two logical mappings.

Let M = {m1, . . . ,mk} be a schema mapping consisting
of a set of logical mappings and let {F1, . . . , Fn} be the set
of function symbols that appear in M . Then M defines a con-
straint between instances of the two schemas that holds when-
ever one can find an interpretation for the functions F1, . . . , Fn,
so that all of m1, . . . ,mk hold, for the given interpretation. Thus,
the meaning is that of a second-order constraint of the form
∃F1 . . . ∃Fn[m1 ∧ . . . ∧ mk]. We note that the functions that we
consider are not the traditional user-defined functions3; our func-
tions are special and have a more basic role of explicitly denoting

3Which we did not include here, for simplicity of presentation.

and linking “unknown” elements (e.g., encoding that the same
sid value must exist in the two tables Student and Enrolls,
for a source student name.) Oftentimes, the necessary function
terms are system generated (via Skolemization algorithms and
via composition itself).

Without functions, the above mapping language reduces to
the language of GLAV mappings (or s-t tgds), in the relational
case. This language was shown not expressive enough for com-
position: the composition of two sequential schema mappings
may not expressible in this same language [12, 7]. However,
[7] showed a natural extension, called second-order tgds (or SO
tgds), which includes functions and is compositional. Our map-
ping language is a nested-relational extension of SO tgds and, in
fact, the two languages coincide in the relational case.

Figure 2 also illustrates a source evolution scenario: the
schema Source is evolved into Source’. In particular, the
relation Supplier now stores the nation of each supplier
and no longer employs the choice type. An evolution mapping
consisting of two logical mappings (e1 and e2) can be estab-
lished, to describe how data in Source’ are related to data in
Source. We point out that such evolution cannot be expressed
as a list of schema changes (for example, the suppkey element
in Source’ corresponds to two elements in Source, depend-
ing on the value of nation). Thus, the mapping-based repre-
sentation is strictly more expressive than the change-based rep-
resentation of schema evolution.

Composing the evolution mapping {e1, e2} with the original
mapping {m} will yield the following mapping ma:

foreach l in LineItem, l′ in LineItem, s0 in Supplier
where l.partkey = l′.partkey and l′.suppkey = s0.suppkey and s0.nation = ‘US’
exists os in OrderUSSupp
with os.orderkey = l.orderkey and os.supp contact.phone = s0.phone

and os.supp contact.email = s0.email

Coming up with such adaptation of m by hand would require
a rather good understanding of the schemas and mappings. The
task becomes increasingly challenging with increasingly com-
plex schemas (which are common occurrences in practice). The
rest of the paper will address the semantic, algorithmic and prac-
tical issues involved in the automatic derivation, by composition,
of an adapted mapping such as ma.

3 Semantics of Mapping Composition
There are two possible semantics that can be associated with
mappings and mapping composition: the relationship semantics
and the transformation semantics.

The first semantics [7, 15, 17] is a general notion that can
be used when mappings describe arbitrary relationships between
schemas. More concretely, a mapping M between a schema
S and a schema T represents a binary relation between in-
stances over S and instances over T : Inst(M) = {(I, J) |
(I, J) satisfies M}. Then, given a mapping M12 from S1 to S2,
a mapping M23 from S2 to S3 and a mapping M13 from S1 to S3,
we say that M13 is the composition of M12 and M23, with respect
to the relationship semantics, if M13 induces the same binary re-
lation Inst(M13) between instances of S1 and S3 as the binary re-
lation that is the composition of Inst(M12) and Inst(M23). (The
composition of binary relations P and Q is the binary relation
{(x, z) | ∃y (x, y) ∈ P ∧ (y, z) ∈ Q}.)

The second semantics is applicable when mappings describe
transformations. More concretely, a mapping M between a
schema S and a schema T represents a transformation that, given

1010

a source instance I , generates a canonical target instance M(I).
The process of generating M(I) involves two steps. First, each
logical mapping m in M is skolemized: all the atomic type el-
ements that (1) are reachable via record projection from the tar-
get (i.e., exists) variables of m, and (2) are not (explicitly) as-
signed a source term by the with clause, are now assigned a term
of the form F (t1, . . . , tk), where F is a new function symbol,
and t1, . . . , tk are the source terms that appear in the with clause
of m. Care must be taken so that the atomic elements that are
required to be equal by the target where clause of m are assigned
the same term. All the new functions are added to the already
existing functions of M . The result of skolemization is a new set
M ′ of logical mappings.

The target is then populated from the source instance I in a
minimal way, by adding all the elements that are required by
M ′. The atomic components of the generated elements are ei-
ther source values or ground function terms (formed with actual
source values). Moreover, we perform PNF-based merging as in
[22]. For an example, consider the set Part in Figure 2: all of
its tuples that have the same partkey value will be merged into
one, by combining all their supplier sets into one set. Essentially,
we perform grouping by partkey. In general, such grouping is
done based on all the atomic components of a tuple, and at every
level (recursively). Moreover, this grouping is independent of the
mappings, that is, we could be merging sets of suppliers coming
from different mappings (and sources) as long as partkey is
the same.

At the end, every ground function term is uniformly replaced,
throughout the target instance, with a distinct null. The final re-
sult M(I) is uniquely determined (up to renaming of nulls). The
construction that we sketched here is similar to the process of
chasing with second-order tgds described in [7], with the addi-
tional PNF-based merging.

