
Memory-Limited Execution of Windowed Stream Joins

Utkarsh Srivastava Jennifer Widom

Stanford University
{usriv,widom}@db.stanford.edu

Abstract

We address the problem of computing approxi-
mate answers to continuous sliding-window joins
over data streams when the available memory may
be insufficient to keep the entire join state. One
approximation scenario is to provide amaximum
subsetof the result, with the objective of losing as
few result tuples as possible. An alternative sce-
nario is to provide arandom sampleof the join
result, e.g., if the output of the join is being ag-
gregated. We show formally that neither approxi-
mation can be addressed effectively for a sliding-
window join of arbitrary input streams. Previ-
ous work has addressed only the maximum-subset
problem, and has implicitly used afrequency-
based modelof stream arrival. We address the
sampling problem for this model. More impor-
tantly, we point out a broad class of applications
for which anage-basedmodel of stream arrival is
more appropriate, and we address both approxi-
mation scenarios under this new model. Finally,
for the case of multiple joins being executed with
an overall memory constraint, we provide an algo-
rithm for memory allocation across the joins that
optimizes a combined measure of approximation
in all scenarios considered. All of our algorithms
are implemented and experimental results demon-
strate their effectiveness.

1 Introduction
Data stream systems [14, 18, 22] face the challenge that
immediate online results often are required, but sufficient
memory may not be available for the run-time state re-
quired by a workload of numerous queries over high-
volume data streams [7, 13]. There are two basic solutions:
provideapproximateinstead of accurate query results using
memory exclusively to ensure high performance [2, 7, 9],
or provide accurate results by using disk with the risk of

Permission to copy without fee all or part of this material isgranted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

failing to keep up with the input rate [7, 19]. In this paper,
we address the problem of memory-limited execution of
sliding-window joins[2] in data stream systems, focusing
on providing approximate results.

Consider a continuous sliding-window join between two
streamsS1 andS2, denoted asS1[W1] 1θ S2[W2]. Win-
dowsW1 andW2 consist of the most recent tuples on their
respective streams, and may be tuple-based (e.g., the last
1000 tuples), or time-based (e.g., tuples arriving in the last
10 minutes). The output of the join contains every pair of
tuples from streamsS1 andS2 that satisfy the join pred-
icateθ and are simultaneously present in their respective
windows. In general, to perform the join accurately, the
entire contents of both windows must be maintained at all
times. If we have many such joins with large windows over
high-volume data streams, memory may be insufficient for
maintaining all windows in their entirety. If the data stream
application has stringent performance requirements (to pre-
clude the use of disk), but can tolerate an approximate join
result, there are two interesting types of approximation:

1. “Max-Subset” Results: If the application benefits
from having a maximum subset of the result, we can
selectively drop tuples (sometimes referred to asload
shedding[7, 17]) with the objective of maximizing the
size of the join result produced.

2. Sampled Results:A random sample of the join result
may often be preferable to a larger sized but arbitrary
subset of the result. For example, if the join result is
being aggregated, the sample can be used to provide a
consistent and unbiased estimate of the true aggregate.

Previous work on memory-limited join execution [7, 13]
has considered only max-subset results, and has implicitly
assumed afrequency-basedmodel of stream arrival. In this
model, each join-attribute value has a roughly fixed fre-
quency of occurrence on each stream. These frequencies
(either known or inferred through monitoring) are used to
make load-shedding decisions, i.e., which tuples to drop
and which to retain, in order to maximize the size of the join
result produced. However, no justification has been pro-
vided as to why this (or any other) model is required for ad-
dressing the max-subset approximation problem. Our first
contribution is to show formally that if a sliding-window
join over arbitrary streams is to be executed without enough
memory for retaining the entire windows, neither of the
above types of approximations can be carried out effec-
tively: For the max-subset problem, any online algorithm

324

Model Max-Subset Random Sample
Age-Based

Frequency-Based
Section 3

Addressed in [7]
Section 4

Figure 1: Problem space

can return an arbitrarily small subset as compared to the
optimal (offline) algorithm [7], and for the sampling prob-
lem, no algorithm can guarantee a nonzero uniform random
sample of the join result. Thus, we must have some model
of stream arrival to make any headway on the problem.

There are many applications for which the frequency-
based model considered in previous work is inappropri-
ate. (One obvious case is a foreign-key join, where on one
stream each value occurs at most once.) For these appli-
cations, we define anage-basedmodel that is often appro-
priate and enables much better load-shedding decisions. In
the age-based model, the expected join multiplicity of a tu-
ple depends on the time since its arrival rather than on its
join-attribute value. Examples will be given in Section 2.2.

Given the two types of approximation and the two mod-
els, we have the problem space shown in Figure 1. The
max-subset problem has been addressed in [7], but only for
the frequency-based model. To the best of our knowledge,
the sampling problem, i.e., the problem of extracting a ran-
dom sample of the join result with limited memory, has not
been addressed in previous work. Our contribution is to ad-
dress the max-subset problem for the age-based model, and
the sampling problem for both models.

Our discussion so far assumes a single two-way sliding-
window join. In reality, we expect to be executing many
queries simultaneously in the system. Thus, there is an
added dimension to all of the above problems: memory
allocation among multiple joins. The total available mem-
ory should be allocated to the different joins such that a
combined approximation measure is optimized. We pro-
vide an optimal memory allocation scheme that minimizes
the maximum approximation error in any join. Our tech-
nique also extends to the weighted case, i.e., when different
joins have different relative importance.

1.1 Related Work

There has been considerable work recently on data stream
processing; see [11] for a survey. We discuss only the body
of work related to answering queries approximately when
available memory is insufficient. This work can be broadly
classified into two categories. One category consists of
load-shedding strategies for max-subset approximation of
joins. Random load-shedding is the simplest, and has been
considered in [13]. [7] primarily considers the offline load-
shedding problem (one in which all future tuple arrivals are
known), and provides some heuristics for the online case
that implicitly assume a frequency-based model. An al-
ternative stream model for load-shedding uses a stochas-
tic process [20]. Although this model is more general, the
primary focus in [20] is on scenarios in which the tuples
arriving on one stream are independent of those that have
already arrived on another stream. However, most scenar-
ios we consider do not exhibit this independence, e.g., our

age-based example in Section 2.2. Moreover, the process
of inferring a general stochastic process merely by observ-
ing the stream is not clear.

The other category consists of randomized sketch-based
solutions for approximately answering aggregate queries
over joins, providing probabilistic error guarantees [1, 9].
These techniques do not extend to handle sliding-window
joins or windowed aggregates which are required in many
applications: although the techniques handle explicit dele-
tions within streams, they cannot handle the implicit dele-
tions generated by sliding windows.

In this paper, we only consider the stream system being
memory-limited. The stream system could instead (or also)
be CPU-limited, i.e., the rate of incoming tuples is higher
than can be processed. Load-shedding for the CPU-limited
case has been considered in [4, 17]. Sampling from a win-
dow is addressed in [3], but only for a single stream and not
for a join result. Random sampling for joins has been con-
sidered in the relational context [5]. However, all sampling
methods developed there require repeated access or indices
on at least one of the relations, making these techniques
inapplicable in the stream context.

1.2 Summary of Contributions

1. We show formally that the problem of approximating
a sliding-window join with limited memory cannot be
addressed effectively for arbitrary streams (Sections
3.1 and 4.1).

2. We introduce a novelage-based modelfor stream ar-
rival that captures many applications not captured by
the frequency-based model assumed in previous work
(Section 2).

