Memory-Limited Execution of Windowed Stream Joins

Utkarsh Srivastava

Jennifer Widom

Stanford University
{usriv,widom} @db.stanford.edu

Abstract

We address the problem of computing approxi-
mate answers to continuous sliding-window joins
over data streams when the available memory may
be insufficient to keep the entire join state. One
approximation scenario is to providensaximum
subsedf the result, with the objective of losing as
few result tuples as possible. An alternative sce-
nario is to provide aandom samplef the join
result, e.g., if the output of the join is being ag-
gregated. We show formally that neither approxi-
mation can be addressed effectively for a sliding-
window join of arbitrary input streams. Previ-
ous work has addressed only the maximum-subset
problem, and has implicitly used frequency-
based modebf stream arrival. We address the
sampling problem for this model. More impor-
tantly, we point out a broad class of applications
for which anage-basednodel of stream arrival is
more appropriate, and we address both approxi-
mation scenarios under this new model. Finally,
for the case of multiple joins being executed with
an overall memory constraint, we provide an algo-
rithm for memory allocation across the joins that
optimizes a combined measure of approximation
in all scenarios considered. All of our algorithms
are implemented and experimental results demon-
strate their effectiveness.

1 Introduction

failing to keep up with the input rate [7, 19]. In this paper,

we address the problem of memory-limited execution of
sliding-window joing2] in data stream systems, focusing

on providing approximate results.

Consider a continuous sliding-window join between two
streamsS; and.S;, denoted ass; [W;] Xy Sa[Wa]. Win-
dowsW; andW> consist of the most recent tuples on their
respective streams, and may be tuple-based (e.g., the last
1000 tuples), or time-based (e.g., tuples arriving in tisé la
10 minutes). The output of the join contains every pair of
tuples from streams$; and S, that satisfy the join pred-
icate and are simultaneously present in their respective
windows. In general, to perform the join accurately, the
entire contents of both windows must be maintained at all
times. If we have many such joins with large windows over
high-volume data streams, memory may be insufficient for
maintaining all windows in their entirety. If the data strea
application has stringent performance requirements éo pr
clude the use of disk), but can tolerate an approximate join
result, there are two interesting types of approximation:

1. “Max-Subset” Results: If the application benefits
from having a maximum subset of the result, we can
selectively drop tuples (sometimes referred tdoasl
sheddind7, 17]) with the objective of maximizing the
size of the join result produced.

. Sampled Results:A random sample of the join result
may often be preferable to a larger sized but arbitrary
subset of the result. For example, if the join result is
being aggregated, the sample can be used to provide a
consistent and unbiased estimate of the true aggregate.

Data stream systems [14, 18, 22] face the challenge that Previous work on memory-limited join execution [7, 13]
immediate online results often are required, but sufficienhas considered only max-subset results, and has implicitly
memory may not be available for the run-time state re-assumed &equency-basethodel of stream arrival. In this

quired by a workload of numerous queries over high-

model, each join-attribute value has a roughly fixed fre-

volume data streams [7, 13]. There are two basic solutiongjuency of occurrence on each stream. These frequencies

provideapproximatenstead of accurate query results using
memory exclusively to ensure high performance [2, 7, 9]

(either known or inferred through monitoring) are used to

make load-shedding decisions, i.e., which tuples to drop

or provide accurate results by using disk with the risk ofand which to retain, in order to maximize the size of the join

Permission to copy without fee all or part of this materiagimnted pro-
vided that the copies are not made or distributed for diremnmercial
advantage, the VLDB copyright notice and the title of theljsation and
its date appear, and notice is given that copying is by pesioisof the
Very Large Data Base Endowment. To copy otherwise, or tobiégy
requires a fee and/or special permission from the Endowment

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

324

result produced. However, no justification has been pro-
vided as to why this (or any other) model is required for ad-
dressing the max-subset approximation problem. Our first
contribution is to show formally that if a sliding-window
join over arbitrary streams is to be executed without enough
memory for retaining the entire windows, neither of the
above types of approximations can be carried out effec-
tively: For the max-subset problem, any online algorithm

Model Max-Subset | Random Sample age-based example in Section 2.2. Moreover, the process
Age-Based Section 3 Section 4 of inferring a general stochastic process merely by observ-
Frequency-Based Addressed in [7] ing the stream is not clear.

The other category consists of randomized sketch-based
solutions for approximately answering aggregate queries
can return an arbitrarily small subset as compared to thever joins, providing probabilistic error guarantees [1, 9
optimal (offline) algorithm [7], and for the sampling prob- These techniques do not extend to handle sliding-window
lem, no algorithm can guarantee a nonzero uniform randoripins or windowed aggregates which are required in many
sample of the join result. Thus, we must have some modetpplications: although the techniques handle expliciedel
of stream arrival to make any headway on the problem. tions within streams, they cannot handle the implicit dele-

There are many applications for which the frequency-tions generated by sliding windows.
based model considered in previous work is inappropri- In this paper, we only consider the stream system being
ate. (One obvious case is a foreign-key join, where on ongnemory-limited. The stream system could instead (or also)
stream each value occurs at most once.) For these applte CPU-limited, i.e., the rate of incoming tuples is higher
cations, we define aage-basednodel that is often appro- than can be processed. Load-shedding for the CPU-limited
priate and enables much better load-shedding decisions. Base has been considered in [4, 17]. Sampling from a win-
the age-based model, the expected join multiplicity of a tu-dow is addressed in [3], but only for a single stream and not
ple depends on the time since its arrival rather than on it§or a join result. Random sampling for joins has been con-
join-attribute value. Examples will be given in Section.2.2 sidered in the relational context [5]. However, all samglin

Given the two types of approximation and the two mod-methods developed there require repeated access or indices
els, we have the problem space shown in Figure 1. Th@n at least one of the relations, making these techniques
max-subset problem has been addressed in [7], but only fdnapplicable in the stream context.
the frequency-based model. To the best of our knowledge,
the sampling problem, i.e., the problem of extracting arand.2 Summary of Contributions
dom sample of the join result with limited memory, has not
been addressed in previous work. Our contributionistoad- sliding-window join with limited memory cannot be
dress the max-subset problem for the age-based model, and jqresseq effectively for arbitrary streams (Sections
the sampling problem for both models. 3.1and 4.1)

Our discussion so far assumes a single two-way sliding-) o
window join. In reality, we expect to be executing many 2. We introduce a novedge-based modébr stream ar-
queries simultaneously in the system. Thus, there is an rival that captures many applications not captured by
added dimension to all of the above problems: memory the frequency-based model assumed in previous work
allocation among multiple joins. The total available mem- (Section 2).
ory should be allocated to the different joins such that a 3. For 3 single two-way join with a fixed memory con-
combined approximation measure is optimized. \We pro- straint, we provide novel algorithms for the max-
vide an optimal memory allocation scheme that minimizes gypset problem under the age-based model (Section

the maximum approximation error in any join. Our tech- 3), and the sampling problem under both the fre-
joins have different relative importance.