The transformation semantics of composition is as follows.
Given a mapping M12 from S1 to S2, a mapping M23 from S2

to S3 and a mapping M13 from S1 to S3, we say that M13 is the
composition of M12 and M23, with respect to the transformation
semantics, if for every instance I1 over S1, we have that M13(I1)
is the same (up to renaming of nulls) as M23(M12(I1)). Al-
though less general, the transformation semantics has two main
advantages: (1) it is better suited when mappings are intended
to describe transformations, and (2) the resulting composition
mapping can be greatly simplified. As a byproduct, the adapted
mapping, in the case of schema evolution, can be much closer in
syntax to the original mapping. This is a design issue that is quite
important in practice.
Mapping reduction under transformation semantics Consider
again the evolution scenario in Figure 3. There, the target S2 of
the mapping {m1,m2} is evolved into a new target S3, consisting
of one relation Takes’, that is similar to the relation Takes
in S1 but has the extra sid element. The evolution mapping
from S2 to S3 is {e}. There, sid is used to join students with
enrollments to obtain the related course information. It can be
shown that the composition of the mappings, with respect to the
relationship semantics, is given by:

m: foreach t1 in Takes, t2 in Takes where F(t1.name) = F(t2.name)
exists t′ in Takes’
with t′.sid = F(t1.name) and t′.name = t1.name and t′.course = t2.course

This mapping is surprisingly complex, still correct. To under-
stand this, consider an instance I1 with tuples [Alice,Math] and
[Mary,Art], and an instance I3 with tuples [X,Alice,Math],
[X,Alice,Art], [X,Mary,Art], [X,Mary,Math]. Then, the

pair (I1, I3) is in the composition of the binary relations asso-
ciated with the two schema mappings. This is because there is
an instance I2, namely the one consisting of tuples [X,Alice],
[X,Mary] in Student, and tuples [X,Math], [X,Art] in
Enrolls, such that (I1, I2) satisfies {m1,m2} and (I2, I3) sat-
isfies {e}. The first satisfaction is true under an interpretation of
F for which F (Alice) = X and F (Mary) = X . (The second
satisfaction is obvious.) In contrast, the pair (I1, I

′
3), where I ′3

contains just the tuples [X,Alice,Math] and [X,Mary,Art],
is not in the composition relation. Otherwise, the only way for
(I1, I

′
3) to be in the composition relation would be to pick F

such that F (Alice) = F (Mary) = X and then the other two
tuples [X,Alice,Art] and [X,Mary,Math] would also have
to be part of I ′3, which is not the case. The above mapping m
correctly distinguishes between the case of (I1, I3) and the case
of (I1, I

′
3) by explicitly requiring the existence of the two extra

tuples (since F (Alice) = F (Mary)).
However, for data transformation purposes, mapping m is un-

necessarily complex and unintuitive. A typical user will often ex-
pect to see an “identity” mapping between S1 and S3. In fact, the
canonical transformation from S1 to S3 based on m will never as-
sign the same id (via F) to two different names. (In the canonical
target instance m(I1), with I1 as above, F (Alice) and F (Mary)
will be two distinct ground terms.) Thus, for canonical transfor-
mation purposes, F is not arbitrary but one-to-one. This enables
the reduction of m to:

m′: foreach t2 in Takes
exists t′ in Takes’
with t′.sid = F(t2.name) and t′.name = t2.name and t′.course = t2.course

In a nutshell, since F is one-to-one, the equality F(t1.name) =
F(t2.name) in m can be replaced by t1.name = t2.name. Then
the first generator (t1) over Takes becomes redundant and can
be eliminated. This step is akin to minimization of conjunctive
queries ([4], see also [5] for the nested case). We note that m and
m′ are not equivalent in general, but they are equivalent under
the transformation semantics.

The simplicity of the resulting mapping becomes a stronger
argument when schemas and mappings are complex and the re-
duction accomplished by such minimization can be significant.
Although minimization is expensive, its usefulness forces us to
investigate techniques for making the resulting method as effi-
cient as possible (Section 5).

Finally, we note that for the example in Figure 1, the schema
mapping {ma} given in Section 2.2 is the composition with re-
spect to both semantics (and the same happens for the example in
Figure 2 and the corresponding {ma}). From now on, we focus
on the transformation semantics.

4 Mapping Composition Algorithm
In this section we articulate the observation that the query rewrit-
ing algorithm given in [22] can be used to compose mappings.
Given the syntactic similarities between mappings and queries, it
is not surprising that we are able to reuse that algorithm. There,
to rewrite a query q2 over a schema S2 in terms of a schema S1,
based on a schema mapping M12, a set of rules R12 is gener-
ated to compute, for each source instance I1, a canonical target
instance I2, according to the transformation semantics. Then q2

can be rewritten into a source query q1 by essentially performing
substitution with R12. The same machinery works here, except
that instead of rewriting a query over S2 we rewrite a schema
mapping M23 from S2 to a third schema S3. We then show that

1011

the resulting algorithm serves our purpose, that is, the algorithm
yields a correct composition M13, with respect to the transforma-
tion semantics. (For query rewriting, the semantics of the rewrit-
ten q1 is that it computes the “right” answers of q2; in particular,
if q2 is conjunctive, q1 can be used to retrieve the certain an-
swers, which is often assumed to be the standard semantics in
LAV/GLAV systems).

We now give a brief review of the rewriting algorithm in [22],
adapted for mapping composition. We assume that we need
to compose two sequential mappings M12, from schema S1 to
schema S2, and M23, from schema S2 to schema S3. The algo-
rithm works in three phases.
Phase I: Rule generation We first skolemize M12 into M ′

12 by
using the method described in the previous section. We then gen-
erate a set R12 of mapping rules for all the set elements of S2 that
are referred to in M ′

12. Considering Figure 2 and e1 only, the
following rules for Part and Part/suppliers of Source
are created:

Part = for l0 in LineItem, s0 in Supplier
where l0.suppkey = s0.suppkey and s0.nation = ‘US’
return [partkey = l0.partkey, suppliers = SKs(l0.partkey)]

SKs(p) = for l1 in LineItem, s1 in Supplier
where l1.suppkey = s1.suppkey and s1.nation = ‘US’

and p = l1.partkey
return [supp = 〈 US supp = s1.suppkey 〉]