3. For a single two-way join with a fixed memory con-
straint, we provide novel algorithms for the max-
subset problem under the age-based model (Section
3), and the sampling problem under both the fre-
quency and age-based models (Section 4).

4. For multiple two-way joins with an overall memory
constraint, we give an algorithm to allocate memory
among the various joins so as to optimize a combined
measure of approximation (Section 5).

5. We provide a thorough experimental evaluation show-
ing the effectiveness of our techniques (Section 6).

2 Preliminaries and Models
We briefly describe our basic model of continuous query
processing over data streams. Assume any discrete time
domain. For a streamSi, i = 1, 2, a variable number of tu-
ples may arrive in each unit of time. However, we assume
that over time, tuples on streamSi arrive at a constant aver-
age rate ofri tuples per unit time.Si[Wi] denotes a window
on streamSi. We considertime-basedwindows, whereWi

denotes the length of the window in time units. At time
t, a tuples belongs toSi[Wi] if s has arrived onSi in the
time interval[t − Wi, t]. At time t, we says is of agek if
it arrived at timet − k. We consider time-based windows

325

S [W1]1

1
results

S−probe

S2]2[W

Optional
Windowed
Aggregation

S2
−probe

S1

Σ

results

2S

Figure 2: Sliding-window join with aggregation

for generality; tuple-based windows can also be captured
by assuming that a single tuple arrives every time unit.

The basic query we consider (shown in Figure 2) is a
sliding-window equijoin between two streamsS1 andS2

over a common attributeA, denotedS1[W1] 1A S2[W2].
The output of the join consists of all pairs of tupless1 ∈ S1,
s2 ∈ S2, such thats1.A = s2.A and at some timet, both
s1 ∈ S1[W1] ands2 ∈ S2[W2]. Conceptually, a sliding-
window join is executed as shown in Figure 3, which de-
tails the steps to be followed for a newly arriving tuple on
S1. A symmetric procedure is followed for a newly arriving
tuple onS2. We also consider queries with awindowed ag-
gregationoperator on top of the streamed join result. Other
work [8] has focused on approximate windowed aggrega-
tion in memory-limited environments. We do not consider
this aspect of memory usage in our calculations, however
analyzing the tradeoff between memory allocation to joins
and aggregation is an interesting subject of future work.

We classify every join-result tuple as either anS1-probe
join tuple or anS2-probe join tuple. When a new tuples
arrives onS1 and joins with a tuples′ ∈ S2[W2] (line 3
of Figure 3),s ands′ are said to produce anS2-probe join
tuple. S1-probe join tuples are defined symmetrically. A
tuples ∈ S1 may first produceS2-probe join tuples when
it arrives. Then, before it expires fromS1[W1], it may pro-
duceS1-probe join tuples with newly arriving tuples onS2.
We useni(s), i = 1, 2, to denote the number ofSi-probe
join tuples produced by a tuples ∈ Si before it expires
from Si[Wi].

2.1 Frequency-Based Stream Model

Continue to consider the sliding-window joinS1[W1] 1A

S2[W2]. LetD denote the domain of join attributeA. The
frequency-based model that has been assumed in previous
work [7, 13] is defined as follows:

Definition 2.1 (Frequency-Based Model).For each value
v ∈ D, a fixed fractionf1(v) of the tuples arriving onS1,
and a fixed fractionf2(v) of the tuples arriving onS2, have
valuev in attributeA.

Assuming an average rater2 of arrivals per unit time onS2,
the expected number ofS1-probe join tuples that a tuple
s ∈ S1 produces is given by:

E[n1(s)] = r2 · W1 · f2(s.A) (1)

Example Scenario: Suppose we are monitoring a sys-

1. When a new tuples arrives onS1

2. UpdateS2[W2] by discarding expired tuples
3. Emits 1A S2[W2]
4. Adds to S1[W1]

Figure 3: Sliding-window join execution

tem with a fixed number ofcomponents. We have a
stream ofactions and a stream oferrors on all compo-
nents, and we want to perform a sliding-window join on
component-id to look for possible correlations between
actions and errors. Some components may be more heav-
ily used than others, and some may be more error-prone
than others, but eachcomponent-idmay have a roughly
fixed frequency of occurrence on each stream.

2.2 Age-Based Stream Model

For many applications, the frequency-based model is inap-
propriate. As a simple example, consider online auction
monitoring [16] with the following streams:

S1: OpenAuction(auction-id,seller-id)
S2: Bid(auction-id,bid-amount)

When a seller starts an auction, a tuple arrives onS1. When
a bid is placed on an auction, a tuple arrives onS2. Suppose
we are interested in knowing, for each seller, the average
number of bids received on all of his auctions in the last 5
days. This query requires a sliding-window join between
S1 and S2 with a window onS1 equal to the maximum
lifetime of an auction, followed by an aggregation operator
with a 5-day window.

Suppose memory is insufficient to retain all the tuples
in S1’s window, and suppose we use the frequency-based
model for making load-shedding decisions in this scenario.
Auction-ids are unique, so on streamS1 we see each
auction-id only once. On streamS2, the arriving auction-
ids are the currently open auctions, so this set changes over
time. Thus, no fixed frequency distribution can be inferred
through monitoring. In this case, load-shedding schemes
based on the frequency model [7] will simply retain new
tuples and discard old ones. However, that is exactly the
wrong thing to do, since most bids are received on auctions
that are about to close, i.e., are relatively old. To capture
such scenarios, we propose a newage-basedmodel defined
for the sliding-window joinS1[W1] 1 S2[W2] as follows:

Definition 2.2 (Age-Based Model).For a tuples ∈ S1,
theS1-probe join tuples produced bys obey the following
two conditions:

1. The number ofS1-probe join tuples produced bys is
a constant independent ofs, and is denoted byn1.

2. Out of then1 S1-probe join tuples ofs, p1(k) are pro-
duced whens is between agek − 1 andk.

A symmetric case holds for theS2-probe join tuples pro-
duced by a tuples′ ∈ S2. DefineCi(k), i = 1, 2, as the cu-
mulative number ofSi-probe join tuples that a tuples ∈ Si

produces by agek, i.e.,Ci(k) =
∑k

j=1 pi(j).

326

Thus, according to this model, the number of joins a tu-
ple produces is independent of its join-attribute value, but
is a function of the age of the tuple in the window. Assump-
tion 1 in Definition 2.2 is not strictly necessary for our ap-
proach. However, in the scenarios we have considered, the
set of join-attribute values changes over time. Thus, even if
ni(s) depends ons.A for a tuples ∈ Si, it would be diffi-
cult to infer this dependence by monitoring the stream.

Different Age Curves: Consider a curve that plotspi(k)
againstk; we call this theage curvefor window Si[Wi].
Intuitively, the age curve shows how likely a tuple inSi[Wi]
is to produce join tuples, as it becomes older. Different
applications that adhere to the age-based model may have
very different age-curve shapes:

• Increasing: An example is the auction scenario de-
scribed above. In a typical auction, relatively few
bids are received in the beginning, followed by a large
number of bids when the auction is about to close.
Thusp1(k) is small for smallk, and increases with
k until the auction lifetime, after which it drops to0.

• Decreasing: Consider a join between anOrdersand a
Fulfillmentsstream onorder-id, with a window on
the orders stream. Most parts of an order are fulfilled
soon, but some may require backorder and are fulfilled
later. Thus we expect to see a decreasing age curve.

