
Answering XPath Queries over Networks
by Sending Minimal Views

Keishi Tajima Yoshiki Fukui

Japan Advanced Institute of Science and Technology (JAIST)
Asahidai, Tatsunokuchi, Ishikawa 923-1292 Japan, {tajima, y-fukui}@jaist.ac.jp

Abstract

When a client submits a set of XPath queries to
a XML database on a network, the set of answer
sets sent back by the database may include re-
dundancy in two ways: some elements may ap-
pear in more than one answer set, and some el-
ements in some answer sets may be subelements
of other elements in other (or the same) answer
sets. Even when a client submits a single query,
the answer can be self-redundant because some el-
ements may be subelements of other elements in
that answer. Therefore, sending those answers as
they are is not optimal with respect to communi-
cation costs. In this paper, we propose a method
of minimizing communication costs in XPath pro-
cessing over networks. Given a single or a set of
queries, we compute a minimal-size view set that
can answer all the original queries. The database
sends this view set to the client, and the client
produces answers from it. We show algorithms
for computing such a minimal view set for given
queries. This view set is optimal; it only includes
elements that appear in some of the final answers,
and each element appears only once.

1 Introduction
Recently, XML has become a standard data format for in-
formation exchange and dissemination over the Internet.
There have been many researches on various styles of XML
information services on networks, such as on-line XML
databases that provide interactive querying interfaces over
the Internet, continuous query systems [21, 9, 2], and XML
streaming systems [22, 5, 17, 25]. A continuous query sys-
tem is a push-based information service, in which the users

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

first register their queries to the system. Then, the system
monitors the changes in its data, and when data match-
ing the user queries become available, it is delivered to the
corresponding users. In XML streaming systems, a server
transmits a XML stream to the clients, and the clients mon-
itor the stream to detect the data of interest to them.

Most of those systems use some kind of query language.
Some of them use their own languages, but recently a lan-
guage called XPath [12, 13] has become very popular. Al-
though it was originally designed as a component of other
standards, it is now also used as a stand-alone query lan-
guage for many XML information systems because of its
simplicity and yet enough expressive power [2, 8, 17, 25].
XML data is essentially a tree with node labels, and XPath
is a tree pattern language, which extracts from a XML data
a set of subtrees rooted by nodes that match the tree pattern.
XPath can only extract a whole subtree rooted by some el-
ement; it never adds or trims edges, nor modifies labels.

XML information services can be classified into two cat-
egories: those that process queries on the server side, such
as on-line XML databases and continuous query systems,
and those that process queries on the client side, such as
XML streaming systems. In the former, only necessary
information is sent over networks from the server to the
clients, and therefore, they are more efficient with respect
to communication costs.

Even in the server-side approach, however, the commu-
nication cost is not always optimal. For example, if a client
submits two queries to a database on a network, and the two
answer sets to them have some data in common, sending
those two answer sets separately to the client is not optimal
in the sense that some data are sent twice. For example,
suppose a client submits two queries asking:

• abstracts of papers including “XML” in their titles

• entire papers including both “XML” and “XPath” in
their titles

to an on-line digital library or a continuous query system.
If some paper includes “XML” and “XPath” in its title, its
abstract appears in the answer sets twice, once as an answer
to the first query, and once as a subelement of an answer to
the second query. Hence, sending the two answer sets to

48

the client over the network is not optimal with respect to
the communication cost.

Even when a client submits a single XPath query, the
answer can be self-redundant, i.e., some elements in the
answer set may be subelements of other elements in that
answer set. For example, suppose a client issues the query:

• retrieve chapters, sections, or subsections that have the
word “XML” in their headings.

Then, if a book has a section with the heading “XML” and
its subsection with the heading “XML queries”, that sub-
section is sent to the client twice, once as an answer and
once as a subelement of another answer. Answers to XPath
queries are self-redundant very often. Notice that the same
situation also occurs if a user issues a single query asking
the union of the two queries in the previous example.

In the worst case, if a client submits a query “retrieve
any subtree of the database tree,” the result sent to the client
can be far larger than the database itself. Self-redundancy
of answers comes from the characteristic of XPath queries
in which an answer to a query is a set of subtrees of the
database tree, and a member of an answer set may be a
subtree of another member of the same answer set. (How-
ever, a similar phenomenon can occur in other databases
as well because it is quite usual that a query language can
create an answer that is bigger than the database itself. For
example, in relational databases, one can query the product
of all the relations in the database [11].)

If the server and the client agree on some encoding or
protocol, we can avoid such redundancy in query answers
in various ways, e.g., embedding “pointers” in the answers.
In this research, however, we assume the server is a service
on the Internet provided by someone else, and all we can
do is to submit XPath queries and get answers.

Even in such an environment, it is possible to minimize
the size of the data sent over the network in the examples
above. In the first example, we can minimize it by submit-
ting the following two queries instead of the original ones:

• retrieve abstracts of papers including the word “XML”
in their titles, but not “XPath”, and

• retrieve entire papers including the words “XML” and
“XPath” in their titles.

The server sends the answers to those queries, and then, the
client can produce the answers to the original queries from
those two results. In this scenario, the data sent over the
network is optimal because it only includes data that ap-
pears in either (or both) of the final answers without dupli-
cation. In the same way, in the second example, the client
should submit the following query:

• retrieve chapters, sections, or subsections that have
“XML” in their headings, but have no ancestor with
“XML” in its heading.

Then, the client can extract all the answers to the original
query from the answers to this query. The data sent over
the network in this example is again optimal.

In this way, we can sometimes optimize the communi-
cation cost by leaving a part of the query evaluation to the
client, rather than fully evaluating queries at the server. By
generalizing these examples, we study the following prob-
lem in this paper: Given a single or a set of XPath queries,
we compute another set of queries such that:

• we can produce the answers to the original queries
from their answers, and

• the total size of their answers is minimal.

In other words, we compute a minimal view set that can an-
swer all the original queries. In this paper, we show algo-
rithms for computing such a view set. Notice that a view set
that includes all the information in the final answers does
not necessarily guarantee we can correctly extract them.
This is because some context in the database may be lost
in the views. We will show some examples later.

If the server supports a full-fledged query language like
XQuery, we can write queries that embed markers in views
so that the client can easily extract the answers to the orig-
inal queries. XPath, however, can only extract a set of sub-
trees of the database tree without modification, thus making
the problem non-trivial; nevertheless, it is also this property
that makes XPath efficiently processable, and it is the rea-
son why many researches on large-scale information ser-
vices adopt XPath [2, 8, 17, 25].