Figure 1: Problem space

1. We show formally that the problem of approximating

4. For multiple two-way joins with an overall memory
11 Related Work constraint, we give an algorithm to allocate memory

. among the various joins so as to optimize a combined
There has been considerable work recently on data stream measure of approximation (Section 5).

processing; see [11] for a survey. We discuss only the body
of work related to answering queries approximately when
available memory is insufficient. This work can be broadly
classified into two categories. One category consists o% ST
load-shedding strategies for max-subset approximation o Preliminaries and Models

joins. Random load-shedding is the simplest, and has beewe briefly describe our basic model of continuous query
considered in [13]. [7] primarily considers the offline lead processing over data streams. Assume any discrete time
shedding problem (one in which all future tuple arrivals aredomain. For a strearfi;, « = 1, 2, a variable number of tu-
known), and provides some heuristics for the online casg@les may arrive in each unit of time. However, we assume
that implicitly assume a frequency-based model. An al-that over time, tuples on streash arrive at a constant aver-
ternative stream model for load-shedding uses a stochasge rate of; tuples per unit timeS, [IW;] denotes a window

tic process [20]. Although this model is more general, theon streans;. We considetime-basedvindows, wheréV;
primary focus in [20] is on scenarios in which the tuples denotes the length of the window in time units. At time
arriving on one stream are independent of those that have a tuples belongs toS;[W;] if s has arrived orb; in the
already arrived on another stream. However, most scenatime interval[t — W;, t]. Attime t, we says is of agek if

ios we consider do not exhibit this independence, e.g., ouit arrived at timet — k. We consider time-based windows

5. We provide a thorough experimental evaluation show-
ing the effectiveness of our techniques (Section 6).

325

vﬁﬁﬂgcvae' 1. When a new tuple arrives onS;
Aggregatio 2 UpdateS, (W3] by discarding expired tuples
3. Emits X4 Ss [WQ}
S—prob probe
results| | fesults 4. AddstoS;[Wi]

Figure 3: Sliding-window join execution

Wi S,

TSL tem with a fixed number otomponents We have a
stream ofactionsand a stream oérrors on all compo-
nents, and we want to perform a sliding-window join on
) . conponent - i d to look for possible correlations between
for generality; tuple-based windows can also be capturegctions and errors. Some components may be more heav-
by assuming that a single tuple arrives every time unit. jly ysed than others, and some may be more error-prone
_The basic query we consider (shown in Figure 2) is athan others, but eactonponent - i d may have a roughly
sliding-window equijoin between two streanis andS> fixed frequency of occurrence on each stream.
over a common attributd, denotedS;[W;] X4 Sa[Wal.
The output of the join consists of all pairs of tuplgse S,
sy € S9, such thats;. A = s,.A and at some time, both
s1 € S1[W4] andse € S3[Ws]. Conceptually, a sliding-
window join is executed as shown in Figure 3, which de-
tails the steps to be followed for a newly arriving tuple on X s . .
S;. A symmetric procedure is followed for a newly arriving Si1: OpenAuction(auction-id, seller-id)
tuple onS,. We also consider queries witwandowed ag- Sp: Bid(auction-id, bi d-anount)
gregationoperator on top of the streamed join result. OtherWhen a seller starts an auction, a tuple arrives' oriWhen
work [8] has focused on approximate windowed aggregaa bid is placed on an auction, a tuple arrivesSenSuppose
tion in memory-limited environments. We do not considerwe are interested in knowing, for each seller, the average
this aspect of memory usage in our calculations, howevefumber of bids received on all of his auctions in the last 5
analyzing the tradeoff between memory allocation to joinsdays. This query requires a sliding-window join between
and aggregation is an interesting subject of future work. S1 and Sz with a window on.S; equal to the maximum
We classify every join-result tuple as eithergnprobe lifetime of an auction, followed by an aggregation operator
join tuple or an So-probe join tuple When a new tuple ~ With a 5-day window. _
arrives onS; and joins with a tuples’ € S[W5] (line 3 Suppose memory is insufficient to retain all the tuples
of Figure 3),s ands’ are said to produce a$,-probe join ~ in S1’'s window, and suppose we use the frequency-based
tuple. S;-probe join tuples are defined symmetrically. A model for making load-shedding decisions in this scenario.
tuple s € S; may first produceS,-probe join tuples when Auction-ids are unique, so on streafi we see each
it arrives. Then, before it expires frosy [I7;], it may pro- ~ auction-id only once. On streass, the arriving auction-
duces; -probe join tuples with newly arriving tuples ¢f. ids are the currently open auctions, so this set changes over
We usen;(s), i = 1,2, to denote the number of;-probe time. Thus, no fixed frequency distribution can be inferred
join tup|es produced by a tup[e € S; before it expires thI’OUgh monitoring. In this case, Ioad-shedding schemes
from S;[W;]. based on the frequency model [7] will simply retain new
tuples and discard old ones. However, that is exactly the
wrong thing to do, since most bids are received on auctions
that are about to close, i.e., are relatively old. To capture
such scenarios, we propose a regye-basednodel defined
for the sliding-window joinS; [W7] X Sy [IV,] as follows:

Figure 2: Sliding-window join with aggregation

2.2 Age-Based Stream Model

For many applications, the frequency-based model is inap-
propriate. As a simple example, consider online auction
monitoring [16] with the following streams:

2.1 Frequency-Based Stream Model

Continue to consider the sliding-window joiy [IW7] X 4
S2[Ws]. Let D denote the domain of join attributé. The

frequency-based model that has been assumed in previo
work [7,13] is defined as follows:

Definition 2.1 (Frequency-Based Model) For each value
v € D, a fixed fractionf; (v) of the tuples arriving orb1,
and a fixed fractiory,(v) of the tuples arriving orb,, have
valuew in attribute A. O

Assuming an average ratg of arrivals per unit time ot%,,
the expected number df,-probe join tuples that a tuple

s € Sy produces is given by:
E[nl(s)} To - W1 . fQ(SA) (1)

Example Scenario Suppose we are monitoring a sys-

326

us
Definition 2.2 (Age-Based Model).For a tuples € Sy,

the S;-probe join tuples produced byobey the following
two conditions:

1. The number of;-probe join tuples produced byis
a constant independent efand is denoted by .

2. Out of then; S;-probe join tuples o, p; (k) are pro-
duced when is between agé — 1 andk.

A symmetric case holds for thg-probe join tuples pro-
duced by a tuple’ € S. DefineC;(k), i = 1,2, as the cu-
mulative number af;-probe join tuples that a tuple € S,
produces by age, i.e.,C;(k) = Y, pi(j). O

Thus, according to this model, the number of joins a tu-can allocate an extra chunk of “monitoring memory” that
ple produces is independent of its join-attribute valud, buis circulated periodically to each window in turn to moni-
is a function of the age of the tuple in the window. Assump-tor its parameters accurately. If this memory is not avail-
tion 1 in Definition 2.2 is not strictly necessary for our ap- able,p;(k) can be approximately estimated by retaining a
proach. However, in the scenarios we have considered, th@mall fraction of the tuples of; in S;[WW;] for their entire
set of join-attribute values changes over time. Thus, even ilifetime. Alternative schemes for approximately estimgti
n;(s) depends on.A for a tuples € S;, it would be diffi- the age curve when extra memory is not available is a topic
cult to infer this dependence by monitoring the stream. of future work.