In general, a rule defining a set element comprises a union of for-
where-return queries (depending on how many logical mappings
refer to that element). Moreover, a set element that is not top-
level (e.g., Part/suppliers) is defined as a parameterized
view (e.g., SKs(p), where SKs is a new Skolem function sym-
bol that is uniquely associated to Part/suppliers, and p is
the parameter). In our first rule, for each l0.partkey we must
create an instance of Part/suppliers (which will contain
the group of suppliers for the given partkey). The creation
of such instance is then expressed by “invoking” SKs with the
actual parameter l0.partkey. Note how this achieves the PNF-
based merging described earlier. Finally, for each atomic element
that must be output in the return clause, we use the corresponding
source term that appears in the with clause of the logical mapping.
Phase II: Substitution The set R12 of rules is then used to
translate all references to S2 that occur in M23 to references to
S1. This is accomplished by iteratively substituting set elements
(Part, Part/suppliers, etc.) in the logical mapping (m)
with their corresponding rule expressions. The set type Skolem
functions introduced in the rules play a role only during transla-
tion and do not appear in the final logical mappings. Because a
rule usually has a union of queries, each m in M23 will be trans-
lated into several logical mappings. We take M13 to be the union
of all these logical mappings.
Phase III: Reduction For each of the logical mappings in M13

we now perform mapping reduction, along the lines discussed
in Section 3. This reduction looks at the equalities in the source
where clause of the logical mapping. All equalities between func-
tion terms are replaced (recursively) by the equalities of their ar-
guments, whenever the function symbols are the same. Further-
more, any equality between terms with non-matching function
symbols is regarded as unsatisfiable (since such non-matching
function symbols will always produce distinct ground terms, un-
der the transformation semantics) and the respective logical map-
ping in M13 is dropped. After all such equalities are processed,
a logical mapping that is not dropped undergoes minimization to
find its minimal equivalent form.

We remark that it is possible that the above composition algo-
rithm starts with schema mappings containing no functions, but
the resulting composition contains functions. This can happen
because functions can be introduced during the skolemization
step in Phase I. Even though our algorithm makes no attempt
to de-skolemize the resulting mappings, in general a complete
de-skolemization may not be possible (i.e., the functions strictly
increase the expressive power of mappings).

The following theorem asserts the correctness of the compo-
sition algorithm. The proof uses the fact that the evaluation of
the generated rules, R12, on an instance I1, coincides (up to null
renaming) with M12(I1) (as defined by the transformation se-
mantics). Hence, M23(M12(I1)) is the same as M23(R12(I1)),
for every I1. Next, we use the fact that every step used in the
substitution phase preserves the equivalence of mappings, when
viewed as constraints. Finally, we use the fact that reduction pre-
serves mapping equivalence under the transformation semantics.

Theorem 4.1 If M13 is the result of applying the composition
algorithm to M12 and M23, then M13 is the composition of M12

and M23 with respect to the transformation semantics.

5 Implementing a Practical Composition-Based
Mapping Adaptation System

Although adaptation with the composition algorithm described
in Section 4 (referred to as the full adaptation) captures better
semantics, it is of little use unless we can have an efficient system
implementation. We now describe the issues involved in building
a practical mapping adaptation system.

Figure 4 shows a more complex example of target evolution4

that we will use throughout this section. The original mapping
involves two schemas, src and tgt, and three logical map-
pings {m1,m2,m3}. Both schemas describe information about
departments and classes: src uses a relational structure while
tgt uses a more hierarchical structure. The logical mappings
are as follows: m1 maps classes along with associated students;
m2 maps departments alone; and the more complex m3 maps
both department and classes, associated via the intermediate re-
lation OfferBy. The tgt schema is then evolved into tgt′
where the original hierarchy of classes and students becomes a
flat structure.

5.1 Deriving Evolution Mappings

Before mapping composition can be applied, an evolution map-
ping must be established. However, schema evolution is rarely
represented as a mapping in practice. Instead, it is either repre-
sented as a list of changes (CBR) or, more often, implicitly em-
bedded in the new version of the schema. Still, one can derive an
evolution mapping from the change list or by comparing the two
versions of the schema. Next, we sketch the algorithm that we
implemented for the semi-automatic generation of an evolution
mapping, given two schema versions.

We start with a simple schema matching phase, where the
schemas are simultaneously navigated and V Cs between ele-
ments with the same absolute path in both schemas are estab-
lished (e.g., 〈/C/cid ⇒ /C/cid〉). This default set of V Cs
then undergo inspection by the user, who may drop V Cs be-
tween elements that no longer correspond to each other and

4Although we focus on target evolution in this section, all the techniques de-
scribed will apply with minor adjustments to source evolution.

1012

sname

cname

S(tudent): SetOf
src:

cname

term

C(lass): SetOf

cname

did
tname

O(fferBy): SetOf

did

dname
addr

D(ept): SetOf

cid

cname
term
S(tudent): SetOf
sname

C(lass): SetOf
tgt:

m
1

m
2

m
3

did

dname
addr
T(eacher): SetOf
tid
tname
Cl(ass): SetOf
cid

D(ept): SetOf

cid

cname
term
sname

C(lass): SetOf
tgt':

did

dname
addr
T(eacher): SetOf
tid
tname
Cl(ass): SetOf
cid

D(ept): SetOf

m1: foreach s in src.S, c in src.C where s.cname = c.cname
exists c′ in tgt.C, s′ in c′.S
with s′.sname = s.sname and c′.cname = c.cname and c′.term = c.term

m2: foreach d in src.D exists d′ in tgt.D
with d′.did = d.did and d′.dname = d.dname and d′.addr = d.addr

m3: foreach c in src.C, o in src.O, d in src.D
where c.cname = o.cname and o.did = d.did

exists c′ in tgt.C, d′ in tgt.D, t′ in d′.T, cl′ in t′.Cl
where c′.cid = cl′.cid

with c′.cname = c.cname and c′.term = c.term and d′.did = d.did and
d′.dname = d.dname and d′.addr = d.addr and t′.tname = o.tname

Figure 4: A more complex evolution scenario

add V Cs between elements that correspond to each other (e.g.,
〈/C/S/sname ⇒ /C/sname〉). The user may also specify ar-
bitrary elements in the two schemas as starting points of match-
ing. In this way, V Cs between elements with the same relative
path (from the two respective starting points) can be established
automatically. Finally, a default set of logical mappings (which
could be further modified by a user) is automatically generated
from the final set of V Cs, based on an existing generation algo-
rithm [18]. The following logical mappings are created for our
example (the with clauses can be inferred from the V Cs between
tgt and tgt’ and are omitted):

e1: foreach c in tgt.C exists c′ in tgt′.C with . . .
e2: foreach c in tgt.C, s in c.S exists c′ in tgt′.C with . . .
e3: foreach d in tgt.D exists d′ in tgt′.D with . . .
e4: foreach d in tgt.D, t in d.T exists d′ in tgt′.D, t′ in d′.T with . . .
e5: foreach c in tgt.C, d in tgt.D, t in d.T, cl in t.Cl where cl.cid = c.cid

exists c′ in tgt′.C, d′ in tgt′.D, t′ in d′.T, cl′ in t′.Cl where cl′.cid = c′.cid
with . . .