The techniques shown in this paper can be used in sev-
eral ways. One way is to embed them in an intelligent
querying agent, which resides at the client site. The agent
transforms the user queries before submitting them, and ex-
tracts the answers from the views received from the server.
Another approach is to embed them in a proxy server which
resides between a continuous query server on the Internet
and its users on the local network. Those users register
queries to the proxy server, and the proxy server registers
transformed queries to the server. By this, if many users
register queries with overlapping answers, we can optimize
the communication cost over the Internet.

In the next section, we explain the fragment of XPath
we use in this paper. Next, we show some examples to
clarify the problem and its inherent difficulties, and then,
we formulate the problem. In the following three sections,
we show our algorithm in three steps. We begin with an
algorithm for non-recursive queries. (The meaning of non-
recursive/recursive queries is explained later.) Second, we
show an algorithm for a single recursive query, and finally
we show an algorithm for the general case. Then, we dis-
cuss related work. The final section summarizes the paper
and briefly discusses the practicality of our method.

2 XPath
As mentioned above, XPath is evaluated on a XML tree,
and returns a set of subtrees rooted by nodes matching the
pattern. Here, we assume that a query answer is given in
the form of a XML tree rooted by a node labeled Ans that
has all the matching subtrees as its children (as in some

49

XPath processors, e.g., Xalan [27]). For example, when a
query answer is the following set of three subtrees:

{〈a〉 . . . 〈/a〉, 〈b〉 . . . 〈/b〉, 〈b〉 . . . 〈/b〉}

it is given as an XML tree in a form:

〈Ans〉 〈a〉. . .〈/a〉 〈b〉. . .〈/b〉 〈b〉. . .〈/b〉 〈/Ans〉.

In this paper, we use a fragment of XPath language that
only includes its main features. The syntax of the language
is defined as follows:

q ::= /p | //p | q ∪ q | q − q

p ::= a | {a1, . . . , an} | ∗ | p/p | p//p | p[p] | p[p]

A query q is either an absolute location path (in XPath ter-
minology) of the form /p or //p, the union of two queries
q ∪ q, or the difference of two queries q − q. An absolute
location path /p matches nodes which are reachable from
the root through paths matching a relative location path
(in XPath terminology) p. On the other hand, //p matches
nodes which are reachable through paths matching p start-
ing from any nodes. q ∪ q and q − q are the ordinary set
union and the ordinary set difference.

A relative location path p is composed of the following
constructs. a is a label test that matches nodes with a la-
bel a, and a negative label test {a1, . . . , an}matches nodes
with a label other than a1, . . . , an. ∗ is a wild card that
matches nodes with any labels. p/p is a concatenation of
two location paths. For example, /a/∗ matches nodes with
any label which are children of the “a” node at the root
of the database tree. p1//p2 is also a concatenation, but it
does not require a path matching p2 appears immediately
beneath a path matching p1. For example, /a/∗//b matches
any “b” nodes which are descendants of the nodes match-
ing the previous query /a/∗. // represents a restricted form of
recursion, and we call queries with // (without //) recursive
queries (non-recursive queries, respectively).

p1[p2] is called a predicate expression, and it matches
nodes which are reachable through paths matching p1, and
also have at least one path matching p2 beneath them. For
example, //a[b/c] matches “a” nodes at any depth that has a
child node “b” which, in turn, has a child node “c”. Simi-
larly, //a[b][c] matches “a” nodes at any depth that have both
“b” children and “c” children. p1[p2] is a negative predi-
cate and it matches nodes that are reachable through paths
matching p1 but have no path matching p2 beneath them.

The definition above does not include the intersection
operation q1∩q2, but it can be computed by q1− (q1−q2).
Complementation of q can also be computed by //∗ − q. If
we assume a finite set of labels, {a1, . . . , an} and ∗ add
no expressive power to the language, but here we assume
an infinite set of labels. Notice that {a1, . . . , an} has more
power than the combination of {a} and ∩. For example,
//{a, b}//c is not equivalent to (//{a}//c) ∩ (//{b}//c).

q − q is supported in XPath 2.0 [13]. In XPath 1.0 [12],
it is not directly supported, but we can express it by us-
ing a negative eq-join with identity-equality. Negative eq-
join can be expressed by absolute location paths in nega-
tive predicates, and identity-equality can be expressed by

using built-in count function as shown in [24]. Similarly,
{a1, . . . , an} is not directly supported in XPath standard,
but we can express it by ∗[not(self::a1)]. . .[not(self::an)].
Negative predicates are expressed by p[not(p)]. For more
details of the XPath standards, please refer to [12, 13].

3 Problem Analysis
In this section, we show some motivating examples in order
to clarify what is the problem in XPath processing over a
network, and what are the difficulties in it.

3.1 Examples with Non-recursive Queries

First, we consider examples that only include non-recursive
queries. Below are two simple examples of a set of XPath
queries that cause redundancy in their answers:

{

Q1 : /a/∗
Q2 : /a/b

{

Q3 : /a/b[c]
Q4 : /a/b[d]

In the example on the left side, the answer to Q2 is a sub-
set of Q1, and therefore, sending the answers to Q1 and
Q2 separately is not optimal with respect to communica-
tion costs. In this case, a simple solution is that we submit
only Q1 to the server, and produce the answer to Q2 at the
client side by extracting only b elements from the answer
to Q1. Because we assume that the answer to a query is
given in a form of a XML tree rooted by Ans node whose
children are answer elements, we can do that by evaluating
a query /Ans/b against the answer to Q1. In the rest of the
paper, we write this in the following syntax:

Q2 ← (Q1, /Ans/b)

On the other hand, in the case of Q3 and Q4, their answers
overlap only partially. In this case, we can submit the query
below instead of Q3 and Q4:

{

Q3∪4 : /a/b[c] ∪ /a/b[d]

and we can extract the answer to Q3 and Q4 at the client in
the following way:

Q3 ← (Q3∪4, /Ans/b[c])
Q4 ← (Q3∪4, /Ans/b[d])

Similar situations are caused by union, difference, and
negative label tests, such as:

{

Q5 : /a/b ∪ /a/c
Q6 : /a/b

{

Q7 : /a/{b}
Q8 : /a/{c}

Those two cases can be handled in the same way as the two
examples above, respectively.

In some cases, however, we cannot extract the answer to
some query from the answer to another query even if the
former is a subset of the latter. For example, suppose we
have two queries below:

{

Q9 : /a/∗/c
Q10 : /a/b/c

50

The answer to Q9 is a superset of the answer to Q10. In this
case, however, only given the answer to Q9 of the form:

〈Ans〉 〈c〉. . .〈/c〉 . . . 〈c〉. . .〈/c〉 〈/Ans〉

we cannot tell which c elements in this answer are to be
included in the answer to Q10 because we cannot know
the labels of their parents in the original database tree. In
this way, some context information in the database may be
lost in query answers. In this case, we can minimize the
communication cost, i.e., the total size of the data sent over
the network, by submitting the following two queries:

{

Q9−10 : /a/{b}/c
Q10 : /a/b/c

The answer to Q9 can be produced at the client side by
taking union of the answers to Q9−10 and Q10 as follows:

Q9 ← (Q9−10, /Ans/∗)
Q9 ← (Q10, /Ans/∗)

The pair of Q9−10 and Q10 is optimal with respect to the
communication cost because their answers only include
data that appear in the final answers without duplication.