Different Age Curves. Consider a curve that plofs (k)
againstk; we call this theage curvefor window S;[W;]. 3 Max-Subset

Intuitively, the age curve shows how likely a tupleS{V;] Recall our basic algorithm for executing joiy [IW;] X4

is to produce join tuples, as it becomes older. D|fferent52[W2] shown in Figure 3. If memory is limited, we need
applications that adhere to the age-based model may hayg modify the algorithm in two ways. First, in Line 2, we
very different age-curve shapes: updateS; [W1] in addition toSy[W5] to free up memory

e Increasing An example is the auction scenario de- occupied by expired tuples. More importantly, in Line 4,

scribed above. In a typical auction, relatively few Memory may be insufficient to addto Sy[W3]. In this
bids are received in the beginning, followed by a large¢@S€, we need to decide whetheis to be discarded or

number of bids when the auction is about to close 2dmitted intoS;[W1], and if it is to be admitted, which of

Thus p; (k) is small for smallk, and increases with the existing tuples is to be d|scarded._ An algorithm that

% until the auction lifetime, after which it drops @0~ Makes this decision is called@ad-shedding strated, 7,

17]. Due to load-shedding, only a fraction of the true result

¢ Decreasing Consider a join between @rdersand a will actually be produced. We denote the fraction of the

Fulfillmentsstream oror der - i d, with awindow on result tuples produced ascall.

the orders stream. Most parts of an order are fulfilled .

soon, but some may require backorder and are fulfilleq:geca|(t) - Number of result tuples produced up t(? titme

later. Thus we expect to see a decreasing age curve. Number of actual result tuples up to time

e Bell: Consider a join between streams of readingsPefinition 3.1 (Max-Subset Problem). Given a fixed

from two different sensors, with a band-join condition @mount of memory for a sliding-window joB [W:] M4

on timestamp. This join may be used to discover cor-52[V2], devise an online load-shedding strategy that max-

relations between readings from two different obser-Mizeslim; . Recall(t).

vation points taken at roughly the same time. Inthis e first state a result on the hardness of the prob-
case, the age curve is expected to be bell-shaped. Them for arbitrary streams (Section 3.1), then present a
agek at which the peak of the age curve occurs will [pad-shedding strategy for the age-based model (Section
be determined by factors such as clock skew betweeg.2), and finally discuss the max-subset problem for the
the two sensors, and the difference in network latencyfrequency-based model (Section 3.3).

from the sensors to the stream system. We perform an

experiment of this form in Section 6. 3.1 Hardness Result

A load-shedding strategy isptimal if it eventually pro-
duces the maximum recall among all strategies using the
For using any of the models described above, the model pa&ame amount of memory. For bounded streamfiine
rameters must be instantiated, i.e., we must determine thgtrategy is one that is allowed to make its load-shedding de-
frequencies of occurrengg (v) and f2(v) of valuesv € D cisions after knowing all the tuples that are going to arrive
for the frequency-based model, and the age curves for thig the future. We show that for arbitrary streams, it is not
age-based model. We assume the standard technique gssible for any online strategy to bempetitivewith the
using the past to predict the future, so parameters are estptimal offline strategy.

mated by monitoring the streams. There is previous work et S denote a bounded sequence of tuple arrivals on
on building histograms in an online fashion using smallthe streamss; andS,. Consider any online strategy. Let
space [10, 12], which can be used to estimate the valueggn(1M, S) denote the recall obtained at the end of execut-
of fi(v) and f(v). For the age-based model,, i = 1,2, ing the online strategy with memory/ on the sequencs.

is estimated as the average numbetgprobe join tuples Similarly, let Ry¢(1, S) denote the recall for the optimal
that anS;-tuple produces in its lifetime. Similarly; (k) offiine strategy. We assumi is insufficient to retain the

is estimated as the average numbespprobe join tuples gniire windows. The online strategyfiscompetitivef for

that anS;-tuple produces between age- 1 andk. any sequence, Rog(M, S)/Ron(M, S) < k.
We do not need to collegi;(k) for each time unitk, Tofft T

but can use a coarser time granularity. To accurately deteffheorem 3.2. For the max-subset problem, no online strat-
mine p;(k), we should execute the join with the full win- egy (even randomized) can becompetitive for any that
dow S;[W;] being retained. For now, we assume that weis independent of the length of the input sequence. O

2.3 Parameter Estimation

327

A detailed proof is omitted due to space constraints. TheNow supposél/; > 1. We must consider two cases:
idea is to construct an input distribution and to lower-taun
the expected competitive ratio of any deterministic sgpte 1. If k97* > M, the optimal strategy is to run Strategy 1
on that input distribution. We then obtain Theorem 3.2 by ~ Staggered”, for each of th&/, cells. For example, if
applying Yao’s min-max theorem [21]. M, = 2in Example 3.3, we get:

This result shows that we cannot expect to find an effec- _
tive load-shedding strategy that addresses the max-subset | _Time [[1 [2 |3 [4[5][6 |7 [8

problem for arbitrary streams. Celll [[s1 | s1 | 51| 54| 54 54]s7
Cell 2 S2 S2 S2 S5 S5 S5
3.2 Age-Based Model Discard s3 | s1 | s2 | s6 | sa

Consider the max-subset problem for a jai[/;] X ot
S,[W,] that adheres to the age-based model.[W(i first as- 2+ If k17" < M , the problem becomes more complex
sume a fixed amount of memory is available {1V1], because running a staggered Strategy 1 useskgHly
and consider the problem of maximizing the numbe$pf cells, thereby underutilizing the available memory.
probe join tuples produced. A symmetric procedure applie
for maximizing the number of>-probe join tuples given a
fixed memory forSy[Ws]. Then we show how to allocate
the overall available memory betweSn[17;] and.Se [Ws)]

Yo address Case Ri("t < M), we first define an age curve
with aminima The age curve, (k) against: has a minima
if there existk; < ko < k3 such thap; (k1) > p1(ke) and

L. L pl(kg) < pl(k‘g)
to maximize the recall of the entire join. If the age curve has no minima, the optimal strategy is to
3.2.1 Fixed Memory for S, [1V] retain every tuple for exactljf/; time units. Once a tuple

has been retained fa** time units, retaining it any fur-
Suppose the available memory f6¢[W] is sufficient to ther becomes less useful, and since the curve has no minima
store M, tuples of streant;. We denote the amount of the tuple cannot become more useful in the future. Thus,
memory required to store one tuple as a “cell”. For now weit should be discarded as early as possible diffé? time
assumer; = 1, i.e., one tuple arrives 0ff; at each time units. At the same time, tuples should not be discarded any
step. At the end of the section we show the easy generakarlier thanl/; time units, as that would lead to underuti-
ization to other-;.> We first give the optimal strategy for lization of memory.
M, = 1, which forms the building block for our strategy If the age curve has a minima, retaining each tuple for
for M; > 1. Recall that”; (k) denotes the total number of exactlyM; time units may be suboptimal. We illustrate the
S1-probe join tuples that a tupkec S; produces by agk. subtleties through an example.

opt i Ca(k) -
Letk;"™ denote thes (< W1) at which=%= is maximized. Example 3.4. LetWW; = 3 and M, = 2. Let the age curve

Strategy 1 (M, = 1). Retain the first tuples € S, in be defined by, (1) = 3;1?1(2) =0, andp,(3) O:tQ- Thus,
S, [W] for kSP* time units, discarding other tuple arrivals thetage curve has a minima at= 2. We have:(”" = 1, so
on S;. After kP! time units, discards, retain the tuple k7" < Mj. The following strategy alternates between re-

arriving next for the next?”" time units, and continue.[1 ~ t@ining every tuple fot and3 time units, and by exhaustive
search is seen to be optimal for this example:
The relatively straightforward proof that Strategy 1 isiopt

mal is omitted due to space constraints. | Tme [[1[2][3[4[5[6]7]38
Cell 1 S1 | 81 | 81 | 84 | S5 | 85 | 85

Example 3.3.Letr; = 1 andM; = 1 as we have assumed Cell2 52 | 53 | 53 | s3 | s6 | 57

so far. Let the window sizB/; = 4, and let the age curve Discard 52 | 51 | 52 | 83 | s6

be defined by, (1) = 1,p1(2) = 1,p1(3) = 2,p1(4) = 1. #Results|| 3 | 3 [5[35|35

Ci(k)/k is maximized ak?"" = 3. _ . _
Let s; denote the tuple arriving at timg¢on S;. The This strategy produces an averageigbin tuples per time

following diagram illustrates Strategy 1 on this example.unit. Note that retaining every tuple far; = 2 time units

Entries in the third row denote the number$fprobe join produces only join tuples per time unit. O

tuples produced between each time step and the next.