These mappings enumerate the basic ways in which tgt data can
map to tgt′ data, based on the structure and constraints of the
schemas. None of these formulas can be removed, although some
are seemingly redundant. For example, e1 maps Class while e2

maps both Class and Student. However, e1 is required since
only it can map classes without associated students. With no
further information, both mappings are needed for the adaptation,
to avoid losing valid adapted mappings.

5.2 Mapping Pruning

Full adaptation (i.e., composition of the original mapping with
the evolution mapping) can become inefficient when the schemas
involved are complex, even when the schema changes are rel-
atively small. The inefficiency can be easily understood: the
full adaptation adapts all of the original mappings using all of
the evolution mappings even though some of the original map-
pings are not affected by the changes and therefore require no
adaptation. In this subsection, we present a mapping pruning
method that filters out not only the unaffected original mappings,
but also the evolution mappings that do not need to participate in
the adaptation. As a result, it significantly reduces the workload
(i.e., mappings to be composed).

5.2.1 Unaffected Mappings

We first define the notion of (un)changed schema elements, based
on the V Cs that are established between the original and the
evolved schemas (see Section 5.1). An unchanged element is
an original schema element e for which a corresponding ele-
ment e′ with the same path exists in the evolved schema, and
for which the only V C involving e is the “identity” V C be-
tween e and e′. All other elements are changed elements, which
are original schema elements whose paths are no longer valid or
whose semantics have been dropped, altered, or shared. For ex-
ample, /C/S/sname is a changed element because the path is
no longer valid in the evolved schema tgt′.

In our algorithm, instead of identifying all changed elements,
it is enough to identify only the changed set elements. (We ig-
nore choice elements in this discussion; they are treated simi-
larly to the way set elements are treated.) A changed set element
is defined as an original element of set type that is either (1) a
changed element itself, or (2) has at least one directly reachable5

non-set element that is a changed element. For example, /C/S is
a changed set element. An affected mapping is simply an orig-
inal mapping which uses at least one changed set element. For
our example, m1, which uses the changed element /C/S in the
exists clause, is the only mapping affected.

Unaffected mappings provide the starting point for mapping
pruning: they can be removed from the adaptation workload.
Furthermore, their removal may in turn render certain evolution
mappings unnecessary (because the participation of those evolu-
tion mappings in the adaptation does not give rise to any valid or
non-redundant adapted mapping). However, those unnecessary
mappings can not be detected just by checking for changed el-
ements. To correctly detect which mappings are necessary, we
must first understand the role that each mapping plays during
composition, through the concepts of composability links and
conditional mapping containment.

5.2.2 Composability Links and Conditional Containment

Let us consider performing the full adaptation, without mapping
pruning, on the evolution example in Figure 4. For each evolu-
tion mapping, the composition algorithm iterates through all gen-
erators and substitutes each set expression with the rule defining
that set. Consider the evolution mapping e1. Its sole generator
involves the set element C, for which a rule with two terms ex-
ists, one for each of the two mappings m1 and m3 that “map”
into C. Hence, the composition algorithm replaces e1 with two
logical mappings, one for each choice (m1 or m3). In general,
the algorithm continues until all generators are translated. The
translation process can thus be visualized as a tree, where each
root-to-leaf path (branch) corresponds to one of the final (fully
translated) logical mappings. For each such branch, we record
the set of all of the original mappings that are chosen at some
substitution step along the path.
Definition 5.1 A composability link (CL) is a pair:
from {m1, . . . ,mn} to me, such that me is an evolution
mapping, and there is a branch in the translation of me for
which m1, . . . ,mn are all the original mappings that were used.

Generating all the possible CLs can be done efficiently by
simply analyzing the set elements involved in mappings, without
performing the actual translation itself. For our example, we can
establish the following CLs:

5An element /.../B/C1/C2/.../Cn/A is directly reachable from B if
all Ci are record type elements.

1013

Input: original and evolution mappings Mori, Mevo,
the set of changed set elements E, the set of composability links CLS,
the set of conditional containments CCS,

1. Initialize Mo = {}, me = {}; // final adaptation workloads
2. Initialize Mu = Mori;
3. foreach m ∈ Mori: // remove affected original mappings from Mu

4. if m.exists uses e ∈ E: remove m from Mu; break;
5. for each l ∈ CLS, each m ∈ l.from:
6. if m ∈ Mu: remove m from l.from;
7. foreach l1 ∈ CLS:
8. if l1.from is empty: remove l1 from CLS; continue;
9. if l1.to can not be fully translated with l1.from:

10. remove l1 from CLS; continue;
11. foreach l2 ∈ CLS: if l1 = l2: remove l2 from CLS;
12. foreach 〈m1, m2, C〉 ∈ CCS: // m2 contains m1 under C
13. foreach (l1, l2), l1, l2 ∈ CLS and l1.to = m1 and l2.to = m2:
14. contained = true;
15. foreach m ∈ l1.from: if m.exists not satisfy C: contained = false; break;
16. if contained: remove l1 from CLS;
17. foreach l ∈ CLS:
18. Mo = Mo ∪ l.from; Me = Me ∪ l.to;
19. return Mo, Me (subsets of Mori,Mevo, respectively).