Similarly, if given two intersecting queries below:
{

Q11 : /a/{b}/d
Q12 : /a/{c}/d

then, we should submit the following queries:

Q11−12 : /a/c/d
Q11∩12 : /a/{b,c}/d
Q12−11 : /a/b/d

and produce the final answers in the following way:

Q11 ← (Q11−12, /Ans/∗)
Q11 ← (Q11∩12, /Ans/∗)
Q12 ← (Q11∩12, /Ans/∗)
Q12 ← (Q12−11, /Ans/∗)

This is more efficient with respect to the communication
cost than submitting Q11 and Q12, which results in sending
elements in their intersection twice.

In the example above, the source of the redundancy are
elements matching more than one query. Redundancy also
arises when some answers also appear as subelements of
other answers. Shown below are two simple examples:

{

Q13 : /a/∗
Q14 : /a/b/c

{

Q15 : /a/∗ ∪ /a/b/c

In the case of Q15, its answer can be self-redundant, i.e.,
some elements in its answer set may also appear as subele-
ments of other elements in the answer set. In these cases,
we should submit the following queries, respectively:

{

Q13 : /a/∗
{

Q>
15 : /a/∗

and extract the final answers in the following way:

Q14 ← (Q13, /Ans/b/c)
Q15 ← (Q>

15, /Ans/∗)
Q15 ← (Q>

15, /Ans/b/c)

In the examples above, we can extract elements match-
ing /a/b/c from the answer to /a/∗ because the answer to /a/∗
includes enough context information for /a/b/c. In general,
however, some context information may be lost in query
answers as explained before, and we may need to submit
up to three queries, as shown in the example below:

{

Q16 : /a/∗/c
Q17 : /a/b/c/d

{

Q18 : /a/{b}/d
Q19 : /a/{c}/d/e

Here, we should submit the following set of queries:

{

Q16−17 : /a/{b}/c
Q16∩17 : /a/b/c

Q18−19 : /a/c/d
Q18∩19 : /a/{b,c}/d
Q19−18 : /a/b/d/e

and produce the final answers in the following way:

Q16 ← (Q16−17, /Ans/∗)
Q16 ← (Q16∩17, /Ans/∗)
Q17 ← (Q16∩17, /Ans/∗/d)

Q18 ← (Q18−19, /Ans/∗)
Q18 ← (Q18∩19, /Ans/∗)
Q19 ← (Q18∩19, /Ans/∗/e)
Q19 ← (Q19−18, /Ans/∗)

If we want to make the number of submitted queries as
small as possible, in the example of Q18 and Q19, we can
merge Q18−19 with Q19−18 into a query (/a/c/d)∪(/a/b/d/e)
because we can extract the answers to Q18−19 and Q19−18

from its answer by /Ans/e and /Ans/d. It is also possible to
merge Q18∩19 and Q19−18 instead. Although it is not dif-
ficult to detect such cases, in this paper, because of space
limitations, we only consider the elimination of data redun-
dancy, and do not discuss the minimization of the number
of queries. Therefore, even in the previous example of Q13

and Q14, where we need to submit only Q13, the algorithm
we show later produces two queries.

3.2 Examples with Recursive Queries

The examples shown so far included only non-recursive
queries, i.e., queries without //. When queries include //
or union operator ∪, the redundancy in the answers occurs
even when a user submits a single query. We have already
shown an example with ∪. Below is an example with //:

{

Q20 : //a

This query retrieves all the subtrees rooted by “a” nodes
in the database tree. Therefore, if some “a” nodes occur
as descendants of other “a” nodes, the subtrees rooted by
those descendant “a” are sent more than once over the net-
work. In this way, answer sets to recursive XPath queries
are self-redundant by nature because of the nested structure
of XML.

In this case, we can minimize the size of the data sent
over the network by submitting the query below to the
server:

{

Q>
20 : //a− //a//∗

51

This query retrieves “a” nodes that occur as the first “a”
node in each path from the root. Then, we can produce the
answer to the original query in the following way:

Q20 ← (Q>
20, /Ans//a)

Extraction of answers that are descendant of other an-
swers can be more complicated. Suppose we have a query:

{

Q21 : //a/b/a/b

Then, we should submit the query below:
{

Q>
21 : //a/b/a/b− //a/b/a/b//∗

−//a/b/a/b//∗ at the tail eliminates the self-redundancy in
the answer. In order to extract all the answers to Q21 from
the answer to Q>

21, we need three queries shown below:

Q21 ← (Q>
21, /Ans/b)

Q21 ← (Q>
21, /Ans/b/a/b)

Q21 ← (Q>
21, /Ans//a/b/a/b)

Because a b element in the answer to Q>
21 is an element

that has matched //a/b/a/b, if it has a path a/b beneath it,
that grandchild b node was also matched //a/b/a/b in the
database. Therefore, we need /Ans/b/a/b shown above. The
computation of how to extract descendant answers is sim-
ilar to the computation of the prefix function in the classic
Knuth-Morris-Pratt algorithm for substring search [19].

For recursive queries, we sometimes need more than one
query even when a client submits a single union-free query.
For example, suppose we have the query below:

{

Q22 : //a/∗/∗

which retrieves grandchildren of “a” nodes occurring at any
level in the database tree. In this case, the single query and
two procedure below are not sufficient:

{

Q>
22 : //a/∗/∗− //a/∗/∗//∗

Q22 ← (Q>
22, /Ans/∗)

Q22 ← (Q>
22, /Ans//a/∗/∗)

because these two procedures cannot extract answers that
are children of some answers to Q>

22. For example, if there
is a path /a/a/b/c in the database tree, both the node b and
the node c match Q22, and only b is included in the answer
to Q>

22. Only from the path /Ans/b/c in the answer to Q>
22,

however, we cannot know the labels of the parent of b, and
therefore, we cannot tell if we should extract the c node.