We do not have an optimal strategy for the general case

[Time 1[]2[3[]4]5]6]7]8 of age curves with minima, but in practice, age curves are
Cell 1 s1] 81| 81| sa]sa]salsr]|... unlikely to have minima (e.g., none of the examples dis-
Discard S2 | 83 | 81 | 85 | S6 | S4 | ... cussed in Section 2.2 have minima). However, for com-

#Results| 1 | 1 |2 1] 1]2]|1]... pleteness, we give the following greedy heuristic for this

case. For each tuple € S;[W;], assign apriority that
represents the fastest rate at whiotan produces; -probe
join tuples. The priority of a tuple at agés given by:

Priority(i) = max M
1<J<Wh 7 —1

Strategy 1 produces join tuples even time units and is
optimal among all possible strategies. O

INote that all of our optimality claims assume constant rathan th
averager, however our experiments (Section 6) show that our algorithm
performs well for a distribution of arrival rates.

328

When a tuple needs to be discarded due to a memory con;; will be retained too, but our analysis is not affected
straint, the tuple with the lowest priority is discarded. significantly.) ThusS;-probe result tuples are produced at
This greedy strategy Ieads to the optimal solution forg ratg given b)& = riroW 23:1 f1(v)) f2(v;). A sym-

Example 3.4. Interestingly, this strategy reduces to the opmetric expression can be derived for the r&eat which

timal strategy for all the previous cases as well. In the resthe S,-probe join tuples are produced, given memary

of this paper, we do not consider age curves with minima. for S, [W5,]. The overall recall of the join is then given by
We shall refer to the overall approach for the age-based Ri4+Ry . Thus, given a total amount

max-subset problem presented in this section aABE ~ "L2(WiEW2) 2 pep f1(v)f2(v)

; . . ; of memory M for the join, we can find\/; and M, such
algorithm. We evaluatéGE experimentally in Section 6. that the overall recall of the join is maximized, subject to

the constrainf\/; + My = M.

3.2.2 Fixed Memory for S;[W;] + Sa[Ws]

So far we have addressed the problem of maximizing thel Random Sampling
number of S;-probe join tuples; = 1,2, given a fixed
amount of memory forS;[W;]. Now suppose we have a
fixed amount of memory\/ for the entire join. To de-
termine how to allocate the available memory betwee
S1[W1] and S3[Ws], we need a function that relates the
memory allocation to the overall recall obtained. gt

be the memory allocated t&[IV;]. Let R; denote the rate
at which S;-probe join tuples are produced. If tA&E al-
gorithm from Section 3.2.1 is applied:

In this section, we address the problem of extracting a ran-
dom sample of thes; [IW;] X4 S2[Ws] join result with
Aimited memory. We first state a result on the hardness of
performing uniform random sampling on the join result for
arbitrary streams (Section 4.1). We then give an algorithm
for uniform random sampling that applies for both the age-
based and frequency-based models (Section 4.2). Finally,
in Section 4.3, we consider the case when a uniform sam-
ple is not required directly by the application, but is being

M, Ci(fgft) if M; < k07 gathered only for estimating an aggregate over the join re-
R, = k;) opt 2 sult. For these cases, we consider a statistically weaker
Cy(M;) it M; > k; form of sampling calle¢luster sampling6], which can be

performed more easily than uniform sampling, and often

P e +R ; :
Then the overall recall of the join is given B2, yielgs a more accurate estimate of the aggregate.
To determine the memory allocation betwe®riV,] and

Sa[Ws], we simply findM; and M, such that this expres- 4.1 Hardness Result
sion for the recall of the join is maximized, subject to the
constraintM; + My = M.
Finally, so far we have assumeg= 1. If ; > 1, and
memoryM,; is available forS;[W;], Equation 2 becomes: Theorem 4.1. If the available memory is insufficient to re-
tain the entire windows, it is not possible to guarantee a

For sampling over the windowed join result of arbitrary
streams, we have the following negative result:

R M; - %ﬂp) if M;/r; < k;’”t 3 uniform random sample for any sampling fractiord. [
' i - Cy(M;Jri) i My /ry > kP A detailed proof is omitted due to space constraints but
the basic idea is as follows. Suppose we choose to dis-
The recall for the entire join is then given byl card a tuples in S;[W;] because memory is full. Then we
must know that allS; -probe join tuples that would sub-
3.3 Frequency-Based Model sequently produce are guaranteed not to be needed in our

We briefly consider the max-subset problem for thesample: However, for arbitrary streams, at any time during
frequency-based model as covered in [7]. We derive the rethe lifetime of s, there is no upper bound on the number
call obtained given a fixed amount of memory for the join, ©f S1-probe join tuples that will produce before expiry.
This relationship between memory and recall is needed irl hus, for any sampling fraction greater thanit cannot be
Section 5 for overall memory allocation across joins. guaranteed that we can discarbut preserve the sample.

ConsiderS;-probe join tuples first. Recall Definition This result shows that we cannot expect to find an ef-
2.1 of the frequency-based model. The following approachfective procedure that performs uniform random sampling
calledPROR is suggested in [7]: Every tuplg € S;[W] over the join result of arbitrary streams with limited mem-
is assigned a priority equal t6(s;.A). If a tuple needs to Ory- However, we can compute a sample when we have a
be discarded due to a memory constraint, the tuple with th80del of stream arrivals, as we show next.
lowest priority is discarded.

Without loss of generality, assume the value$irare
V1, . .., Uy, @nd fori < g, fo(vi) > f2(v;). Then for For random sampling we can consider the frequency-based
i < j, PROBwill prefer to retain all instances af; in and the age-based models together. We shall assume
S1[W1] over any instance ob;. Let M; be the mem- Bernoulli samplingor sampling under the coin-flip seman-
ory allocated toS;[W;]. PROBwill retain all instances tics [5]: for sampling a fractiop from a set of tuples, every
of vy, vz,...,v;, wherei is the largest number such that tuple in the set is included in the sample with probabitity
ri Wi 23:1 fi(vj) < M,. (A fraction of the instances of independent of every other tuple.

4.2 Uniform Random Sampling

329

Theorem 4.2. For the frequency-based model, the ex-

s1 : Tuple arriving onS; pected memory usage 8f[W:] is (letq = 1 — p):
n1(s1): Number ofS;-probe join tuples that; produces a A
P : Sampling fraction (1 —gmr R) 0

. . . i 1;),}”1(1)) <1 praWi fo(v)
DecideNextJoifs;): Join(sy, $2):
1. pick X ~ G(p) 1.s;.num = s;.num+ 1 Age-Based Model Recall Definition 2.2. Recall that
2. s1.next = sy.num + X 2.if (s;.num = s1.next) Cy(k) denotes the cumulative number$f-probe join tu-
3.if (s1.next > ni(s1)) 3. outputs; Xy so ples that a tuples; € S; produces by agé. Define the
4. discards; 4. DecideNextJoin(;) inverse of theC; function,C;* (1), as the smallest such

thatCy (k) > m. Thus, atuples; € S; producesn S;-

Figure 4: AlgorithmUNIFORM probe join tuples by the time its ageds™ ().