• Bell: Consider a join between streams of readings
from two different sensors, with a band-join condition
on timestamp. This join may be used to discover cor-
relations between readings from two different obser-
vation points taken at roughly the same time. In this
case, the age curve is expected to be bell-shaped. The
agek at which the peak of the age curve occurs will
be determined by factors such as clock skew between
the two sensors, and the difference in network latency
from the sensors to the stream system. We perform an
experiment of this form in Section 6.

2.3 Parameter Estimation

For using any of the models described above, the model pa-
rameters must be instantiated, i.e., we must determine the
frequencies of occurrencef1(v) andf2(v) of valuesv ∈ D
for the frequency-based model, and the age curves for the
age-based model. We assume the standard technique of
using the past to predict the future, so parameters are esti-
mated by monitoring the streams. There is previous work
on building histograms in an online fashion using small
space [10, 12], which can be used to estimate the values
of f1(v) andf2(v). For the age-based model,ni, i = 1, 2,
is estimated as the average number ofSi-probe join tuples
that anSi-tuple produces in its lifetime. Similarly,pi(k)
is estimated as the average number ofSi-probe join tuples
that anSi-tuple produces between agek − 1 andk.

We do not need to collectpi(k) for each time unitk,
but can use a coarser time granularity. To accurately deter-
mine pi(k), we should execute the join with the full win-
dow Si[Wi] being retained. For now, we assume that we

can allocate an extra chunk of “monitoring memory” that
is circulated periodically to each window in turn to moni-
tor its parameters accurately. If this memory is not avail-
able,pi(k) can be approximately estimated by retaining a
small fraction of the tuples onSi in Si[Wi] for their entire
lifetime. Alternative schemes for approximately estimating
the age curve when extra memory is not available is a topic
of future work.

3 Max-Subset
Recall our basic algorithm for executing joinS1[W1] 1A

S2[W2] shown in Figure 3. If memory is limited, we need
to modify the algorithm in two ways. First, in Line 2, we
updateS1[W1] in addition toS2[W2] to free up memory
occupied by expired tuples. More importantly, in Line 4,
memory may be insufficient to adds to S1[W1]. In this
case, we need to decide whethers is to be discarded or
admitted intoS1[W1], and if it is to be admitted, which of
the existing tuples is to be discarded. An algorithm that
makes this decision is called aload-shedding strategy[4, 7,
17]. Due to load-shedding, only a fraction of the true result
will actually be produced. We denote the fraction of the
result tuples produced asrecall.

Recall(t) =
Number of result tuples produced up to timet

Number of actual result tuples up to timet

Definition 3.1 (Max-Subset Problem). Given a fixed
amount of memory for a sliding-window joinS1[W1] 1A

S2[W2], devise an online load-shedding strategy that max-
imizeslimt→∞ Recall(t).

We first state a result on the hardness of the prob-
lem for arbitrary streams (Section 3.1), then present a
load-shedding strategy for the age-based model (Section
3.2), and finally discuss the max-subset problem for the
frequency-based model (Section 3.3).

3.1 Hardness Result

A load-shedding strategy isoptimal if it eventually pro-
duces the maximum recall among all strategies using the
same amount of memory. For bounded streams, anoffline
strategy is one that is allowed to make its load-shedding de-
cisions after knowing all the tuples that are going to arrive
in the future. We show that for arbitrary streams, it is not
possible for any online strategy to becompetitivewith the
optimal offline strategy.

Let S denote a bounded sequence of tuple arrivals on
the streamsS1 andS2. Consider any online strategy. Let
Ron(M,S) denote the recall obtained at the end of execut-
ing the online strategy with memoryM on the sequenceS.
Similarly, letRoff(M,S) denote the recall for the optimal
offline strategy. We assumeM is insufficient to retain the
entire windows. The online strategy isk-competitiveif for
any sequenceS, Roff(M,S)/Ron(M,S) ≤ k.

Theorem 3.2.For the max-subset problem, no online strat-
egy (even randomized) can bek-competitive for anyk that
is independent of the length of the input sequence.

327

A detailed proof is omitted due to space constraints. The
idea is to construct an input distribution and to lower-bound
the expected competitive ratio of any deterministic strategy
on that input distribution. We then obtain Theorem 3.2 by
applying Yao’s min-max theorem [21].

This result shows that we cannot expect to find an effec-
tive load-shedding strategy that addresses the max-subset
problem for arbitrary streams.

3.2 Age-Based Model

Consider the max-subset problem for a joinS1[W1] 1

S2[W2] that adheres to the age-based model. We first as-
sume a fixed amount of memory is available forS1[W1],
and consider the problem of maximizing the number ofS1-
probe join tuples produced. A symmetric procedure applies
for maximizing the number ofS2-probe join tuples given a
fixed memory forS2[W2]. Then we show how to allocate
the overall available memory betweenS1[W1] andS2[W2]
to maximize the recall of the entire join.

3.2.1 Fixed Memory forS1[W1]

Suppose the available memory forS1[W1] is sufficient to
storeM1 tuples of streamS1. We denote the amount of
memory required to store one tuple as a “cell”. For now we
assumer1 = 1, i.e., one tuple arrives onS1 at each time
step. At the end of the section we show the easy general-
ization to otherr1.1 We first give the optimal strategy for
M1 = 1, which forms the building block for our strategy
for M1 > 1. Recall thatC1(k) denotes the total number of
S1-probe join tuples that a tuples ∈ S1 produces by agek.
Letkopt

1 denote thek (≤ W1) at whichC1(k)
k

is maximized.

Strategy 1 (M1 = 1). Retain the first tuples ∈ S1 in
S1[W1] for kopt

1 time units, discarding other tuple arrivals
on S1. After kopt

1 time units, discards, retain the tuple
arriving next for the nextkopt

1 time units, and continue.

The relatively straightforward proof that Strategy 1 is opti-
mal is omitted due to space constraints.

Example 3.3. Letr1 = 1 andM1 = 1 as we have assumed
so far. Let the window sizeW1 = 4, and let the age curve
be defined byp1(1) = 1, p1(2) = 1, p1(3) = 2, p1(4) = 1.
C1(k)/k is maximized atkopt

1 = 3.
Let si denote the tuple arriving at timei on S1. The

following diagram illustrates Strategy 1 on this example.
Entries in the third row denote the number ofS1-probe join
tuples produced between each time step and the next.

Time 1 2 3 4 5 6 7 8

Cell 1 s1 s1 s1 s4 s4 s4 s7 . . .

Discard s2 s3 s1 s5 s6 s4 . . .

Results 1 1 2 1 1 2 1 . . .

Strategy 1 produces4 join tuples every3 time units and is
optimal among all possible strategies.

1Note that all of our optimality claims assume constant rather than
averager1, however our experiments (Section 6) show that our algorithm
performs well for a distribution of arrival rates.

Now supposeM1 > 1. We must consider two cases:

1. If kopt
1 ≥ M1, the optimal strategy is to run Strategy 1

“staggered”, for each of theM1 cells. For example, if
M1 = 2 in Example 3.3, we get:

Time 1 2 3 4 5 6 7 8

Cell 1 s1 s1 s1 s4 s4 s4 s7 . . .

Cell 2 s2 s2 s2 s5 s5 s5 . . .

Discard s3 s1 s2 s6 s4 . . .

2. If kopt
1 < M1, the problem becomes more complex

because running a staggered Strategy 1 uses onlykopt
1

cells, thereby underutilizing the available memory.