In this case, we can correctly extract the answer to Q22

while minimizing the communication cost by submitting
the following two queries:

{

Q>
a : //a/a/∗− //a/∗/∗//∗

Q>

{a} : //a/{a}/∗− //a/∗/∗//∗

and by extracting the answer to Q22 in the following way:

Q22 ← (Q>
a , /Ans/∗)

Q22 ← (Q>
a , /Ans/∗/∗)

Q22 ← (Q>
a , /Ans//a/∗/∗)

Q22 ← (Q>

{a}
, /Ans/∗)

Q22 ← (Q>

{a}, /Ans//a/∗/∗)

4 Problem Formulation
Now we formulate the problem we study in this paper.
First, when an XML element e1 is a descendant of another
XML element e2, we write e1 ≺ e2. We also write e1 � e2

to mean e1 ≺ e2 or e1 = e2. Next, for a bag B of elements
(we use a bag because data sent over a network may in-
clude the same element more than once), we define E(B),
the subelement-enumeration of B, as follows:

E(B) ≡
⋃

e∈B

b{s | s � e}

where
⋃b

e∈B is the iteration of the bag union operation ∪b

for all the elements in B including multi-occurrences. Us-
ing E(B), we define a partial order⊆E as follows:

B1 ⊆E B2 ≡ E(B1) ⊆
b E(B2)

where ⊆b is the bag inclusion. Next, Q(t) denotes the re-
sult of the evaluation of a query Q against an XML tree t.
Then, we say a set of queries {V1, . . . , Vm} is a view set
that can answer a query Q iff:

(∃q1, . . . , qm)(∀t)Q(t) = q1(V1(t)) ∪ . . . ∪ qm(Vm(t))

Now, we formulate the problem as follows:
Minimal View Selection Problem: Given a set of XPath
queries {Q1, . . . , Qn}, we compute a view set (i.e., another
set of XPath queries) V = {V1, . . . , Vm}, such that:

1. V can answer all of Q1, . . . , Qn, and

2. among those satisfying 1, V1(t)∪b . . .∪bVm(t) is min-
imal under⊆E for any t.

In the following three sections, we show algorithms to
compute such minimal view sets. We begin with an al-
gorithm for an arbitrary number of non-recursive queries,
then show an algorithm for a single recursive query, and fi-
nally explain an algorithm for the general case, i.e., for an
arbitrary number of recursive queries. In this paper, for the
sake of brevity, we restrict the input of our algorithms to a
language without union (q ∪ q) and difference (q − q). We
can, however, extend our algorithms for the language in-
cluding them. Although we forbid those operations in the
input, we use them in the output when we have recursive
queries as shown in the later sections.

5 Algorithm for Non-Recursive Queries
This section explains an algorithm that computes a minimal
view set for a given set of non-recursive XPath queries.

5.1 Intuition behind the Algorithm

First, we explain the intuition behind our algorithm, and
show a simpler algorithm only for two queries.

Suppose we are given a set of non-recursive queries
Q1, . . . , Qn. In the simplest case, if all of them have the
same length, i.e., the same number of /, then an element in

52

the answer to some Qi cannot be a subelement of elements
in the answers to the other queries. In that case, the prob-
lem is rather easy. The following set of queries is a minimal
view that can answer to Q1, . . . , Qn:

{V (S) | S 6= ∅, S ⊆ {1, . . . , n}}

where
V (S) =

⋂

i∈S

Qi −
⋃

i∈{1,...,n}−S

Qi

From this view set, we can extract answers by executing:

Qj ← (V (S), /Ans/∗)

for every j, S s.t. j ∈ S. For example, if n = 2, the mini-
mal view is:

{Q1 −Q2, Q1 ∩Q2, Q2 −Q1}

and we can extract the answers to Q1 and Q2 by

Q1 ← (Q1 −Q2, /Ans/∗)
Q1 ← (Q1 ∩Q2, /Ans/∗)
Q2 ← (Q1 ∩Q2, /Ans/∗)
Q2 ← (Q2 −Q1, /Ans/∗)

In general, however, the length of Q1, . . . , Qn are not
the same, and some element in one answer may be a subele-
ment of elements in other answers. To deal with it, we de-
fine four set operations, generalized upper intersection ∩�,
generalized lower intersection ∩≺, generalized difference
−�, and self-redundancy elimination >, as follows:

S1 ∩� S2 ≡ {e1 ∈ S1 | (∃e2 ∈ S2) e1 � e2}
S1 ∩≺ S2 ≡ {e1 ∈ S1 | (∃e2 ∈ S2) e1 ≺ e2}
S1 −� S2 ≡ {e1 ∈ S1 | (∀e2 ∈ S2) e1 6� e2 ∧ e2 6� e1}

S> ≡ {e | e is maximal in S under�}

If we substitute = for ≺, � in those definitions, ∩�, ∩≺,
−� fall back into the ordinary intersection and difference.
Notice that ∩�, ∩≺ are not symmetric. (They are actually
instances of “filter” operator in [1], while−� is an instance
of generalized difference in [1].) If S> 6= S, we say S is
self-redundant. Then, the following properties hold.

Proposition 1 The following equation holds:
S1 = (S1 −� S2)∪ (S1 ∩� S2)∪ (S1 ∩ S2) ∪ (S1 ∩≺ S2)

Proof: l.h.s.⊇r.h.s. is obvious from the definition of −�,
∩�, ∩, ∩≺. l.h.s.⊆r.h.s. is also obvious because every e1 ∈
S1 appears at least one of the four sets in r.h.s.

Proposition 2 If S1, S2 are not self-redundant, seven sets:
S1 −� S2, S1 ∩� S2, S1 ∩≺ S2, S1 ∩ S2, S2 ∩≺
S1, S2 ∩� S1, S2 −� S1 are disjoint with one another.

Proposition 3 If S1, S2 are not self-redundant, the seven
sets above are also pairwise disjoint in the sense of ∩�
and ∩≺ except for the four cases below:

(S1 ∩� S2) ∩� (S2 ∩≺ S1) = (S1 ∩� S2)
(S1 ∩≺ S2) ∩≺ (S2 ∩� S1) = (S1 ∩≺ S2)
(S2 ∩� S1) ∩� (S1 ∩≺ S2) = (S2 ∩� S1)
(S2 ∩≺ S1) ∩≺ (S1 ∩� S2) = (S2 ∩≺ S1)

Proof Outline of Proposition 2, 3: It is easy to show that if
any two of the seven sets have other intersections, it implies
that either S1 or S2 is self-redundant.

We also define those operations for queries, such as:

Q1 ∩� Q2 ≡ {Q | (∀t)Q(t) = Q1(t) ∩� Q2(t)}
Q1 ∩≺ Q2 ≡ {Q | (∀t)Q(t) = Q1(t) ∩≺ Q2(t)}
Q1 −� Q2 ≡ {Q | (∀t)Q(t) = Q1(t)−� Q2(t)}

Q>
1 ≡ {Q | (∀t)Q(t) = Q1(t)

>}

They are defined by the set of equivalent queries, but
we also use those notations to denote some representative
queries for those equivalent classes in the rest of the pa-
per. We also say Q is self-redundant if (∃t)Q(t) 6= Q>(t).
Then, the following proposition holds for Q>.