Figure 5: Algorithm MappingPruning

e1: L1 from {m1} to e1; L2 from {m3} to e1

e2: L3 from {m1} to e2; L4 from {m1, m3} to e2

e3: L5 from {m2} to e3; L6 from {m3} to e3

e4: L7 from {m3} to e4; L8 from {m2, m3} to e4

e5: L9 from {m3} to e5; L10 from {m1, m3} to e5

L11 from {m2, m3} to e5; L12 from {m1, m2, m3} to e5

While CLs represent dependencies between original and evo-
lution mappings, they do not capture dependencies among evo-
lution mappings. Consider e1 and e2. Without any condition,
both mappings are necessary since e1 maps classes that do not
satisfy the condition imposed in e2 (i.e., having at least one en-
rolled student). However, if the original mappings participating
in the adaptation guarantee that no class will be empty, e1 be-
comes redundant and can be eliminated.
Definition 5.2 A conditional mapping containment is a triplet
〈m1,m2, C〉 satisfying: for every instance I satisfying constraint
C, m1(I) is a sub-instance of m2(I). We also say that m1 is
contained in m2 under C.

We have developed an algorithm that can detect potential con-
tainment relationships between evolution mappings along with
the condition under which the containment is valid. The main
idea is to detect mappings whose generators and conditions can
all be matched against another mapping, and the extra condition
in the other mapping naturally becomes the containment condi-
tion. Applying the algorithm to our example, we obtain the fol-
lowing conditional containments:
〈e1, e2, ∀ (c∈tgt.C) ∃ (s∈c.S) 〉;
〈e4, e5, ∀ (d∈tgt.D) ∀ (t∈d.T) ∃ (cl∈t.Cl) ∃ (c∈tgt.C) cl.cid = c.cid〉;
〈e3, e4, ∀ (d∈tgt.D) ∃ (t∈d.T) 〉;
〈e3, e5, ∀ (d∈tgt.D) ∃ (t∈d.T) ∃ (cl∈t.Cl) ∃ (c∈tgt.C) cl.cid = c.cid〉.
The algorithm does not guarantee to detect all possible condi-
tional containments (i.e., it is not complete). However, it does
detect most of the containments that can be utilized by the map-
ping pruning algorithm, which we discuss next.

5.2.3 Mapping Pruning Algorithm

The mapping pruning algorithm (Figure 5) first identifies all the
original mappings that are unaffected by the change (lines 3-4)
and then removes them from the workload as well as from all
the composability links (lines 5-6). For our example, m2 and m3

will be detected and removed from multiple composability links
(e.g., L2, L12, etc.). Next, all composability links are examined
for the impact of the previous removal (lines 7-11). In our exam-
ple, after the removal of m2 and m3, among the 12 composability
links: the from clauses of L2,5−9,11 become empty; L4 becomes

a duplicate of L3; and the from clauses of L10,12 become insuf-
ficient to translate the respective evolution mappings (e.g., trans-
lating e5 requires a rule for /D/T, which can not be provided
by m1, the only mapping left in the from clause of L10). All
these composability links are removed, which leaves us with L1

and L3, involving one original mapping, m1, and two evolution
mappings, e1 and e2. Next, L1 and L3 are checked for redun-
dancy according to the conditional containments (lines 12-16).
We have previously identified that e2 contains e1 under the con-
dition: ∀ (c∈tgt.C) ∃ (s∈c.S) . The condition is satisfied since the
only mapping m1 in from clauses of L1 and L3 ensures that all
the classes in tgt will have an associated student (see m1.exists
in Figure 4). As a result, L1 is removed. The detection of the
condition satisfaction is standard: we check whether the canoni-
cal database that can be associated with m1.exists (together with
the corresponding where clause, when it exists) satisfies the con-
straint.

Finally, the algorithm collects the original and evolution map-
pings from the from and to clauses of the remaining composabil-
ity links: those mappings will be the final workload for adapta-
tion. Because only L3 remains in our example, the adaptation
only needs to compose m1 with e2, a significant reduction from
the original workload (three original and five evolution map-
pings). Although pruned from the workload of adaptation, the
removed original mappings will still be part of the final adapted
mappings: they are simply unchanged.

6 Experimental Evaluation
To evaluate the performance of our approach, we implemented
the MACES (Mapping Adaptation, using Composition, for
Evolving Schemas) system and tested it with a comprehensive
set of synthetic and real life experiments. We show that when the
mapping pruning techniques are incorporated, the system scales
well with increasing mapping complexity in most of the synthetic
scenarios and can efficiently adapt mappings in the two real ap-
plication scenarios. The system is implemented using Java and
all experiments were performed on a Windows XP SP2 machine
(2.0GHz P4 CPU, JRE 1.4.2, 384MB VM).

6.1 System Scalability

The synthetic evolution test case examines the scalability of
MACES. It covers a range of complexity levels (measured by
schema depth and fanout, explained shortly), where each level
consists of eight different scenarios. Shown in Figure 6(B), the
scenarios are created from five schemas: R and X, representing
the original relational and XML schemas respectively; R′ and X′,
representing evolved (via a single renaming operation) versions
of R and X respectively; and F, representing a schema that has
evolved significantly from R and X. Ten mappings (directed solid
lines) are established: R→X and X→R represent the two original
mappings and the rest represent evolution mappings (e.g., R→R′
and F→X). Each scenario (directed dashed lines) involves three
schemas and two mappings. For example, following dashed line
#4 in the clock-wise direction, we obtain a target macro evolu-
tion scenario where R is mapped into X, and X is subsequently
evolved into F. This scenario is also detailed in Figure 6(A): R
contains one central element (relation R0), to which a number of
“chains” of elements (R11-R12, R21-R22) are associated, and el-
ements in each chain are linked via referential constraints; X con-
sists of one root element (R0), which contains a number of child
elements (R11, R21), and each child element itself leads a chain