To address Case 2 (kopt
1 < M1), we first define an age curve

with aminima. The age curvep1(k) againstk has a minima
if there existk1 < k2 < k3 such thatp1(k1) > p1(k2) and
p1(k2) < p1(k3).

If the age curve has no minima, the optimal strategy is to
retain every tuple for exactlyM1 time units. Once a tuple
has been retained forkopt

1 time units, retaining it any fur-
ther becomes less useful, and since the curve has no minima
the tuple cannot become more useful in the future. Thus,
it should be discarded as early as possible afterkopt

1 time
units. At the same time, tuples should not be discarded any
earlier thanM1 time units, as that would lead to underuti-
lization of memory.

If the age curve has a minima, retaining each tuple for
exactlyM1 time units may be suboptimal. We illustrate the
subtleties through an example.

Example 3.4. Let W1 = 3 andM1 = 2. Let the age curve
be defined byp1(1) = 3, p1(2) = 0, andp1(3) = 2. Thus,
the age curve has a minima atk = 2. We havekopt

1 = 1, so
kopt
1 < M1. The following strategy alternates between re-

taining every tuple for1 and3 time units, and by exhaustive
search is seen to be optimal for this example:

Time 1 2 3 4 5 6 7 8

Cell 1 s1 s1 s1 s4 s5 s5 s5 . . .

Cell 2 s2 s3 s3 s3 s6 s7 . . .

Discard s2 s1 s4 s3 s6 . . .

Results 3 3 5 3 5 3 5 . . .

This strategy produces an average of4 join tuples per time
unit. Note that retaining every tuple forM1 = 2 time units
produces only3 join tuples per time unit.

We do not have an optimal strategy for the general case
of age curves with minima, but in practice, age curves are
unlikely to have minima (e.g., none of the examples dis-
cussed in Section 2.2 have minima). However, for com-
pleteness, we give the following greedy heuristic for this
case. For each tuples ∈ S1[W1], assign apriority that
represents the fastest rate at whichs can produceS1-probe
join tuples. The priority of a tuple at agei is given by:

Priority(i) = max
i<j≤W1

C1(j) − C1(i)

j − i

328

When a tuple needs to be discarded due to a memory con-
straint, the tuple with the lowest priority is discarded.

This greedy strategy leads to the optimal solution for
Example 3.4. Interestingly, this strategy reduces to the op-
timal strategy for all the previous cases as well. In the rest
of this paper, we do not consider age curves with minima.

We shall refer to the overall approach for the age-based
max-subset problem presented in this section as theAGE
algorithm. We evaluateAGEexperimentally in Section 6.

3.2.2 Fixed Memory forS1[W1] + S2[W2]

So far we have addressed the problem of maximizing the
number ofSi-probe join tuples,i = 1, 2, given a fixed
amount of memory forSi[Wi]. Now suppose we have a
fixed amount of memoryM for the entire join. To de-
termine how to allocate the available memory between
S1[W1] and S2[W2], we need a function that relates the
memory allocation to the overall recall obtained. LetMi

be the memory allocated toSi[Wi]. Let Ri denote the rate
at whichSi-probe join tuples are produced. If theAGEal-
gorithm from Section 3.2.1 is applied:

Ri =

{

Mi
Ci(k

opt

i
)

k
opt

i

if Mi ≤ kopt
i

Ci(Mi) if Mi > kopt
i

(2)

Then the overall recall of the join is given byR1+R2

n1+n2

.
To determine the memory allocation betweenS1[W1] and
S2[W2], we simply findM1 andM2 such that this expres-
sion for the recall of the join is maximized, subject to the
constraintM1 + M2 = M .

Finally, so far we have assumedri = 1. If ri > 1, and
memoryMi is available forSi[Wi], Equation 2 becomes:

Ri =

{

Mi ·
Ci(k

opt

i
)

k
opt

i

if Mi/ri ≤ kopt
i

ri · Ci(Mi/ri) if Mi/ri > kopt
i

(3)

The recall for the entire join is then given byR1+R2

r1n1+r2n2

.

3.3 Frequency-Based Model

We briefly consider the max-subset problem for the
frequency-based model as covered in [7]. We derive the re-
call obtained given a fixed amount of memory for the join,
This relationship between memory and recall is needed in
Section 5 for overall memory allocation across joins.

ConsiderS1-probe join tuples first. Recall Definition
2.1 of the frequency-based model. The following approach,
calledPROB, is suggested in [7]: Every tuples1 ∈ S1[W1]
is assigned a priority equal tof2(s1.A). If a tuple needs to
be discarded due to a memory constraint, the tuple with the
lowest priority is discarded.

Without loss of generality, assume the values inD are
v1, . . . , vn, and for i < j, f2(vi) ≥ f2(vj). Then for
i < j, PROBwill prefer to retain all instances ofvi in
S1[W1] over any instance ofvj . Let M1 be the mem-
ory allocated toS1[W1]. PROBwill retain all instances
of v1, v2, . . . , vi, wherei is the largest number such that
r1W1

∑i

j=1 f1(vj) ≤ M1. (A fraction of the instances of

vi+1 will be retained too, but our analysis is not affected
significantly.) Thus,S1-probe result tuples are produced at
a rate given byR1 = r1r2W1

∑i

j=1 f1(vj)f2(vj). A sym-
metric expression can be derived for the rateR2 at which
theS2-probe join tuples are produced, given memoryM2

for S2[W2]. The overall recall of the join is then given by
R1+R2

r1r2(W1+W2)
∑

v∈D
f1(v)f2(v) . Thus, given a total amount

of memoryM for the join, we can findM1 andM2 such
that the overall recall of the join is maximized, subject to
the constraintM1 + M2 = M .

4 Random Sampling
In this section, we address the problem of extracting a ran-
dom sample of theS1[W1] 1A S2[W2] join result with
limited memory. We first state a result on the hardness of
performing uniform random sampling on the join result for
arbitrary streams (Section 4.1). We then give an algorithm
for uniform random sampling that applies for both the age-
based and frequency-based models (Section 4.2). Finally,
in Section 4.3, we consider the case when a uniform sam-
ple is not required directly by the application, but is being
gathered only for estimating an aggregate over the join re-
sult. For these cases, we consider a statistically weaker
form of sampling calledcluster sampling[6], which can be
performed more easily than uniform sampling, and often
yields a more accurate estimate of the aggregate.

4.1 Hardness Result

For sampling over the windowed join result of arbitrary
streams, we have the following negative result:

Theorem 4.1. If the available memory is insufficient to re-
tain the entire windows, it is not possible to guarantee a
uniform random sample for any sampling fraction> 0.

A detailed proof is omitted due to space constraints but
the basic idea is as follows. Suppose we choose to dis-
card a tuples in S1[W1] because memory is full. Then we
must know that allS1-probe join tuples thats would sub-
sequently produce are guaranteed not to be needed in our
sample. However, for arbitrary streams, at any time during
the lifetime ofs, there is no upper bound on the number
of S1-probe join tuples thats will produce before expiry.
Thus, for any sampling fraction greater than0, it cannot be
guaranteed that we can discards but preserve the sample.

This result shows that we cannot expect to find an ef-
fective procedure that performs uniform random sampling
over the join result of arbitrary streams with limited mem-
ory. However, we can compute a sample when we have a
model of stream arrivals, as we show next.