Proposition 4 Non-recursive union-free queries are never
self-redundant.

Proof: All the elements in the answer to a non-recursive
union-free query appear at the same level in the database
tree corresponding to the length of the query. Therefore,
no element can be a subelement of the other.

Therefore, Proposition 2 and 3 apply to the answers
to non-recursive union-free queries. Then, the following
property holds:

Proposition 5 When given two non-recursive union-free
queries Q1 and Q2, we can retrieve all the necessary ele-
ments for their answers without duplication by five queries
Q1−�Q2, Q1∩�Q2, Q1∩Q2, Q2∩�Q1, and Q2−�Q1.

Proof: Let S1 and S2 be the answers to Q1 and Q2. By
Proposition 1, those five sets include all the elements in
S1∪S2 except for those in S1∩≺S2 and S2∩≺S1. Elements
in S1∩≺S2 and S2∩≺S1 are, however, included in S2∩�S1

and S1 ∩� S2 as subelements because of Proposition 3. In
addition, by Proposition 2 and 3, those five sets include no
duplication even in the sense of ∩≺ or ∩�.

This property suggests that the set of those five sets may
work as a minimal view that can answer Q1 and Q2 (al-
though this proposition just guarantees that all the neces-
sary elements are included in those five sets, and does not
guarantee that S1 ∩≺ S2 and S2 ∩≺ S1 can correctly be
extracted from S2 ∩� S1 and S1 ∩� S2).

Following this observation, we can develop a simple al-
gorithm for computing a minimal view set for two non-
recursive union-free queries. Let Q1 be /p1

1/. . . /pn
1 and Q2

be /p1
2/. . . /pm

2 where pj
i are expressions that do not include /

nor //. We can assume n ≤ m w.l.o.g. We can compute the
minimal view for Q1 and Q2 in the following way.

If n = m, Q1 ∩� Q2, Q1 ∩≺ Q2, Q2 ∩� Q1, and
Q2 ∩≺ Q1 are empty queries, and the following three
queries constitute a minimal view:

Q1 −� Q2 : /p1
1/. . . /pn

1 − /p1
2/. . . /pm

2

Q1 ∩Q2 : /p1
1/. . . /pn

1 ∩ /p1
2/. . . /pm

2

Q2 −� Q1 : /p1
2/. . . /pm

2 − /p1
1/. . . /pn

1

and we can extract the final answers as follows:

53

Q1 ← (Q1 −� Q2, /Ans/∗)
Q1 ← (Q1 ∩Q2, /Ans/∗)
Q2 ← (Q1 ∩Q2, /Ans/∗)
Q2 ← (Q2 −� Q1, /Ans/∗)

If n < m, Q1∩≺Q2, Q1∩Q2, and Q2∩�Q1 are empty,
and the three queries below constitute a minimal view:

Q1 −� Q2 : /p1
1/. . . /pn

1 − /p1
2/. . . /pn

2 [pn+1
2 /. . . /pm

2]
Q1 ∩� Q2 : /p1

1/. . . /pn
1 ∩ /p1

2/. . . /pn
2 [pn+1

2 /. . . /pm
2]

Q2 −� Q1 : /p1
2/. . . /pm

2 − /p1
1/. . . /pn

1 //∗

and we can extract the final answers as follows:

Q1 ← (Q1 −� Q2, /Ans/∗)
Q1 ← (Q1 ∩� Q2, /Ans/∗)
Q2 ← (Q1 ∩� Q2, /Ans/∗/pn+1

2 /. . . /pm
2)

Q2 ← (Q2 −� Q1, /Ans/∗)

The third line above corresponds to the extraction of Q2∩≺
Q1 from Q1 ∩� Q2. This solution is directly following the
observation explained above, but we can slightly simplify
the view set above to the one shown below:

Q1−2 : /p1
1/. . . /pn

1 − /p1
2/. . . /pn

2

Q1∩2 : /p1
1/. . . /pn

1 ∩ /p1
2/. . . /pn

2

Q2 −� Q1 : /p1
2/. . . /pm

2 − /p1
1/. . . /pn

1 //∗

From this view set, we can extract the answer to Q1 and Q2

in exactly the same procedure as above with substituting
Q1−�Q2 and Q1∩�Q2 with Q1−2 and Q1∩2, respectively.
Proof: It is easy to show (Q1 −� Q2) ∪ (Q1 ∩� Q2) =
Q1−2 ∪Q1∩2. It is also easy to show that the result of both
(Q1∩�Q2, /Ans/pn

2 /. . . /pm
2) and (Q1∩2, /Ans/pn

2 /. . . /pm
2) are

equal to the answer to Q1// ∗ ∩Q2.
For example, let Q1 be /a/b and Q2 be /a/∗/c. Then,

Q1 −� Q2 is /a/b− /a/∗[c], and Q1 ∩� Q2 is /a/b∩ /a/∗[c],
but we can also extract the answers to Q1 and Q2 from
/a/b− /a/∗ and /a/b ∩ /a/∗ in the same procedure.

5.2 Algorithm

In the previous subsection, we explained the intuition be-
hind our algorithm, and showed a simple algorithm for
two queries. In this subsection, we show a complete algo-
rithm for an arbitrary number of non-recursive union-free
queries. In the simple algorithm, we computed−� and ∩�
of queries by using − and ∩ constructs for queries, and
it may create unnecessary views which are always empty.
On the other hand, the algorithm shown in this subsection
produces simpler queries that do not include − and ∩, and
does not produce unnecessary empty views.

The main part of the algorithm is translation of queries
into automata, and construction of their product automa-
ton. When given a set of non-recursive union-free XPath
queries, we first translate them to a deterministic finite au-
tomata on a alphabet of symbols sym defined as below:

sym ::= a | {a1, . . . , an} | ∗ | sym[p] | sym[p]

Q1 : s0
1

-a s1
1

-b e1

Q2 : s0
2 -a

s1
2 -{c}[c]

e2

Q3 : s0
3

-a s1
3

-∗ s2
3

-c e3

Figure 1: Automata for Queries Q1, Q2, Q3

Q2 : s0
2 -a s1

2 -
{c}[c]

e2

?{a}

f2∗ *

�
�

�+
c

%� {c}[c]

Figure 2: Automaton for Q2 with a fail state

where a or a1, . . . , an are any label, and p is a relative lo-
cation path defined before.

Because input queries do not include //, a query is trans-
lated into an automaton of the form of a simple sequence.
For example, suppose we have the following set of queries:
Q1: /a/b, Q2: /a/{c}[c], Q3: /a/∗/c. Those queries are trans-
lated into the three automata shown in Figure 1.