)) Theorem 4.3. For the age-based model, the expected mem-
4.2.1 Sampling Algorithm ory usage ofS; [W1]isri > it p(1 — p)—'C~1(i). O

Our algorithmUNIFORM for uniform random sampling | hoth models, a symmetric expression holds for the ex-
over a sliding-window join with limited memory is shown pected memory usage @[], assuming we use the
in Figure 4. We only show the procedure for samplingsame sampling fractiop for the S,-probe join tuples.
from the 5, -probe join tuples by selectively retaining tu- symming these expressions gives us the total memory us-
ples inS;[W;]. The procedure for sampling from ttf&- age for the joinS, [W,] M4 Sa[Wa).

probe join tuples is analogousINIFORM needs to know,

for each arriving tuples; € 51, the number ofS;-probe 4.3 Cluster Sampling

join tuples thats; will produce, i.e.,ni(s1). For the age- _

based modek; (s;) = n,. For the frequency-based model The correctness deNIFQRM erends heavily on the ac-
ni(s1) = ra - Wi - fo(s1.A) (recall Equation 1). We as- curacy with whichn;(s) is estimated for a tgple € SZ
sume the sampling fractignis known for now. In the next ¢ = 1,2. For example, for a tuple; € 5y, if n1(s1) is
subsection, we show howcan be determined based on the Underestimated as (s1), then all theS, -probe join tuples

amount of memory available. of s; subsequent to its first) (s;) join tuples will never
When a tuples; arrives onS;, si.num is initial- be selected for the sample. On the other hand, {6,) is

ized t00, and the procedurBecideNextJoifs,) is called. ~ Overestimateds; may remain inS, [I,] until expiry, wait-

Join(s1, s2) is called when a tuple,, that joins withs, ing for joins that never take place, and the overall memory

arrives onSs. G(p) denotes the geometric distribution with USage may be considerably higher than the expected value
parametep [15], andX ~ G(p) denotes that we pick ~ derived in Theorems 4.2 and 4.3. o _

at random frong(p). WhenDecideNextJoing) is called, _If a uniform random sample of the join is not required
UNIFORM ogically flips coins with biag for deciding the ~ diréctly by the application, but the sample is being taken
next S;-probe join tuple ofs; that will be included in the ONly to estimate an aggregate over the join results, these
sample. If all remainings; -probe join tuples of; are re- difficulties can be overcome by using a statistically weaker

jected by the coin flipss; is discarded. form of sampling calle@luster sampling6].
In general, cluster sampling is applicable when the pop-

ulation to be sampled can be divided into groupsclas-

ters such that the cost of sampling a single element of a
To determine the sampling fractign we first obtain the cluster is equal to that of sampling the entire cluster. Thus
expected memory usage bINIFORM (i.e., the expected for cluster sampling, a certain number of clusters are cho-
number of tuples retained) in terms f We then equate sen at random, and all elements of selected clusters are in-
this expected memory usage to the amount of memorygluded in thecluster sampleA cluster sample isinbiased
available for performing the join and solve fpr For ro- i.e., each element of the population has equal probability o
bustness, we can also calculate the variance of the memoteing included in the sample. However, itarelated i.e.,
usage oUNIFORMand decide the sampling fraction such the inclusion of tuples is not independent of each other as in
that the probability of the memory usage exceeding thea uniform sample. A detailed analysis of cluster sampling
available memory is sufficiently small. The following re- can be found in [6]. In the remainder of this section we as-
sults about the expected memory usage follow from simplesume the sample of the join is being gathered for estimating
properties of the geometric distribution; proofs are omit-either a sum or an average aggregate, and the objective is
ted. Note that now the tuple size must include the spacéo minimize the error in the estimated aggregate.

required to store the extra fieldextandnum(Figure 4).
Frequency-Based Model Recall Definition 2.1. We as-
sume that the5;-probe join tuples of a tuple; € S; are Consider sampling from th§;-probe join tuples; a sym-
produced uniformly throughout the lifetime of (because metric procedure applies for sampling from thg-probe

a uniform fixed fraction of tuples arriving ofk, join with join tuples. A tuples; € S; joins withn,(s;) tuples arriv-
$1)- ing on S>. These join tuples form a cluster, and the entire

4.2.2 Determining the Sampling Fractionp

4.3.1 Two Approaches

330

cluster can be sampled by simply retainingin S;[W1] ¢ Inter-cluster variance Consider the variance in the
until expiry. The fraction of clusters that can be sampled values of the aggregate for different clusters. The
is determined by the number of tuples that can be retained lower this variance, the better the performance of clus-
until expiry in the memory available fd¥; [I¥;]. Thus we ter sampling compared to uniform sampling [6].

have the following nive approach to cluster sampling. o Cluster sizes PPS-CLUSTERshould be used for

Strategy 2 EQ-CLUSTER). Add an incoming tuple; unequal-size cluster®PS-CLUSTEReduces t&EQ-
S, to S, [W;] with probability p. If s, is added taS; [IW1], CLUSTERor equal-size clusters.

retain it until expiry and include all it$; -probe join tuples

in the sample. O 5 Memory Allocation across Multiple Joins

Now suppose our stream system is executing a number
f continuous queries, each of which involves a sliding-
indow join. In this section, we address the problem of al-
cating the available memory across these multiple joins.
or now, let us assume the unweighted case, i.e., all joins

of equal size (e.g., as in the age-based model). Howevefi'® €dually important. The goal of our allocation scheme is
if clusters are of unequal sizes, as in the frequency-base] etrjsure that hojoin doei ttoo badly |r][rt]erms O.f approx-
model, statistics literature [6] suggests that bette megtés imation error, 1.€., We Se€x 1o minimize (n€ maximum ap-

of the aggregate can be obtained by selecting a cluster wit _roximati_o_n errorin ?”YJ"?i”- Itis important to observettha
probability proportional to its size. Otherwise, if cluste C/Herent joins may differ in the accuracy of their approxi-

are selected with equal probability, large clusters that co Mation evenwhen given the same fraction of their memory
tribute most to the aggregate may be missed altogether. Wgauirement. Thus, simple proportional allocation of mem-
thus have the following approach: ory among the joins is generally not o_ppmal._

Suppose there aresliding-window joins with an over-
Strategy 3 PPS-CLUSTER). Add an incoming tuple; € all memory constraind/. Each join may follow either the N
S, to S [W:] with probability proportional ton, (s). If s age-based or the frequency-based model. Further, each join

is added taS; [W1], retain it until expiry and include allits has a certaimpproximation metrivhich we denote by:
S, -probe join tuples in the sample. g Forthe max-subset problem@, is the recall of the join. For

the sampling problenQ is the error in an aggregate (e.g.,

With PPS-CLUSTERto get an unbiased estimate of the SUM) estimated from the sample. We assume that each
aggregate, we must perform weighted aggregation on thpin uses the same approximation metric (i.e., either tecal
cluster sample: the contribution of each cluster to the ager aggregation error), otherwise the choice of a combined
gregate is assigned a weight inversely proportional to th@pproximation metric is not clear. We shall focus on the
cluster size. Details can be found in [6]. Notice that evencase wher@ is recall. A similar technique applies whéh
if n1(s1) is incorrectly estimated, the same incorrect esti-is aggregation error.
mate is used in performing weighted aggregation. Hence, For a particular memory allocation, lef be the recall
the resulting estimate of the aggregate is still unbiased. obtained for the!” join. The optimal memory allocation

Consider the application oPPS-CLUSTERfor the we seek is the one that maximizesn; <;<, ¢;- The key to
frequency-based model. Sineg(s;) o< fa(s1.4), let sy our scheme is the following observation (a similar observa-
be added tc5; [W;] with probabilityp - f2(s1.A) wherep tion is made in [4]).
is a proportionality constant. The expected memory usag
of S [Wh]isriWip), cp fi(v) f2(v). Thus,p can be de-
termined according to the amount of memory availgble.