4.2 Uniform Random Sampling

For random sampling we can consider the frequency-based
and the age-based models together. We shall assume
Bernoulli sampling, or sampling under the coin-flip seman-
tics [5]: for sampling a fractionp from a set of tuples, every
tuple in the set is included in the sample with probabilityp
independent of every other tuple.

329

s1 : Tuple arriving onS1

n1(s1): Number ofS1-probe join tuples thats1 produces
p : Sampling fraction

DecideNextJoin(s1): Join(s1, s2):
1. pickX ∼ G(p) 1. s1.num = s1.num + 1
2. s1.next = s1.num + X 2. if (s1.num = s1.next)
3. if (s1.next > n1(s1)) 3. outputs1 1A s2

4. discards1 4. DecideNextJoin(s1)

Figure 4: AlgorithmUNIFORM

4.2.1 Sampling Algorithm

Our algorithmUNIFORM for uniform random sampling
over a sliding-window join with limited memory is shown
in Figure 4. We only show the procedure for sampling
from theS1-probe join tuples by selectively retaining tu-
ples inS1[W1]. The procedure for sampling from theS2-
probe join tuples is analogous.UNIFORMneeds to know,
for each arriving tuples1 ∈ S1, the number ofS1-probe
join tuples thats1 will produce, i.e.,n1(s1). For the age-
based model,n1(s1) = n1. For the frequency-based model
n1(s1) = r2 · W1 · f2(s1.A) (recall Equation 1). We as-
sume the sampling fractionp is known for now. In the next
subsection, we show howp can be determined based on the
amount of memory available.

When a tuples1 arrives onS1, s1.num is initial-
ized to0, and the procedureDecideNextJoin(s1) is called.
Join(s1, s2) is called when a tuples2, that joins withs1,
arrives onS2. G(p) denotes the geometric distribution with
parameterp [15], andX ∼ G(p) denotes that we pickX
at random fromG(p). WhenDecideNextJoin(s1) is called,
UNIFORMlogically flips coins with biasp for deciding the
nextS1-probe join tuple ofs1 that will be included in the
sample. If all remainingS1-probe join tuples ofs1 are re-
jected by the coin flips,s1 is discarded.

4.2.2 Determining the Sampling Fractionp

To determine the sampling fractionp, we first obtain the
expected memory usage ofUNIFORM (i.e., the expected
number of tuples retained) in terms ofp. We then equate
this expected memory usage to the amount of memory
available for performing the join and solve forp. For ro-
bustness, we can also calculate the variance of the memory
usage ofUNIFORMand decide the sampling fraction such
that the probability of the memory usage exceeding the
available memory is sufficiently small. The following re-
sults about the expected memory usage follow from simple
properties of the geometric distribution; proofs are omit-
ted. Note that now the tuple size must include the space
required to store the extra fieldsnextandnum(Figure 4).
Frequency-Based Model: Recall Definition 2.1. We as-
sume that theS1-probe join tuples of a tuples1 ∈ S1 are
produced uniformly throughout the lifetime ofs1 (because
a uniform fixed fraction of tuples arriving onS2 join with
s1).

Theorem 4.2. For the frequency-based model, the ex-
pected memory usage ofS1[W1] is (let q = 1 − p):

r1W1

∑

v∈D

f1(v)

(

1 −
q(1 − qr2W1f2(v))

pr2W1f2(v)

)

Age-Based Model: Recall Definition 2.2. Recall that
C1(k) denotes the cumulative number ofS1-probe join tu-
ples that a tuples1 ∈ S1 produces by agek. Define the
inverse of theC1 function,C−1

1 (m), as the smallestk such
thatC1(k) ≥ m. Thus, a tuples1 ∈ S1 producesm S1-
probe join tuples by the time its age isC−1(m).

Theorem 4.3.For the age-based model, the expected mem-
ory usage ofS1[W1] is r1

∑n1

i=1 p(1 − p)n1−iC−1(i).

In both models, a symmetric expression holds for the ex-
pected memory usage ofS2[W2], assuming we use the
same sampling fractionp for the S2-probe join tuples.
Summing these expressions gives us the total memory us-
age for the joinS1[W1] 1A S2[W2].

4.3 Cluster Sampling

The correctness ofUNIFORM depends heavily on the ac-
curacy with whichni(s) is estimated for a tuples ∈ Si,
i = 1, 2. For example, for a tuples1 ∈ S1, if n1(s1) is
underestimated asn′

1(s1), then all theS1-probe join tuples
of s1 subsequent to its firstn′

1(s1) join tuples will never
be selected for the sample. On the other hand, ifn1(s1) is
overestimated,s1 may remain inS1[W1] until expiry, wait-
ing for joins that never take place, and the overall memory
usage may be considerably higher than the expected value
derived in Theorems 4.2 and 4.3.

If a uniform random sample of the join is not required
directly by the application, but the sample is being taken
only to estimate an aggregate over the join results, these
difficulties can be overcome by using a statistically weaker
form of sampling calledcluster sampling[6].

In general, cluster sampling is applicable when the pop-
ulation to be sampled can be divided into groups, orclus-
ters, such that the cost of sampling a single element of a
cluster is equal to that of sampling the entire cluster. Thus,
for cluster sampling, a certain number of clusters are cho-
sen at random, and all elements of selected clusters are in-
cluded in thecluster sample. A cluster sample isunbiased,
i.e., each element of the population has equal probability of
being included in the sample. However, it iscorrelated, i.e.,
the inclusion of tuples is not independent of each other as in
a uniform sample. A detailed analysis of cluster sampling
can be found in [6]. In the remainder of this section we as-
sume the sample of the join is being gathered for estimating
either a sum or an average aggregate, and the objective is
to minimize the error in the estimated aggregate.

4.3.1 Two Approaches

Consider sampling from theS1-probe join tuples; a sym-
metric procedure applies for sampling from theS2-probe
join tuples. A tuples1 ∈ S1 joins withn1(s1) tuples arriv-
ing onS2. These join tuples form a cluster, and the entire

330

cluster can be sampled by simply retainings1 in S1[W1]
until expiry. The fraction of clusters that can be sampled
is determined by the number of tuples that can be retained
until expiry in the memory available forS1[W1]. Thus we
have the following näıve approach to cluster sampling.

Strategy 2 (EQ-CLUSTER). Add an incoming tuples1 ∈
S1 to S1[W1] with probabilityp. If s1 is added toS1[W1],
retain it until expiry and include all itsS1-probe join tuples
in the sample.

Notice that this scheme does not depend onn1(s1), and al-
ways produces an unbiased sample. The expected memory
usage forS1[W1] according to this scheme isr1W1p. Thus,
p can be decided based on the amount of memory available.

EQ-CLUSTERis suitable when the clusters are roughly
of equal size (e.g., as in the age-based model). However,
if clusters are of unequal sizes, as in the frequency-based
model, statistics literature [6] suggests that better estimates
of the aggregate can be obtained by selecting a cluster with
probability proportional to its size. Otherwise, if clusters
are selected with equal probability, large clusters that con-
tribute most to the aggregate may be missed altogether. We
thus have the following approach:

Strategy 3 (PPS-CLUSTER). Add an incoming tuples1 ∈
S1 to S1[W1] with probability proportional ton1(s1). If s1

is added toS1[W1], retain it until expiry and include all its
S1-probe join tuples in the sample.

With PPS-CLUSTER, to get an unbiased estimate of the
aggregate, we must perform weighted aggregation on the
cluster sample: the contribution of each cluster to the ag-
gregate is assigned a weight inversely proportional to the
cluster size. Details can be found in [6]. Notice that even
if n1(s1) is incorrectly estimated, the same incorrect esti-
mate is used in performing weighted aggregation. Hence,
the resulting estimate of the aggregate is still unbiased.