Then, we explicitly add a “fail state” to each automaton.
For example, Figure 2 shows the automaton for Q2 with
the fail state. To add fail states, we need to compute the
complementation of symbols. Complementation of sym-
bols sym, denoted by (sym)−, is defined by the following
rules corresponding to the syntax definition of sym above:

(a)− = {{a}}

({a1, . . . , an})− = {a1, . . . , an}
(∗)− = ∅

(sym[p])− = (sym)− ∪ {sym[p]}

Notice that the complementation of a symbol is represented
by a set of symbols. Because of that, we may need many
transition rules from each state to the fail state.

Then, we construct the product of all those automata in
the standard way. The only difference from the standard
product construction is that we need to compute the inter-
section and the difference between symbols. Intersection
of two symbols, ∩(sym, sym) is also defined by the rules
corresponding to the syntax definition above. Here, we list
only part of the rules:

∩(a, {a1, . . .}) = a if a 6∈ {a1, . . .}
undefined otherwise

∩({a1, . . .}, {b1, . . .}) = {a1, . . . , b1, . . .}
∩(sym, sym[p]) = ∩(sym, sym)[p]
∩(sym, sym[p]) = ∩(sym, sym)[p]

Notice that intersection of two symbols can always be rep-
resented by a single symbol while complementation of a
symbol can be a set of symbols. The difference of two sym-
bols, −(sym1, sym2), are computed by the rule below:

−(sym1, sym2) = ∩(sym1, (sym2)
−)

54

(s0
1, s

0
2, s

0
3) -a

(s1
1, s

1
2, s

1
3) -{b,c}[c]

(f1, e2, s
2
3)

?
{a}

(f1, f2, f3)

Q
Q

Qkb[c]
(e1, f2, s

2
3)

6b[c]

(e1, e2, s
2
3)

?
{b,c} [c]

(f1, f2, s
2
3)

?
c

�{c}

?
c

(f1, f2, e3)
Q

Q
Qk
∗

�
�

�
�

��	

c

{c}

?
to

(f1, f2, f3)

{c} - to (f1, f2, f3)

c
6

to (f1, f2, e3)

c
6

to (f1, f2, e3)

{c}

CCW

Figure 3: Product Automaton for Q1, Q2, Q3

By using intersection and difference defined above,
we construct a product of all the automata for the given
queries. The product automaton for Q1, Q2, Q3 is shown
in Figure 3. Notice that automata for queries with the fail
states forms DAG, and their product also forms DAG.

A product automaton constructed in this way may in-
clude paths that are never followed. For example, in the
automaton shown in Figure 3, the transition with a label c
from (e1, f2, s

2
3) to (f1, f2, e3) is never followed because

of b[c] on the only transition into (e1, f2, s
2
3). The path

{b,c} [c]/c from (s1
1, s

1
2, s

1
3) to (f1, f2, e3) is also never fol-

lowed (although each of {b,c} [c] and c are used in other
paths). There may also exist unsatisfiable symbols pro-
duced in the computation of intersection or difference. In
addition, even the original queries submitted by the users
may include some unsatisfiable conditions by mistake.

We can determine satisfiability of a path by testing the
satisfiability of the set of predicates:

{[pp1], . . . , [ppn], [np1], . . . , [npm], [p]}

for each symbol sym[pp1] . . . [ppn][np1] . . . [npm] in the
path and the suffix p of the path following that symbol
(or {[pp1], . . . , [ppn], [np1], . . . , [npm]} if the suffix p does
not exists). For example, the satisfiability of the path
a[b][b/c]/b/c/d is determined by testing the satisfiability of
{[b], [b/c], [b/c/d]}, which is unsatisfiable because of [b/c]
and [b/c/d]. Therefore, this path is unsatisfiable.

We test satisfiability of a set of predicates as follows:

Proposition 6 {[pp1], . . . , [ppn], [np1], . . . , [npm]} is not
satisfiable iff some prefix of some ppi is contained (in the
ordinary sense of query containment) by some npj .

Proof: If no prefix of ppi is contained by any of npj , we
can create a path that matches ppi but not any of npj . Then,
an element with n children each of which satisfies one of
pp1, . . . , ppn but not any npj satisfies all the predicates.

We can determine if any prefix of some ppi is contained
by some npj by constructing a product automaton for /ppi

and /npj as explained below.
By using the product automaton for Q1, . . . , Qn, we can

compute the following relations and operations on queries:

Proposition 7 Qi is contained by Qj iff there is no sat-
isfiable path from (s1, . . . , sn) to any states of the form
(. . . , ei, . . . , s

k
j , . . .) where sk

j 6= ej .

Proposition 8 Intersection of Qi and Qj , Qi ∩ Qj , is a
union of queries corresponding to all satisfiable paths from
(s1, . . . , sn) to any states of the form (. . . , ei, . . . , ej , . . .).

Proposition 9 Difference of Qi and Qj , Qi − Qj , is a
union of queries corresponding to all satisfiable paths from
(s1, . . . , sn) to any states of the form (. . . , ei, . . . , s

k
j , . . .)

where sk
j 6= ej .

Therefore, we can express the intersection and the differ-
ence of two queries without using −. In other words, the
language without recursion and− is closed under intersec-
tion and difference. The proofs of those propositions are
easy and omitted here. The computation of containment
is used to test the satisfiability of predicates as explained
above, and the computation of intersection or difference
will be used in the next section.

Now we show the algorithm.
Algorithm for Non-recursive Queries
Input: n non-recursive queries Q1, . . . , Qn.
Output: a set of queries {V1, . . . , Vm} corresponding to
the minimal view set, and a list of triplets Qi ← (Vj , q

j
i)

showing how to extract answers to Q1, . . . , Qn from them.
begin

1. Translate Q1, . . . , Qn into automata, add fail states
explicitly, and construct a product automaton.

2. For each satisfiable path X from (s1, . . . , sn) to a
state T of the form (. . . , ei1 , . . . , ei2 , . . . , eia

, . . .) that
does not go through any other states of the form
(. . . , ej , . . .):

(a) add X to the view set, and add Qi ← (X, /Ans/∗)
to the triplet list for each i ∈ {i1, . . . , ia}.