Notice that this scheme does not dependwots,), and al-

ways produces an unbiased sample. The expected memo

usage forS; [IW;] according to this schemesigWip. Thus,

p can be decided based on the amount of memory available:
EQ-CLUSTERS suitable when the clusters are roughly

ﬁ"heorem 5.1. To maximize the minimum recall, the opti-
mal memory allocation is one that produces the same recall
in all joins.

4.3.2 Comparison of Approaches By Theorem 5.1, in the optimal memory allocation the
))))) recall obtained in each join is the same, sgy. Let f;(q)

To summarize, let us briefly consider which sampling ap-genote the minimum amount of memory required to ob-

proach is preferable in different scenarios. Recall that th 14 recallq in the it join. Theng,, is the maximumy

objective is to minimize the error in an estimated aggregatesych thats " filg) < M. Assurz;wing the functiong;

The relevant factors to be considered are: are knowng,,; can be found by an iterative binary search.

. The amount of memory to be allocated to #i& join is
e Accuracy of model parameterf n;(s) is incorrectly han given byf; (qope).

estimated for a tuple € 5;, i = 1, 2, UNIFORMmay Let us consider how the functiofi(¢) can be obtained
perform poorly since it may produce a biased sampleoy the it join. Recall that we specified the relationship be-
In this case, cluster sampling should be used. tween memory available for a join and the recall obtained,

2A value of p obtained in this way can cauggz(s1.4) to exceed 1 both for the .age-based (Section 3.2.2) and the frequency.-
for somes , resulting in an overestimate of memory usage. The correctt@sed (Section 3.3) models. These can be used to obtain
value ofp can be chosen by an iterative procedure; details are omitted. f;(¢). When the metri@ is aggregation error, we use the

331

relationship between memory and sampling fraction (The; g 0.1
orems 4.2 and 4.3). The expected aggregation error for | 3
given sampling fraction can be derived in terms of popuq £ 0-08 1
lation characteristics such as mean and variance [4]. T 8 _ 0.06 4
gether, these can be used to calculafe). S5
Finally, suppose that different joins have different rela-| § & 0.04
tive importance. Letv; be the weight of thé'” join. Now ks
our objective is to maximizenin; <;<,, ¢;/w;. Our argu- S 0.02
ment extends to show that the optimal solution is to allo- § o | | —
cate memoryf; (w;qop:) to the i join, whereq,,, is the 60 70 80 % 100 110

maximumg such thafy"""_ | fi(w;q) < M.
We shall refer to the approach for memory allocation

presented in this section #4 LOC, and evaluate its per- Figure 5: Age curve for WAN experiment
formance experimentally in Section 6.

Age in window in seconds (k)

. 1
6 Experiments
We now present an experimental evaluation of our tech 087
nigues. Our experiments demonstrate the following: —06 1
[y —e—AGE
1. In a real-life scenario that adheres to the age-base & 04 L pRTLeXPIRY
model, our algorithmAGE (Section 3.2.1) gives con- ' —e—Theoretical-AGE
siderably higher recall than moreima approaches. 0.2 1
2. Our sampling approachesNIFORM and PPS- o
CLUSTER(Section 4) provide low-error estimates of 0 100
windowed aggregates over the join result. Either of Memory (%)
the two approaches may be preferable, depending on
the specific scenario. Figure 6: Recall obtained on WAN experiment

3. Our algorithmALLOC for memory allocation across
joins (Section 5) significantly outperforms simple pro-
portional allocation in terms of maximizing the mini-
mum recall.

determined by an initial pass through our trace. We show
p1(k) as a fraction of; (recall Definition 2.2). The gran-
ularity chosen fork was 0.1 second. We see that a tuple
s € S; produces most join tuples at an age of approxi-
) matelyk = 63 seconds. Out of this, @) second delay is
6.1 Age-Based Experiment due to the join predicate, and the rest of the delay is due
For initial experimentation with the age-based model, weto clock skew between sourcés andg,, and significantly
captured real data as follows. We set up two streanfigher network latency for tuples from than fromg;.
sources, and ¢,, and a central server. Sourgg and
the server run on the same physical machine, while sourc%‘l'1 Results
¢2 runs on a distant machine connected over a wide-arekigure 6 shows the recall obtained on our trace by vari-
network (WAN). Each source produces tuples at a constardus load-shedding approaches as we vary the amount of
rate ofr; = ro = 50 per second. Each tuple contains a allocated memory. Memory is shown as a percentage of
timestamp s from the local clock at the source. All tuples the amount required to retain the entire windaw{;).
are streamed to the server using a UDP channel. We compare: (1AGE Section 3.2.1; (2UNTIL-EXPIRY

Denote the streams from souragsand¢, asS; and A tuple is added toS;[W;] only if memory is available,
S, respectively. We execute a sliding-window join whose and then retained until expiry; (BECENT The most re-
purpose is to identify causal correlation between the twacent tuples in the window are retained; and (4) Theoretical-
streams—to do so, it matches tuples fréwith tuples AGE The recall that should be theoretically obtained by
from S; that were timestamped approximately one minuteapplying theAGE approach, as given by Equation 3. Note
earlier. The join predicate chosen $#.ts — Si.ts € thatRECENTIs the approach that we get if we simply ap-
[59.9,60.1] where time units are seconds. To ensure thaply the frequency-based model in this scenario.
S1 tuples do not expire before matchiitfy tuples arrive Although in reality the age curve shown in Figure 5 has
(the network latency from soureg, to the server is high), some minimap; (k) never increases significantly after de-
we conservatively set the window @i asW; = 2 min- creasing. Hence, for all practical purposes, we can apply
utes. Since joining tuples always arrive latergnthan on our AGEapproach assuming the curve has no minihjfﬁt.
S1, a window onS; need not be stored. was calculated to bé8.8 seconds.

We generated a trace of approximately 40 minutes of We see thatAGE outperformsRECENTand UNTIL-
tuple arrivals at the server and then used this trace for reeEXPIRY RECENTperforms especially badly, producing
peatability. Figure 5 shows the age curyge () vs. k) no join tuples even when the allocated memory is as much

332

as 40%. However, when the allocated memory is high 1
enough so that/, > r k", AGE reduces tcRECENT
(see Equation 3), and hence both approaches produce tf 0-8 7
same recall. Note that Ifi’; had been conservatively set to
be higher, the performance fNTIL-EXPIRYwould de- = 06
grade, whereas the performanceA@E would not be af- 3 0.4
fected. We also see that the actual recall obtained®# «
closely agrees with the theoretically predicted value. 0.2 |

- & -AGE (INC)
- ®m -RECENT (INC)

—4 -AGE/RECENT (DEC)
—e— AGE (BELL)
—¥—RECENT (BELL)

6.2 Experiments on Synthetic Data o

0 20 40 60 80 100
Memory Allocated (%)

For the next set of experiments, we synthetically gener
ate streamsS; and S, for both the age-based and the
frequency-based model, and perform the sliding-window Figure 7: Recall obtained on synthetic age-based data
join S1[W7] X S3[Ws] with limited memory. For simplic-

ity, we consider only theS;-probe join tuples in our ex- 6.2.3 Frequency-Based Data Generation

perimental results. For both models, tuples on strems

i = 1,2, are generated at an average rate;diuples per
unit time. This is done by choosing the inter-arrival time
uniformly at random betweeh/2r; and2/r; time units.
For all experiments we fix; = 1,7, = 5, andW; = 500.