1014

K0

B0

R0: Set of

F11

K11
B11

R11: Set of

F12

K12

B12

R12: Set of

F21

K21
B21

R21: Set of

F22

K22
B22

R22: Set of

K0

B0
R11: Set of

K11
B11
R12: Set of

K12
B12

R21: Set of

K21
B21
R22: Set of

K22
B22

R0: Set of

Relational Schema (R): XML Schema (X):

B0

B11
B12

R1: Set of

B0

B21
B22

R2: Set of

Flat Schema (F):

m
1

m
2

m
3

R X

F

R' X'

1 2

3 4

Scenario 4 (CW):
R2X Target Macro Evolution
with Depth = 2 & Fanout = 2

A

B

1: (CW) X2R target micro evolution (CCW) R2X source micro evolution
2: (CW) X2R source micro evolution (CCW) R2X target micro evolution
3: (CW) R2X source macro evolution (CCW) X2R target macro evolution
4: (CW) R2X target macro evolution (CCW) X2R source macro evolution

(CW): clock wise direction; (CCW): counter clock wise direction

Figure 6: Details (A) and overview (B) of the synthetic scenarios.

of elements connected via parent/child relationships; F flattens
each chain into a single relation, while maintaining the number
of chains. The original mapping (R→X) contains manually gen-
erated logical mappings that together fully map the correspond-
ing elements in both schemas. The evolution mapping (X→F)
contains logical mappings that are automatically generated as de-
scribed in Section 5.1. The complexity level is determined by the
depth and fanout of the schemas. Depth is the number of set el-
ements within each chain, while fanout is the number of chains
in the schema. In each scenario, R and X have the same depth
and fanout; and the evolved schema has comparable size with
the original schemas (F has a proportionally smaller size, while
R′ and X′ is as complex as R and X respectively).

Increasing fanout leads to increased number of logical map-
pings and V Cs in both original and evolution mappings, while
increasing depth leads to not only increased number of logical
mappings but also increased complexity of each logical mapping
(larger foreach and exists clauses). Table 1 summarizes the sta-
tistics of synthetic scenarios at median complexity levels. For
all micro evolution scenarios, a single leaf level VC is affected,
affecting a single original logical mapping. For all macro evo-
lution scenarios, all VCs are affected (the worst case scenario),
affecting all original logical mappings.
Performance of adaptation Figure 7 evaluates MACES (with
mapping pruning) on a series of evolution scenarios with in-
creasing schema depth or fanout. We show the performance of
adapting X→R in the case of source evolution (left y-axis, linear
scale) and adapting R→X in the case of target evolution (right
y-axis, log scale). The symmetric cases (i.e., source evolution
of R→X and target evolution of X→R) will be discussed shortly.

Scenario (Depth × Fanout) Schema Size Mappings [#V Cs]
8 × 3 87 13 [50]
3 × 25 265 51 [152]

Table 1: Statistics for the synthetic scenarios. Schema size is the aver-
age number of elements in both original schemas. Mappings and #VCs
are the number of logical mappings and V Cs in the original mapping.
The statistics are independent of the mapping direction (R→X or X→R)
or the evolution type (source or target).

Adaptation with Increasing Schema Depth (Fanout = 3)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

2 4 6 8 10 12 14

Schema Depth

S
o

u
rc

e
E

vo
lu

ti
o

n

T
im

e
(s

)

0

1

10

100

T
ar

g
et

 E
vo

lu
ti

o
n

T

im
e

(s
)

Source Micro Evolution (X2R) Source Macro Evolution (X2R)

Target Micro Evolution (R2X) Target Macro Evolution (R2X)

Adaptation with Increasing Schema Fanout (Depth = 3)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

5 10 15 20 25 30 35 40 45 50

Schema Fanout

S
o

u
rc

e
E

vo
lu

ti
o

n

T
im

e
(s

)

0

1

10

100

1000

T
ar

g
et

 E
vo

lu
ti

o
n

T

im
e

(s
)

Source Micro Evolution (X2R) Source Macro Evolution (X2R)

Target Micro Evolution (R2X) Target Macro Evolution (R2X)

Figure 7: Evaluation of mapping adaptation.

As shown, the system scales reasonably well with the increasing
complexity. For a rather complex target macro evolution sce-
nario with schema fanout at 50 (101 logical mappings and 302
VCs in the original mapping), MACES finishes the adaptation in
less than 5 minutes.

The results also show that, despite being more complex in
nature, adapting macro evolution is not a lot worse than adapt-
ing micro evolution. In the case of target macro evolution with
deep schemas, the performance is even better than that of the
corresponding micro evolution. This is due to an optimization
technique, rule simplification, employed by MACES to simplify
mapping rules that include union. The simplification is done by
removing the terms in the union that are contained in (subsumed
by) other terms in the union. The terms that are eliminated are
the larger ones (with more generators and conditions, thus more
restrictive); this results in faster subsequent processing. For tar-
get micro evolution, most of the logical mappings in the origi-
nal mapping are pruned out, yielding mapping rules that contain
fewer (but larger) terms in the union, with fewer opportunities for
rule simplification. Rule simplification also explains why adapt-
ing source evolution can be faster than adapting target evolution
(because there are usually more mappings in the evolution map-
ping and rule simplification has more opportunities to eliminate
larger terms). This irregularity shows that mapping pruning has
to be intelligently tuned to act in synergy with other optimization
techniques, which is one of our future research interests.
Minimization cost We consider now the symmetric measure-
ments: target evolution of X→R and source evolution of R→X.
For most part, the results are similar to those in Figure 7. There
is one exception: the performance of adapting X→R in target
evolution with increasing schema depth is worse than that of
adapting the R→X counterparts. After careful analyses, we found

1015

Mapping Scenario Full Mapping Saving
(Depth × Fanout) Adaptation Pruning %

Source Micro X2R (4 × 3) 132.14 0.09 99.93%
Target Micro R2X (4 × 3) 21.19 0.64 96.98%

Source Micro X2R (3 × 10) 267.59 0.31 99.88%
Target Micro R2X (3 × 10) 62.66 0.28 99.55%
Source Macro X2R (4 × 3) 12.32 0.23 98.13%
Target Macro R2X (4 × 3) 28.47 0.68 97.61%