(b) for each path Y from the state T to any state of
the form (. . . , ej , . . .), if X/Y is satisfiable, add
a triplet Qj ← (X, /Ans/∗/Y) to the list.

end
For example, from the product automaton shown in Fig-

ure 3, the algorithm above produces a view set:

{/a/b[c], /a/b[c], /a/{b,c}[c], /a/c/c}

and the following triplets:

Q1 ← (/a/b[c], /Ans/∗) Q1 ← (/a/b[c], /Ans/∗)
Q2 ← (/a/b[c], /Ans/∗) Q2 ← (/a/{b,c}[c], /Ans/∗)
Q3 ← (/a/c/c, /Ans/∗) Q3 ← (/a/b[c], /Ans/∗/c)
Q3 ← (/a/{b,c}[c], /Ans/∗/c)

Please examine that we can correctly extract the answers
to Q1, Q2, Q3 by these procedures. Notice that the
view set includes /a/c/c instead of /a/c/c∪/a/{b,c} [c]/c be-
cause /a/{b,c} [c]/c is unsatisfiable. Similarly, Q3 ←
(/a/b[c], /Ans/∗/c) was not included in the triplet list because
/a/b[c]/c is unsatisfiable.

55

Theorem 1 The algorithm above is correct.

Proof Outline: Each query added to the view set in the
step 2(a) in the algorithm above corresponds to a simplified
version (explained at the end of the previous subsection)
of Qi1 ∩ . . . ∩ Qia

∩� Qj1 . . . ∩� Qjb
−� Qk1

. . . −�

Qkc
for some disjoint sets {j1, . . . , jb} and {k1, . . . , kc}

s.t. {i1, . . . , ia, j1, . . . , jb, k1, . . . , kc} = {1, . . . , n}. From
this view, we can extract part of answers to Qi1 , . . . , Qia

by
/Ans/∗, and part of answers to Qj1 , . . . , Qjb

by /Ans/∗/Y . In
addition, the queries added to the view set do not include
duplication under ∩ and even under ∩≺ or ∩�.

It is also easy to prove the following proposition on the
number of queries to be evaluated on servers and on clients.

Theorem 2 When given non-recursive union-free queries
Q1, . . . , Qn, we need to submit up to 2n − 1 queries to the
server, and need up to n ∗ 2n−1 queries on the client.

Proof: As an upper bound, the number of views cannot be
larger than 2n − 1 because there cannot be larger number
of the states of the form (. . . , ei1 , . . . , ei2 , . . . , eia

, . . .) in
the product automaton. We need to extract the answer to
Qi from up to (2x − 1) + 2y views where x is the number
of queries which are shorter than Qi and y is the number of
queries which have the same length as Qi. It takes its max-
imum value 2n−1 when {x, y} = {n − 1, 0}. Therefore,
n ∗ 2n−1 is an upper bound for the number of queries eval-
uated on the client. As the lower bound, we actually need
2n− 1 views and n ∗ 2n−1 client queries if Q1, . . . , Qn are
/a/b[c1]/d, . . . , /a/b[cn]/d for some distinct c1, . . . , cn.

If we want to minimize the number of queries in the
view set, we can merge two views V1 and V2 iff the in-
tersection of two symbols on the transitions to the states
corresponding to V1 and V2 is undefined or unsatisfiable.
This is because only information that can be used to distin-
guish elements in the answer to V1 ∪ V2 is the information
represented by those two symbols. If they have intersec-
tion, and if the answer to V1 ∪ V2 includes some element
that matches that intersection, we cannot tell whether that
element was belonging to V1 or V2 (or both). In this pa-
per, however, we do not discuss this issue in more detail as
mentioned in Section 4.

6 Algorithm for One Recursive Query

In this section, we show an algorithm that computes a min-
imal view set that can answer one given recursive query.
Even though we restrict the input language of our algo-
rithms to a language without∪ and− operations, the output
language of the algorithms for recursive queries includes
them. This is partly because the language with recursion
but without − operations is not closed under difference or
complementation. For example, //a−//a//a cannot be ex-
pressed without −. (In XPath standard, it can be expressed
by using an “ancestor axis,” which we do not explain here.
In this paper, we assume a language without an ancestor

axis.) As shown in [6], most XPath fragments used in re-
cent researches are closed under intersection but not closed
under difference or complementation.

Suppose we are given a recursive query of the form:

Q : /p1//p2//. . . //pn or Q : //p1//p2//. . . //pn

where p1, . . . , pn are relative location paths that do not in-
clude //. Because whether the query starts with / or // does
not matter in the following discussion, here we assume /.

As shown in the examples in Section 3, the redundancy
in the answer to this query occurs in two ways:

• there are elements that match /p1//. . . //pn//pn

• there are elements that match /p1//. . . //pn/p where p
is some suffix of pn s.t. the remaining prefix of pn

matches the suffix of pn. Please refer to the example
of //a/b/a/b in Section 3.

If we have only the former kind of redundancy, we can sim-
ply submit a view query:

(/p1// . . . //pn)− (/p1// . . . //pn//∗)

and produce the final answer by applying /Ans/∗ and
/Ans//pn to the view. To also remove the latter kind of re-
dundancy, we consider a set of relative location paths:

S = {∗/p(1,k−1)
n , ∗/∗/p(1,k−2)

n , . . . , ∗/. . . /∗/p(1,2)
n }

where k is the length of pn, and p
(i,j)
n is the subsequence of

pn from the position i to the position j. Then, the algorithm
computes the following views:

V (T) : (/p1// . . . //(pn∩
⋂

p∈T

p−
⋃

p∈S−T

p))− /p1// . . . //pn//∗

for every T ⊆ S. Here, we use ordinary ∩ and − because
pn and every p ∈ S have the same length k, that is, their
answers cannot be subelements of other answers. The al-
gorithm computes ∩ and − of paths by using the product
automaton explained in the previous section. If the result
of pn ∩

⋂

p−
⋃

p is empty for some T , V (T) is discarded.
Then, for each survived view V (T), the algorithm produces
the following triplets:

(Q, V (T), /Ans/∗)
(Q, V (T), /Ans//pn)

(Q, V (T), /Ans/∗/p(i+1,k)
n) for each ∗/. . . /∗/p(1,i)

n ∈ T

When the length of pn is 1, the first one can be omitted
because the second one contains the first one.

For example, suppose we are given a query Q =
/a//b/c/∗/{d}. Then S = {p′3 : ∗/b/c/∗, p′2 : ∗/∗/b/c}, and
the algorithm examines the following four views:

V1 : /a// (b/c/∗/{d} ∩ p′3 ∩ p′2)− /a//b/c/∗/{d}//∗
V2 : /a// (b/c/∗/{d} ∩ p′3 − p′2)− /a//b/c/∗/{d}//∗
V3 : /a// (b/c/∗/{d} ∩ p′2 − p′3)− /a//b/c/∗/{d}//∗

V4 : /a// (b/c/∗/{d} − p′3 − p′2)− /a//b/c/∗/{d}//∗

56

By computing ∪ and − with the product automaton, the
algorithm find V1 and V2 are empty, and finally produces a
view set consisting of the following two views:

V3 : /a//b/c/b/c− /a//b/c/∗/{d}//∗
V4 : (/a//b/c/{b}/{d} ∪ /a//b/c/b/{c,d})− /a//b/c/∗/{d}//∗

The algorithm also produces the following triplets:

Q ← (V3, /Ans/∗)
Q ← (V3, /Ans//b/c/∗/{d})
Q ← (V3, /Ans/∗/∗/{d})
Q ← (V4, /Ans/∗)
Q ← (V4, /Ans//b/c/∗/{d})

Theorem 3 The algorithm above is correct.