Data generation for the frequency-based model is relgtivel
easier than for the age-based model. We choose a domain
D. The domain size is fixed &bD| = 50. For each stream,

the join-attribute values are drawn from a Zipfian distribu-
tion of parameterZ over D [23]. The distribution used
6.2.1 Age-Based Data Generation for both streams need not be the same. We consider three
) i i cases: (1) Directly Correlate®C): The order of frequency
First streams) is generated. Each tuple di contains o occurrence of values is the same frandSs; (2) In-

a uniquei d whlch serves as t_he join att.rlbute, as in theversely CorrelatedIC): The order of frequency of occur-
examples of Section 2.2 (e.g., in the auction scenario, ea%nce of values foiS; is opposite of that foiSs, i.e., the
tuple onS; has auniquauct i on-i d). Next, we Specify (arest value ors, is the most common oS, and vice-

the age curve fof,[IW;] by dividing the windO\t/}/L duration yersa: and (3) Uncorrelatet)C): The order of frequency
Wi intom buckets and specifying, (k) for thek™ bucket. ot 5ocyrrence of values for the two streams is uncorrelated.
The first bucket consists of the newest tuples, anchite

bucket the oldest tuples. We fix = 5 andm = 20. 6.2.4 Random Sampling

We then generate streath according to this age curve. .)
Suppose a tuple is to be generated$nat timet. The To evaluate our sampling approaches, we p_erform a win-
value of its join attribute is determined as follows. We dowed average over the sampled result of a join, and com-
choose one of the: buckets at random with thie” bucket ~ Pare the approaches in terms of aggregation error. We re-
being chosen with probability, (k) /n1. Then, we choose port results only for the case when the join follows the
one tuple at random from all the tuples $f[1;] occupy- frequgn_cy—based modeI.. Results for the ag_e—based mo_del
ing the chosen bucket at tine Thei d of this randomly- are similar and are omitted. The aggregation wmdow is
chosen tuple is assigned as the join-attribute value of thiXed atW,g, = 500. The values of the aggregation at-

newly generated tuple afb. tribute are drawn from a normal distribution having mean
1 and variancer. At each time step, the value of the win-
6.2.2 Max-Subset Problem with Age-Based Data dowed aggregate over the true resil) @nd over the sam-

We experimented with three different age curves. (1)pled resyItA(J) are calculated. The relative error in the ag-
Increasing INC): p(k) « k2; (2) Decreasing BEC): dregate isU —U|/U. We report the average of these errors
p1(k) x (m — k)2; and (3) Bell-shapedBELL): p; (k) o OVer the entire run. In all experiments, while implementing
k2 for 1 < k < m/2 andpi(k) «x (m — k)2 for ~ UNIFORM, we assume a tuple size of 32 bytes. The two
m/2 < k < m. Figure 7 shows a comparison of the recall €xtra fields required (see Figure 4) are stored compactly in
obtained by various approaches for different types of agéwo bytes, thus giving a new tuple size of 34 bytes.
curves. For théNC curve, AGE significantly outperforms ~ We first consider the case when the aggregated attribute
RECENT For theDEC curve, AGE reduces ttRECENT IS part of S;. Recall that all the5;-probe join tuples pro-

so we do not show their results separately. ForBEeL duced by a tuple € S, form a cluster. Thus, in this case,
curve, AGE outperformsRECENTuntil M; < r k%" (see alltuplesin a cluster have the same value in the aggregated
Equation 3). Foilf; > T’lk;pt, AGEreduces tRRECENT attribute, which is the worst case for cluster sampling.

Note that for the same amount of allocated memory, theeffect of Allocated Memory: Figure 8 shows the aggre-
recall differs greatly depending on the shape of the ag@ation error of the various sampling approaches as we vary
curve. This indicates that in the presence of multiple joinsthe amount of allocated memory. We use the inversely
in order to maximize the minimum recall, simple propor- correlated IC) frequency-based model with = 2, and
tional memory allocation is not sufficient, which we verify we fix 4 = ¢ = 100. We see thaPPS-CLUSTEPRut-
empirically in Section 6.2.5. performsEQ-CLUSTERIn the IC case, there are a small

333

0.6 0.6 20
o
> 0.5 - S
S = 0.5 +15 %
So0a- 3 3
P ——UNIFORM o 8 —a—ALLOC Recall
- -=-EQ-CLUSTER | 1 © —®—PROP Recall
5 03 -+ PPS-CLUSTER § 04 102 - 00 amory
= £ ~. - ® -ICMemory
o2 £ S
2 . =03 5 &
I3+ 4
E’ 0.1 - 2
0 ; ; ; ‘ 0.2 |0
0 20 40 60 80 100 1 1.5 2 2.5
Memory Allocated (%) Skew (2)

Figure 8: Aggregation error vs. memory allocaté@, Figure 10: Memory allocation across joins: frequency-
frequency-based moddl, = 2, u = o = 100 based model, Memory=20%

limited, this aggregation may be approximated [8].

0.4

6.2.5 Memory Allocation across Multiple Joins

0.3

For memory allocation among multiple joins, we study the

0.2 /> —— UNIFORM performance of ouALLOC scheme in comparison with

-+ EQ-CLUSTER 1 1 i
TEQCLUSTER simple proportional memory allocatio®ROP. We only

study the case when the approximation metric of each join

Relative Error in Aggregate

0.1
/ is the recall obtained in that join.
0 ; ‘ Frequency-Based Model We allocate memory across two
0 0.5 1 1.5 joins that follow the frequency-based model: one follows
Coefficient of Variation the directly correlated¥C) case, and the other, the in-

i . . . versely correlatedIC) case (recall Section 6.2.3). The to-
Figure 9: Aggregation error vs. population variant t5| available memory is 20% of that required for execut-
frequency-based modef, = 2, 1 = 100, Memory=10% jng poth joins accurately. The load-shedding strategy used
for each join isSPROBJ7]. Figure 10 shows a comparison
number of large clusters in the result which may be missef the minimum recall obtained by both approaches when
by EQ-CLUSTERUNIFORM performs better thaPPS- we vary the skew parametef]) of the frequency-based
CLUSTERwhen the allocated memory is 10%. However, model. AsZ increases, the minimum recall remains almost
the fraction that can be sampled grows more rapidly forconstant forALLOC, but decreases sharply fBROP. The
PPS-CLUSTERhan forUNIFORM ConsequentlyPPS- amount of memory allocated to each join ALOC (as a
CLUSTERperforms better at higher allocated memory. percentage of the total memory required) is shown by the
Note that the error oUNIFORM does not go down to O dashed plots on the secondary Y-axis. Note BRROPal-
even when allocated memory is 100%. This is because eVQR)ayS Sp"ts the available memory even|y between the two
the synthetic data does not adhere perfectly to the model, 3sins, i.e., 10% to each join.
is required for the correctness ONIFORM (Section 4.3). To understand these results, notice that lBecase is