Consider the application ofPPS-CLUSTERfor the
frequency-based model. Sincen1(s1) ∝ f2(s1.A), let s1

be added toS1[W1] with probabilityp · f2(s1.A) wherep
is a proportionality constant. The expected memory usage
of S1[W1] is r1W1p

∑

v∈D f1(v)f2(v). Thus,p can be de-
termined according to the amount of memory available.2

4.3.2 Comparison of Approaches

To summarize, let us briefly consider which sampling ap-
proach is preferable in different scenarios. Recall that the
objective is to minimize the error in an estimated aggregate.
The relevant factors to be considered are:

• Accuracy of model parameters: If ni(s) is incorrectly
estimated for a tuples ∈ Si, i = 1, 2, UNIFORMmay
perform poorly since it may produce a biased sample.
In this case, cluster sampling should be used.

2A value ofp obtained in this way can causepf2(s1.A) to exceed 1
for somes1, resulting in an overestimate of memory usage. The correct
value ofp can be chosen by an iterative procedure; details are omitted.

• Inter-cluster variance: Consider the variance in the
values of the aggregate for different clusters. The
lower this variance, the better the performance of clus-
ter sampling compared to uniform sampling [6].

• Cluster sizes: PPS-CLUSTERshould be used for
unequal-size clusters.PPS-CLUSTERreduces toEQ-
CLUSTERfor equal-size clusters.

5 Memory Allocation across Multiple Joins
Now suppose our stream system is executing a number
of continuous queries, each of which involves a sliding-
window join. In this section, we address the problem of al-
locating the available memory across these multiple joins.
For now, let us assume the unweighted case, i.e., all joins
are equally important. The goal of our allocation scheme is
to ensure that no join does “too badly” in terms of approx-
imation error, i.e., we seek to minimize the maximum ap-
proximation error in any join. It is important to observe that
different joins may differ in the accuracy of their approxi-
mation even when given the same fraction of their memory
requirement. Thus, simple proportional allocation of mem-
ory among the joins is generally not optimal.

Suppose there aren sliding-window joins with an over-
all memory constraintM . Each join may follow either the
age-based or the frequency-based model. Further, each join
has a certainapproximation metricwhich we denote byQ:
For the max-subset problem,Q is the recall of the join. For
the sampling problem,Q is the error in an aggregate (e.g.,
SUM) estimated from the sample. We assume that each
join uses the same approximation metric (i.e., either recall
or aggregation error), otherwise the choice of a combined
approximation metric is not clear. We shall focus on the
case whenQ is recall. A similar technique applies whenQ
is aggregation error.

For a particular memory allocation, letqi be the recall
obtained for theith join. The optimal memory allocation
we seek is the one that maximizesmin1≤i≤n qi. The key to
our scheme is the following observation (a similar observa-
tion is made in [4]).

Theorem 5.1. To maximize the minimum recall, the opti-
mal memory allocation is one that produces the same recall
in all joins.

By Theorem 5.1, in the optimal memory allocation the
recall obtained in each join is the same, sayqopt. Let fi(q)
denote the minimum amount of memory required to ob-
tain recallq in the ith join. Thenqopt is the maximumq
such that

∑n

i=1 fi(q) ≤ M . Assuming the functionsfi

are known,qopt can be found by an iterative binary search.
The amount of memory to be allocated to theith join is
then given byfi(qopt).

Let us consider how the functionfi(q) can be obtained
for theith join. Recall that we specified the relationship be-
tween memory available for a join and the recall obtained,
both for the age-based (Section 3.2.2) and the frequency-
based (Section 3.3) models. These can be used to obtain
fi(q). When the metricQ is aggregation error, we use the

331

relationship between memory and sampling fraction (The-
orems 4.2 and 4.3). The expected aggregation error for a
given sampling fraction can be derived in terms of popu-
lation characteristics such as mean and variance [4]. To-
gether, these can be used to calculatefi(q).

Finally, suppose that different joins have different rela-
tive importance. Letwi be the weight of theith join. Now
our objective is to maximizemin1≤i≤n qi/wi. Our argu-
ment extends to show that the optimal solution is to allo-
cate memoryfi(wiqopt) to the ith join, whereqopt is the
maximumq such that

∑n

i=1 fi(wiq) ≤ M .
We shall refer to the approach for memory allocation

presented in this section asALLOC, and evaluate its per-
formance experimentally in Section 6.

6 Experiments
We now present an experimental evaluation of our tech-
niques. Our experiments demonstrate the following:

1. In a real-life scenario that adheres to the age-based
model, our algorithmAGE (Section 3.2.1) gives con-
siderably higher recall than more naı̈ve approaches.

2. Our sampling approachesUNIFORM and PPS-
CLUSTER(Section 4) provide low-error estimates of
windowed aggregates over the join result. Either of
the two approaches may be preferable, depending on
the specific scenario.

3. Our algorithmALLOC for memory allocation across
joins (Section 5) significantly outperforms simple pro-
portional allocation in terms of maximizing the mini-
mum recall.

6.1 Age-Based Experiment

For initial experimentation with the age-based model, we
captured real data as follows. We set up two stream
sources,φ1 andφ2, and a central server. Sourceφ1 and
the server run on the same physical machine, while source
φ2 runs on a distant machine connected over a wide-area
network (WAN). Each source produces tuples at a constant
rate ofr1 = r2 = 50 per second. Each tuple contains a
timestampts from the local clock at the source. All tuples
are streamed to the server using a UDP channel.

Denote the streams from sourcesφ1 andφ2 asS1 and
S2 respectively. We execute a sliding-window join whose
purpose is to identify causal correlation between the two
streams—to do so, it matches tuples fromS2 with tuples
from S1 that were timestamped approximately one minute
earlier. The join predicate chosen isS2.ts − S1.ts ∈
[59.9, 60.1] where time units are seconds. To ensure that
S1 tuples do not expire before matchingS2 tuples arrive
(the network latency from sourceφ2 to the server is high),
we conservatively set the window onS1 asW1 = 2 min-
utes. Since joining tuples always arrive later onS2 than on
S1, a window onS2 need not be stored.

We generated a trace of approximately 40 minutes of
tuple arrivals at the server and then used this trace for re-
peatability. Figure 5 shows the age curve (p1(k) vs. k)

Figure 5: Age curve for WAN experiment

Figure 6: Recall obtained on WAN experiment

determined by an initial pass through our trace. We show
p1(k) as a fraction ofn1 (recall Definition 2.2). The gran-
ularity chosen fork was 0.1 second. We see that a tuple
s ∈ S1 produces most join tuples at an age of approxi-
matelyk = 63 seconds. Out of this, a60 second delay is
due to the join predicate, and the rest of the delay is due
to clock skew between sourcesφ1 andφ2, and significantly
higher network latency for tuples fromφ2 than fromφ1.

6.1.1 Results

Figure 6 shows the recall obtained on our trace by vari-
ous load-shedding approaches as we vary the amount of
allocated memory. Memory is shown as a percentage of
the amount required to retain the entire window (r1W1).
We compare: (1)AGE: Section 3.2.1; (2)UNTIL-EXPIRY:
A tuple is added toS1[W1] only if memory is available,
and then retained until expiry; (3)RECENT: The most re-
cent tuples in the window are retained; and (4) Theoretical-
AGE: The recall that should be theoretically obtained by
applying theAGEapproach, as given by Equation 3. Note
thatRECENTis the approach that we get if we simply ap-
ply the frequency-based model in this scenario.