Source Macro X2R (3 × 10) 4.90 0.26 94.69%
Target Macro R2X (3 × 10) 85.75 2.79 96.75%

Table 2: Costs (seconds) of full adaptation and mapping pruning.

two main reasons for this. First, unlike increasing fanout, which
mainly leads to increased number of logical mappings to be
adapted, increasing depth leads to both increased number of log-
ical mappings and, more significantly, increased complexity of
each logical mapping. Second, the logical mappings that result
after composing the logical mappings in X→R with the corre-
sponding target evolution logical mappings involve deeply nested
elements in the source schema. Hence, these logical mappings
contain long chains of source generator dependencies (i.e., one
generator depends on another). We found that, for our current im-
plementation of minimization6, the time to minimize such logical
mappings is consistently worse than the time to minimize logi-
cal mappings with no dependencies between generators. As a
result, adapting X→R target evolution scenarios at deep schemas
becomes the worst case scenario (worse than source evolution
due to reduced applicability of rule simplification). In terms of
actual numbers, at depth 6, the cost of minimization dominates
the overall cost and exceeds the 60 minutes threshold. An alter-
native is to leave these mappings un-minimized. But this is not
acceptable since the number of redundant generators that result
after composition is often high. Improving the performance of
minimization remains an interesting research issue.
Impact of mapping pruning To understand the impact of map-
ping pruning on the adaptation, we compared the time cost of
adaptation with and without pruning (full adaptation). As ex-
pected, pruning significantly affects scalability. In evolution sce-
narios of medium to high complexity (e.g., over 6×3 or 3×20),
full adaptation failed to finish within the 60 minutes time limit we
set. Most of the time spent by full adaptation is on minimization
of intermediate logical mappings that result after composition.
Mapping pruning reduces the number of logical mappings to be
composed and to be minimized. Table 2 lists the time costs for
both full adaptation and adaptation with pruning for some of the
scenarios where full adaptation is able to finish. (The full adap-
tation costs for source macro evolution are significantly better
than the corresponding costs for source micro evolution; this is
because, in the former case, the macro evolved schema (F) has
less set elements than the micro evolved schema (X′), hence the
evolution mappings have less generators and are therefore easier
to process.) As shown, mapping pruning can significantly im-
prove the performance of adaptation, often by several orders of
magnitude.

6.2 Mapping Adaptation with Real Cases

We test MACES on two real life mapping cases. The first
case is Mondial [14], a geographical database with both a re-
lational schema and an XML schema. The original mapping
is established between the XML schema (source) and the rela-
tional schema (target). The changes are introduced into the XML

6A necessarily exponential-time procedure, in general (unless P = NP).

Mondial Faculty
Scenario Micro Macro Micro Macro

Size [Depth, Fanout] 123 [5, 19] 57 [4, 7]
Original Mappings [#VCs] 15 [53] 11 [61]

Affected VCs [%] 1 [2%] 37 [70%] 1 [2%] 36 [59%]
Full Adaptation DNF DNF 1.33 2.09

Mapping Pruning 1.89 9.19 0.35 1.23
Saving % >99% >99% 74% 41%

Blank-Sheet Mappings 14 14 11 13
Missed Mappings 1 1 0 10

Unintended Mappings 0 0 0 5
Unchanged Mappings 14 10 10 7

Adapted Mappings 1 5 1 11
Benefits 93% 67% 91% 52%

Table 3: Statistics for Mondial and Faculty evolution scenarios, and
performance (seconds) and benefits of adaptation. Size, depth, and
fanout are the average of both original schemas (except for Mondial,
where the depth is the depth of source XML schema since the target
schema is relational and has depth of 1 only). DNF indicates the adap-
tation was not finished within 60 minutes time limit.

schema in two ways: renaming an element to create the micro-
evolved XML schema and adding a new terrain element serv-
ing as the parent of all geological elements (e.g., river) to cre-
ate the macro-evolved schema. We use this real case to represent
scenarios where the data are ingested from XML sources and
subsequently stored into a target relational database: when the
XML sources evolve, the mappings between the sources and the
relational target must be adapted.

The second case is Faculty, containing a list of schemas about
CS faculty members of six major universities7. The schemas,
which are constructed strictly based on the webpages, differ in
terms of both schema size (from less than 5 elements to more
than 20 elements) and how the information is represented (e.g,
some have detailed research profile, others only a short descrip-
tion). A simple unioned schema and a deeply merged schema
of the six are manually created, and the original mapping is es-
tablished between the unioned schema (source) and the merged
schema (target). The merged schema is then evolved via restruc-
turing operations (macro evolution) or renaming operations (mi-
cro evolution). This represents common data integration scenar-
ios where multiple data sources are mapped into a target: when
the target evolves due to data reorganization or the addition of
new sources, mappings between the old sources and the target
must be adapted.
Performance As shown in Table 3, all adaptations with mapping
pruning finish within a reasonable amount of time, with the Mon-
dial macro evolution taking the most time at 9.19 seconds. The
performance difference between the Mondial and Faculty scenar-
ios is largely due to the fact that logical mappings in Mondial are
more complex than those in Faculty. The improvements from
mapping pruning are again clear in Mondial, saving at least 99%
in both micro and macro evolutions. In fact, full adaptations of
the scenario failed to finish within the time limit (60 minutes).
The improvements are not so significant in Faculty because all
the schemas are relatively simple, leading to reduced impact of
pruning. In general, we expect many real schemas to be more
complex than Mondial–the cost of full adaptation will be very
high if not too high.
Benefits We measured the benefits of mapping adaptation over
reconstructing the mappings using blank-sheet approach. We
consider the fact that logical mappings created by the blank-

7The six universities are Berkeley, Michigan, North Carolina, UIUC, Wash-
ington, and Wisconsin. Snapshots were taken as of October 2004.