Effect of Population Variance: Figure 9 shows the ag- “€asy", i.e., a relatively higher recall can be produced us-
gregation error of the various sampling approaches as thi89 & small amount of memory: only the rare valuessof
variance of the aggregated attribute is varied. We show th&vhich are frequent o) need to be retained. In contrast,
variance normalized by the mean, i.e., we show the coeffitheDC case is “hard”, i.e., more memory is required to ob-
cient of variation §/4). The allocated memory is 10%, tainthe same recall because the common values oreed
1 = 100, and the model used is the uncorrelatetC) to be retained. Moreover, as the skei) (ncreases, theC
frequency-based model witA = 2. As the population Case becomes easier, and ¥@ case becomes hardéd -
variance increases, since all tuples in a cluster have theOC s able to outperfornfPROPDy allocating less mem-
same value, the inter-cluster variance increases. As a r&y to thelC case, and using this extra memory to boost the
sult, the performance of cluster sampling approaches dererformance of th®C case.
grades as compared tiNIFORM Age-Based Model We allocate memory across two joins
If the aggregated attribute is a part 8f, the values in that follow the age-based model, one with an increasing
a cluster are uncorrelated. Consequently, cluster sagplin(INC) age curve, and another with a decreasibgC) one.
performs much better thaiNIFORM We omit the results TheINC curve is chosen as (k) « kP and theDEC curve
due to lack of space. Finally, note that for comparing ourasp; (k) « (m — k)P, where the exponentis varied. The
sampling approaches, we have calculated the exact aggrital available memory is 50% of that required for execut-
gate over the sampled result. In reality, when memory isng both joins accurately. The load-shedding strategy used

334

0.8
(1
= 0.7
[+
(&3
(<]
o« ——ALLOC
E 0.6 -=- PROP [2]
E
£
= o5 — =
3]
0.4
0 1 2 3 4
Exponent of Age Curve (p) [4]

Figure 11: Memory allocation across joins: age-based

model, Memory=50% (5]

for each join iISAGE (Section 3.2.1). Figure 11 shows a
comparison of the minimum recall obtained by both ap- [6]
proaches when we vary the exponent As p increases, [7]
the minimum recall increases fal.LOCbut remains con-
stant forPROR With increase irp, theDEC case becomes
“easier”, while theINC case remains equally “hard” (by
Equation 3). Thu#ALLOC s able to outperforniPROPby
allocating less memory tbEC, and using the extra mem-
ory to boost the performance BiC.

More Joins: We omit the results of experimenting with
a greater number of joins, but the findings were similar:
As more “hard” joins are added, the gainAfLOCover [10]
PROPdecreases, while if more “easy” joins are added, the
gain of ALLOC over PROPiIncreases. Intuitively, the per-
formance ofPROPis always limited by the hardest join,
while ALLOC equalizes the recall among all joins.

(8]

(9]

[11]

7 Conclusion (2
In this paper we addressed memory-limited approximation
of sliding-window joins. We defined a novel age—based[ls]
model that often enables us to address the max-subset prob-
lem more effectively than the frequency-based model useg 4
previously. We also introduced and addressed the problem
of extracting a random sample of the join result with lim- 15
ited memory. Finally, we gave an optimal algorithm for
memory allocation across joins to minimize the maximum(ie
approximation error.

One promising avenue for future work is to extend the[17]
approximation techniques developed here to address a re-
lated but distinct problem: memory-limited computation of
exact answers. Now, instead of load-shedding we must of18l
fload selected data on disk. The frequency-based and age-
based models may help us develop algorithms that minilt®
mize disk 1/O in this setting. Another interesting directio
is to generalize our techniques for a broader class of c;ueriqZO]
and plan operators such as multi-way joins. Finally, so far
we have considered only the static version of the problem,
where stream characteristics are assumed to be relativejyi)
stable. For volatile environments, we plan to develop adap-
tive versions of our algorithms.

[22]
Acknowledgements

We are grateful to Arvind Arasu, Rajeev Motwani, and the
entire STREAM group at Stanford for useful discussions.

[23]

335

References

N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Trackionjand
self-join sizes in limited storage. IAroc. of the 1999 ACM Symp.
on Principles of Database Systerpages 10-20, 1999.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Misd
and issues in data stream systemsPioc. of the 2002 ACM Symp.
on Principles of Database Systerpsges 1-16, June 2002.

B. Babcock, M. Datar, and R. Motwani. Sampling from a moving
window over streaming data. IRAroc. of the 2002 Annual ACM-
SIAM Symp. on Discrete Algorithizages 633—-634, 2002.

B. Babcock, M. Datar, and R. Motwani. Load-shedding fggee-
gation queries over data streams Ploc. of the 2004 Intl. Conf. on
Data Engineering2004. To appear.

S. Chaudhuri, R. Motwani, and V. Narasayya. On random siagp
over joins. InProc. of the 1999 ACM SIGMOD Intl. Conf. on Man-
agement of Datgpages 263-274, June 1999.

W. G. Cochran.Sampling Techniqguedohn Wiley & Sons, 1977.

A. Das, J. Gehrke, and M. Riedewald. Approximate join @ssing
over data streams. IRroc. of the 2003 ACM SIGMOD Intl. Conf.
on Management of Datadune 2003.

M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaigjstream
statistics over sliding windows. IRroc. of the 2002 Annual ACM-
SIAM Symp. on Discrete Algorithizages 635-644, 2002.

A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Bssng
complex aggregate queries over data stream®radg. of the 2002
ACM SIGMOD Intl. Conf. on Management of Dagages 61-72,
2002.

A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishn, and
M. Strauss. Fast, small-space algorithms for approximatedrizm
maintenance. IProc. of the 2002 Annual ACM Symp. on Theory of
Computing 2002.

L. Golab and M. Ozsu. Issues in data stream manageiS8&8MOD
Record 32(2):5-14, June 2003.

S. Guha, N. Koudas, and K. Shim. Data-streams and histogra
In Proc. of the 2001 Annual ACM Symp. on Theory of Computing
pages 471-475, 2001.

J. Kang, J. F. Naughton, and S. Viglas. Evaluating wimdoins
over unbounded streams. Rroc. of the 2003 Intl. Conf. on Data
Engineering March 2003.

] S. Krishnamurthy et al. TelegraphCQ: An Architectur&t8s Re-

port. IEEE Data Engineering Bulletir26(1):11-18, March 2003.

R. Motwani and P. RaghavafRandomized Algorithm<Cambridge
University Press, 1995.

SQR - A Stream Query Repository.
db.stanford.edu/stream/sqr.
N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and $tone-

braker. Load-shedding in a data stream manageiPrdart. of the
2003 Intl. Conf. on Very Large Data Bas&eptember 2003.

The STREAM Group. STREAM: The Stanford Stream Data Man-
ager.|EEE Data Engineering Bulletir26(1):19-26, March 2003.

http://www-

] T.Urhan and M.J. Franklin. Xjoin: A reactively-scheed pipelined

join operator. IEEE Data Engineering Bulletin23(2):27-33, June
2000.

J. Xie, J. Yang, and Y. Chen. On joining and caching sastic
streams. Technical report, Duke University, Durham, Nortit- Ca
olina, November 2003.

A. C. Yao. Probabilistic computations: Towards a unifiegasure of
complexity. InProc. of the 1977 Annual IEEE Symp. on Foundations
of Computer Scien¢@ages 222-227, 1977.

S. Zdonik et al. The Aurora and Medusa ProjetiEEE Data Engi-
neering Bulletin 26(1), March 2003.

G. E. Zipf. Human Behavior and the Principle of Least Effort
Addison-Wesley Press, Inc., 1949.