Although in reality the age curve shown in Figure 5 has
some minima,p1(k) never increases significantly after de-
creasing. Hence, for all practical purposes, we can apply
ourAGEapproach assuming the curve has no minima.kopt

1
was calculated to be68.8 seconds.

We see thatAGE outperformsRECENTand UNTIL-
EXPIRY. RECENTperforms especially badly, producing
no join tuples even when the allocated memory is as much

332

as 40%. However, when the allocated memory is high
enough so thatM1 ≥ r1k

opt
1 , AGE reduces toRECENT

(see Equation 3), and hence both approaches produce the
same recall. Note that ifW1 had been conservatively set to
be higher, the performance ofUNTIL-EXPIRYwould de-
grade, whereas the performance ofAGE would not be af-
fected. We also see that the actual recall obtained byAGE
closely agrees with the theoretically predicted value.

6.2 Experiments on Synthetic Data

For the next set of experiments, we synthetically gener-
ate streamsS1 and S2 for both the age-based and the
frequency-based model, and perform the sliding-window
join S1[W1] 1 S2[W2] with limited memory. For simplic-
ity, we consider only theS1-probe join tuples in our ex-
perimental results. For both models, tuples on streamsSi,
i = 1, 2, are generated at an average rate ofri tuples per
unit time. This is done by choosing the inter-arrival time
uniformly at random between1/2ri and2/ri time units.
For all experiments we fixr1 = 1, r2 = 5, andW1 = 500.

6.2.1 Age-Based Data Generation

First streamS1 is generated. Each tuple onS1 contains
a uniqueid which serves as the join attribute, as in the
examples of Section 2.2 (e.g., in the auction scenario, each
tuple onS1 has a uniqueauction-id). Next, we specify
the age curve forS1[W1] by dividing the window duration
W1 into m buckets and specifyingp1(k) for thekth bucket.
The first bucket consists of the newest tuples, and themth

bucket the oldest tuples. We fixn1 = 5 andm = 20.
We then generate streamS2 according to this age curve.

Suppose a tuple is to be generated onS2 at time t. The
value of its join attribute is determined as follows. We
choose one of them buckets at random with thekth bucket
being chosen with probabilityp1(k)/n1. Then, we choose
one tuple at random from all the tuples ofS1[W1] occupy-
ing the chosen bucket at timet. Theid of this randomly-
chosen tuple is assigned as the join-attribute value of the
newly generated tuple onS2.

6.2.2 Max-Subset Problem with Age-Based Data

We experimented with three different age curves. (1)
Increasing (INC): p1(k) ∝ k2; (2) Decreasing (DEC):
p1(k) ∝ (m − k)2; and (3) Bell-shaped (BELL): p1(k) ∝
k2 for 1 ≤ k ≤ m/2 and p1(k) ∝ (m − k)2 for
m/2 < k ≤ m. Figure 7 shows a comparison of the recall
obtained by various approaches for different types of age
curves. For theINC curve,AGEsignificantly outperforms
RECENT. For theDEC curve,AGE reduces toRECENT,
so we do not show their results separately. For theBELL
curve,AGEoutperformsRECENTuntil M1 < r1k

opt
1 (see

Equation 3). ForM1 ≥ r1k
opt
1 , AGEreduces toRECENT.

Note that for the same amount of allocated memory, the
recall differs greatly depending on the shape of the age
curve. This indicates that in the presence of multiple joins,
in order to maximize the minimum recall, simple propor-
tional memory allocation is not sufficient, which we verify
empirically in Section 6.2.5.

Figure 7: Recall obtained on synthetic age-based data

6.2.3 Frequency-Based Data Generation

Data generation for the frequency-based model is relatively
easier than for the age-based model. We choose a domain
D. The domain size is fixed at|D| = 50. For each stream,
the join-attribute values are drawn from a Zipfian distribu-
tion of parameterZ over D [23]. The distribution used
for both streams need not be the same. We consider three
cases: (1) Directly Correlated (DC): The order of frequency
of occurrence of values is the same forS1 andS2; (2) In-
versely Correlated (IC): The order of frequency of occur-
rence of values forS1 is opposite of that forS2, i.e., the
rarest value onS1 is the most common onS2 and vice-
versa; and (3) Uncorrelated (UC): The order of frequency
of occurrence of values for the two streams is uncorrelated.

6.2.4 Random Sampling

To evaluate our sampling approaches, we perform a win-
dowed average over the sampled result of a join, and com-
pare the approaches in terms of aggregation error. We re-
port results only for the case when the join follows the
frequency-based model. Results for the age-based model
are similar and are omitted. The aggregation window is
fixed atWaggr = 500. The values of the aggregation at-
tribute are drawn from a normal distribution having mean
µ and varianceσ. At each time step, the value of the win-
dowed aggregate over the true result (U) and over the sam-
pled result (̂U) are calculated. The relative error in the ag-
gregate is|Û−U |/U . We report the average of these errors
over the entire run. In all experiments, while implementing
UNIFORM, we assume a tuple size of 32 bytes. The two
extra fields required (see Figure 4) are stored compactly in
two bytes, thus giving a new tuple size of 34 bytes.

We first consider the case when the aggregated attribute
is part ofS1. Recall that all theS1-probe join tuples pro-
duced by a tuples ∈ S1 form a cluster. Thus, in this case,
all tuples in a cluster have the same value in the aggregated
attribute, which is the worst case for cluster sampling.

Effect of Allocated Memory: Figure 8 shows the aggre-
gation error of the various sampling approaches as we vary
the amount of allocated memory. We use the inversely
correlated (IC) frequency-based model withZ = 2, and
we fix µ = σ = 100. We see thatPPS-CLUSTERout-
performsEQ-CLUSTER: in the IC case, there are a small

333

Figure 8: Aggregation error vs. memory allocated,IC
frequency-based model,Z = 2, µ = σ = 100

Figure 9: Aggregation error vs. population variance,UC
frequency-based model,Z = 2, µ = 100, Memory=10%

number of large clusters in the result which may be missed
by EQ-CLUSTER. UNIFORM performs better thanPPS-
CLUSTERwhen the allocated memory is 10%. However,
the fraction that can be sampled grows more rapidly for
PPS-CLUSTERthan forUNIFORM. Consequently,PPS-
CLUSTERperforms better at higher allocated memory.
Note that the error ofUNIFORM does not go down to 0
even when allocated memory is 100%. This is because even
the synthetic data does not adhere perfectly to the model, as
is required for the correctness ofUNIFORM(Section 4.3).

Effect of Population Variance: Figure 9 shows the ag-
gregation error of the various sampling approaches as the
variance of the aggregated attribute is varied. We show the
variance normalized by the mean, i.e., we show the coeffi-
cient of variation (σ/µ). The allocated memory is 10%,
µ = 100, and the model used is the uncorrelated (UC)
frequency-based model withZ = 2. As the population
variance increases, since all tuples in a cluster have the
same value, the inter-cluster variance increases. As a re-
sult, the performance of cluster sampling approaches de-
grades as compared toUNIFORM.