1016

sheet approach all require user examination (to discard unin-
tended mappings8) with extra effort devoted to search for map-
pings not automatically generated (missed mappings). In con-
trast, mappings generated by MACES fall into two categories:
1) unchanged, which do not need to be examined; 2) adapted,
which may need to be examined if the user so chooses. Note that
our mapping adaptation approach does not miss potentially valid
mappings because it captures the semantics of both the original
mappings and the evolution. Although the mapping generation
tool being used in the comparison is Clio [18], we believe the
trade-off between reducing the number of unintended mappings
and reducing the number of missed mappings is universal for all
mapping generation tools. As a result, the benefit analysis here
can be similarly applied to other mapping systems. We also be-
lieve that the cost of the schema matching phase (Section 5.1) for
mapping adaptation will be similar to the cost of manually cre-
ating the change list for the blank-sheet approach; both costs are
therefore ignored in our calculation. Hence, the benefit of adapta-
tion (effort saved using adaptation compared to using blank-sheet
approach) can be defined as:

1 − mappingsadapted

mappingsblank−sheet+mappingsmissed

As shown in Table 3, for the two real cases, the benefits of adap-
tation are around 90% and at least 50% for micro evolution and
macro evolution scenarios, respectively. There are several inter-
esting points regarding the benefits of adaptation. (1) The regen-
eration algorithm often produces some of the same exact map-
pings that the adaptation approach yields. This is true especially
at small schema changes. However, there are no guarantees in
general and, when schema changes become more drastic, the dif-
ference between the two approaches becomes larger (see the last
point). (2) In most cases, the user is safe to choose not to examine
the adapted mappings since those mappings capture the seman-
tics of both the original mapping and the schema evolution. In
general, we expect the users to do so and the benefit of adaptation
will become 100% for those users. (3) The benefit formula under-
estimates the cost associated with searching for missed mappings
in the blank-sheet approach, which can be a very expensive oper-
ation. (4) When schema changes are small (the micro evolution
case), the benefit is high (close to 100%). This is due to the fact
that there is a large number of mappings that do not need to be
changed; the mapping adaptation process detects them and hence
saves the cost of regenerating and re-examining them. (5) When
the schema structure is drastically changed (e.g., Faculty macro
evolution), the number of missed/unintended mappings increases
greatly in the blank-sheet approach. This further validates that
the blank-sheet approach can not capture the semantics of both
the original mapping and the schema evolution, while the com-
position based adaptation is able to.

7 Conclusion

We addressed the problem of adapting schema mappings when
schemas evolve, by using a mapping composition approach. We
showed that our method is superior to a previous incremental ap-
proach by capturing the semantics of both the original mapping
and the evolution. Within the context of mapping adaptation, we
studied the relationship and transformation semantics of map-
ping composition. We implemented the MACES mapping adap-
tation system based on mapping composition under the trans-

8Those do not reflect the semantics of the original mappings but rather repre-
sent new mapping semantics, given the new schema structure.

formation semantics, and designed mapping pruning techniques
to improve the performance. Experimental analysis showed the
overall approach to be scalable and practical in various evolution
scenarios. One of the important challenges remaining is improv-
ing the performance of the minimization that is needed during
composition.

References
[1] J. Banerjee, W. Kim, H.-J. Kim, and H. Korth. Semantics and Im-

plementation of Schema Evolution in Object-Oriented Databases.
In SIGMOD, 1987.

[2] P. Bernstein. Applying Model Management to Classical Meta Data
Problems. In CIDR, 2003.

[3] P. A. Bernstein and E. Rahm. Data Warehouse Scenarios for Model
Management. In ER, 2003.

[4] A. K. Chandra and P. M. Merlin. Optimal Implementation of Con-
junctive Queries in Relational Data Bases. In STOC, pages 77–90,
1977.

[5] A. Deutsch, L. Popa, and V. Tannen. Physical data independence,
constraints, and optimization with universal plans. In VLDB, 1999.

[6] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: Se-
mantics and query answering. In ICDT, 2003.

[7] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan. Composing Schema
Mappings: Second-Order Dependencies to the Rescue. In PODS,
2004.

[8] A. Halevy. Answering queries using views: A survey. VLDB Jour-
nal, 10:270–294, 2001.

[9] A. Lee, A. Nica, and E. Rundensteiner. The EVE Approach: View
Synchronization in Dynamic Distributed Environments. TKDE,
14(5):931–954, 2002.

[10] M. Lenzerini. Data Integration: A Theoretical Perspective. In
PODS, 2002.

[11] B. Lerner. A Model for Compound Type Changes Encountered in
Schema Evolution. TODS, 25(1):83–127, 2000.

[12] J. Madhavan and A. Halevy. Composing mappings among data
sources. In VLDB, 2003.

[13] I. Manolescu, D. Florescu, and D. Kossman. Answering XML
queries over heterogeneous data sources. In VLDB, 2001.

[14] W. May. Information extraction and integration with FLORID: The
MONDIAL case study. Technical report, Universität Freiburg, In-
stitut für Informatik, 1999.

[15] S. Melnik. Generic Model Management: Concepts and Algo-
rithms. PhD Thesis, University of Leipzig, Springer LNCS 2967,
2004.

[16] R. Miller, L. M. Haas, and M. Hernández. Schema mapping as
query discovery. In VLDB, 2000.

[17] A. Nash, P. A. Bernstein, and S. Melnik. Composition of Mappings
Given by Embedded Dependencies. In PODS, 2005.

[18] L. Popa, Y. Velegrakis, R. Miller, M. Hernández, and R. Fagin.
Translating web data. In VLDB, 2002.

[19] E. Rahm and P. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4):334–350, 2001.

[20] N. Shu, B. Housel, R. Taylor, S. Ghosh, and V. Lum. EXPRESS: A
Data EXtraction, Processing, and REStructuring System. TODS,
2(2):134–174, 1977.

[21] Y. Velegrakis, R. Miller, and L. Popa. Mapping Adaptation under
Evolving Schemas. In VLDB, 2003.

[22] C. Yu and L. Popa. Constraint-Based XML Query Rewriting for
Data Integration. In SIGMOD, 2004.

1017