If the aggregated attribute is a part ofS2, the values in
a cluster are uncorrelated. Consequently, cluster sampling
performs much better thatUNIFORM. We omit the results
due to lack of space. Finally, note that for comparing our
sampling approaches, we have calculated the exact aggre-
gate over the sampled result. In reality, when memory is

Figure 10: Memory allocation across joins: frequency-
based model, Memory=20%

limited, this aggregation may be approximated [8].

6.2.5 Memory Allocation across Multiple Joins

For memory allocation among multiple joins, we study the
performance of ourALLOC scheme in comparison with
simple proportional memory allocation (PROP). We only
study the case when the approximation metric of each join
is the recall obtained in that join.

Frequency-Based Model: We allocate memory across two
joins that follow the frequency-based model: one follows
the directly correlated (DC) case, and the other, the in-
versely correlated (IC) case (recall Section 6.2.3). The to-
tal available memory is 20% of that required for execut-
ing both joins accurately. The load-shedding strategy used
for each join isPROB[7]. Figure 10 shows a comparison
of the minimum recall obtained by both approaches when
we vary the skew parameter (Z) of the frequency-based
model. AsZ increases, the minimum recall remains almost
constant forALLOC, but decreases sharply forPROP. The
amount of memory allocated to each join byALLOC (as a
percentage of the total memory required) is shown by the
dashed plots on the secondary Y-axis. Note thatPROPal-
ways splits the available memory evenly between the two
joins, i.e., 10% to each join.

To understand these results, notice that theIC case is
“easy”, i.e., a relatively higher recall can be produced us-
ing a small amount of memory: only the rare values ofS1

(which are frequent onS2) need to be retained. In contrast,
theDC case is “hard”, i.e., more memory is required to ob-
tain the same recall because the common values onS1 need
to be retained. Moreover, as the skew (Z) increases, theIC
case becomes easier, and theDC case becomes harder.AL-
LOC is able to outperformPROPby allocating less mem-
ory to theIC case, and using this extra memory to boost the
performance of theDC case.

Age-Based Model: We allocate memory across two joins
that follow the age-based model, one with an increasing
(INC) age curve, and another with a decreasing (DEC) one.
TheINC curve is chosen asp1(k) ∝ kp and theDECcurve
asp1(k) ∝ (m − k)p, where the exponentp is varied. The
total available memory is 50% of that required for execut-
ing both joins accurately. The load-shedding strategy used

334

Figure 11: Memory allocation across joins: age-based
model, Memory=50%

for each join isAGE (Section 3.2.1). Figure 11 shows a
comparison of the minimum recall obtained by both ap-
proaches when we vary the exponentp. As p increases,
the minimum recall increases forALLOCbut remains con-
stant forPROP. With increase inp, theDECcase becomes
“easier”, while theINC case remains equally “hard” (by
Equation 3). ThusALLOC is able to outperformPROPby
allocating less memory toDEC, and using the extra mem-
ory to boost the performance ofINC.
More Joins: We omit the results of experimenting with
a greater number of joins, but the findings were similar:
As more “hard” joins are added, the gain ofALLOC over
PROPdecreases, while if more “easy” joins are added, the
gain ofALLOCoverPROPincreases. Intuitively, the per-
formance ofPROP is always limited by the hardest join,
while ALLOCequalizes the recall among all joins.

7 Conclusion

In this paper we addressed memory-limited approximation
of sliding-window joins. We defined a novel age-based
model that often enables us to address the max-subset prob-
lem more effectively than the frequency-based model used
previously. We also introduced and addressed the problem
of extracting a random sample of the join result with lim-
ited memory. Finally, we gave an optimal algorithm for
memory allocation across joins to minimize the maximum
approximation error.

One promising avenue for future work is to extend the
approximation techniques developed here to address a re-
lated but distinct problem: memory-limited computation of
exact answers. Now, instead of load-shedding we must of-
fload selected data on disk. The frequency-based and age-
based models may help us develop algorithms that mini-
mize disk I/O in this setting. Another interesting direction
is to generalize our techniques for a broader class of queries
and plan operators such as multi-way joins. Finally, so far
we have considered only the static version of the problem,
where stream characteristics are assumed to be relatively
stable. For volatile environments, we plan to develop adap-
tive versions of our algorithms.

Acknowledgements
We are grateful to Arvind Arasu, Rajeev Motwani, and the
entire STREAM group at Stanford for useful discussions.

References
[1] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and

self-join sizes in limited storage. InProc. of the 1999 ACM Symp.
on Principles of Database Systems, pages 10–20, 1999.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. InProc. of the 2002 ACM Symp.
on Principles of Database Systems, pages 1–16, June 2002.

[3] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving
window over streaming data. InProc. of the 2002 Annual ACM-
SIAM Symp. on Discrete Algorithms, pages 633–634, 2002.

[4] B. Babcock, M. Datar, and R. Motwani. Load-shedding for aggre-
gation queries over data streams. InProc. of the 2004 Intl. Conf. on
Data Engineering, 2004. To appear.

[5] S. Chaudhuri, R. Motwani, and V. Narasayya. On random sampling
over joins. InProc. of the 1999 ACM SIGMOD Intl. Conf. on Man-
agement of Data, pages 263–274, June 1999.

[6] W. G. Cochran.Sampling Techniques. John Wiley & Sons, 1977.

[7] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing
over data streams. InProc. of the 2003 ACM SIGMOD Intl. Conf.
on Management of Data, June 2003.

[8] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. InProc. of the 2002 Annual ACM-
SIAM Symp. on Discrete Algorithms, pages 635–644, 2002.

[9] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing
complex aggregate queries over data streams. InProc. of the 2002
ACM SIGMOD Intl. Conf. on Management of Data, pages 61–72,
2002.

[10] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Fast, small-space algorithms for approximate histogram
maintenance. InProc. of the 2002 Annual ACM Symp. on Theory of
Computing, 2002.

[11] L. Golab and M. Ozsu. Issues in data stream management.SIGMOD
Record, 32(2):5–14, June 2003.

[12] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms.
In Proc. of the 2001 Annual ACM Symp. on Theory of Computing,
pages 471–475, 2001.

[13] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window joins
over unbounded streams. InProc. of the 2003 Intl. Conf. on Data
Engineering, March 2003.

[14] S. Krishnamurthy et al. TelegraphCQ: An Architectural Status Re-
port. IEEE Data Engineering Bulletin, 26(1):11–18, March 2003.

[15] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge
University Press, 1995.

[16] SQR – A Stream Query Repository. http://www-
db.stanford.edu/stream/sqr.

[17] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M.Stone-
braker. Load-shedding in a data stream manager. InProc. of the
2003 Intl. Conf. on Very Large Data Bases, September 2003.

[18] The STREAM Group. STREAM: The Stanford Stream Data Man-
ager.IEEE Data Engineering Bulletin, 26(1):19–26, March 2003.

[19] T. Urhan and M.J. Franklin. Xjoin: A reactively-scheduled pipelined
join operator. IEEE Data Engineering Bulletin, 23(2):27–33, June
2000.

[20] J. Xie, J. Yang, and Y. Chen. On joining and caching stochastic
streams. Technical report, Duke University, Durham, North Car-
olina, November 2003.

[21] A. C. Yao. Probabilistic computations: Towards a unifiedmeasure of
complexity. InProc. of the 1977 Annual IEEE Symp. on Foundations
of Computer Science, pages 222–227, 1977.

[22] S. Zdonik et al. The Aurora and Medusa Projects.IEEE Data Engi-
neering Bulletin, 26(1), March 2003.

[23] G. E. Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley Press, Inc., 1949.

335