Proof Outline: The view set above does not include self-
redundancy because of −(//p1// . . . //pn//∗) at the tail of
each view. Next, we show that the triplets above ex-
tract all the answers. Answers that appear as the first an-
swers in the paths from the root are extracted by /Ans/∗.
We call those answers “top-most answers”. Answers that
appear as children of top-most answers are extracted by
/Ans/∗/p(k,k)

n , answers that appear as grandchildren are ex-
tracted by /Ans/∗/∗/p(k−1,k)

n , . . . , and so on, and finally an-
swers that appear k or more levels deeper than the top-most
answers are extracted by /Ans//pn.

Theorem 4 When given one recursive query, we need up
to 2k−2 (or 1 when k = 1) queries to the server where k
is the length of the longest non-recursive suffix of the query
(i.e., pn above). On the client, we need to evaluate up to
2k−1 + (k − 2) ∗ 2k−3 (or 2 when k = 1) queries.

Proof: The algorithm above creates up to 2k−2 views.
On the client, we may need to execute two queries /Ans/∗
and /Ans//pn for all of 2k−2 views, which amounts to
2k−1 queries, and also need to evaluate each /Ans/∗/p(i,k)

n

(3 ≤ i ≤ k) on up to 2k−3 views, and it amounts to
(k−2)∗2k−3. As the lower bound, we actually need those
number of views and client queries when we have a query
of the form /a//{b1}/. . . /{bk} for some distinct b1, . . . , bk.

7 Algorithm for Recursive Queries

By combining the intuition shown in 5.1 and the algorithm
in the previous section, we develop an algorithm that com-
putes a minimal view set in general case, i.e., when given
the following set of recursive queries:

Q1 : /1
1 p1

1 /2
1 p2

1 . . . /l1
1 pl1

1

...
Qn : /1

n p1
n /2

n p2
n . . . /ln

n pln
n

where pj
i is an expression that includes neither / nor //, and

each /j
i represents either / or //. We define prefix paths

ppj
i (1 ≤ i ≤ n, 0 ≤ j ≤ li − 1) as follows :

ppj
i ≡ /1

i p
1
i . . . /j

i p
j
i if /j+1

i = /
(/1

i p
1
i . . . /j

ip
j
i) ∪ (/1

i p
1
i . . . /j

ip
j
i //∗) if /j+1

i = //
∅ if j = 0, /1

i = /
//∗ if j = 0, /1

i = //

where ∅ is the empty path that matches no elements.
Then, we create views defined as below for any S, T

s.t. S ⊆ {1, . . . , n}, S 6= ∅, T ⊆ {(i, j) | 1 ≤ i ≤ n, 0 ≤
j ≤ li − 1}:

(
⋂

i∈S

Qi−
⋃

i6∈S

Qi)∩(
⋂

(i,j)∈T

ppj
i−

⋃

(i,j) 6∈T

ppj
i)−

⋃

1≤i≤n

Qi//∗

Let V (S, T) denote a view defined with S, T . Then, for
each V (S, T), we produce the following triplets:

Qi ← (V (S, T), /Ans/∗) for i ∈ S
Qi ← (V (S, T), /Ans/∗/j+1

i pj+1
i . . . /li

i pli
i) for (i, j) ∈ T

For example, suppose we are given two queries:
{

Q1 : //a
Q2 : /b//{c}

Then, pp0
1 = //∗, pp0

2 = ∅, and pp1
2 = /b ∪ /b//∗ are defined

for Q1 and Q2. We can consider three sets for S and eight
sets for T . For T , however, we only need to consider those
including pp0

1 and not including pp0
2 because views created

by other T are empty. In addition, ∩pp0
1 and −pp0

2 in the
view queries can be omitted because they do not change
the semantics of the entire query. As a result, we create the
following views:

V1 : (Q1 ∩Q2) ∩ pp1
2 − (Q1//∗ ∪Q2//∗)

V2 : (Q1 ∩Q2)− pp1
2 − (Q1//∗ ∪Q2//∗)

V3 : (Q1 −Q2) ∩ pp1
2 − (Q1//∗ ∪Q2//∗)

V4 : (Q1 −Q2)− pp1
2 − (Q1//∗ ∪Q2//∗)

V5 : (Q2 −Q1) ∩ pp1
2 − (Q1//∗ ∪Q2//∗)

V6 : (Q2 −Q1)− pp1
2 − (Q1//∗ ∪Q2//∗)

We also produce the following triplets:

Q1 ← (Vi, //Ans/∗) where i ∈ {1, 2, 3, 4}
Q2 ← (Vi, //Ans/∗) where i ∈ {1, 2, 5, 6}
Q1 ← (Vi, //Ans/∗//a) where i ∈ {1, 2, 3, 4, 5, 6}
Q2 ← (Vi, //Ans/∗//{c}) where i ∈ {1, 3, 5}

Theorem 5 The algorithm above is correct.

Proof Outline: Because of −
⋃

Qi//∗ at the tail of every
view query, this view set only includes top-most answers
to Q1, . . . , Qn. Each top-most answer e appear exactly
once in the view set; e appears only in V (S, T) s.t. S =

{i | e ∈ Qi(t)} and T = {(i, j) | e ∈ ppj
i (t)} where t is

the database tree. Therefore, the view set includes all the
necessary elements without redundancy. From this view
set, we can correctly extract all the answers. It is intuitively

57

because what the algorithm does is to classify all the top-
most answers based on how their subelements should be
extracted as other answers.

This algorithm may create many empty views. For ex-
ample, V1, . . . , V6 shown above can be simplified into the
following queries:

V1 : /b//a− //a//∗− /b//{c}//∗
V4 : //a− /b//∗− //a//∗
V5 : /b//{a,c}− //a//∗− /b//{c}//∗
V2, V3, V6 : ∅

Therefore, V2, V3, V6 can be discarded. For such query sim-
plification and empty view elimination, we need to solve
the containment problem of XPath queries including //. We
could use the techniques shown in the past researches, such
as [3, 23], but that is out of the scope of this paper.

Theorem 6 When given n recursive queries whose total
length is l, we need up to (2n − 1) ∗ 2l−n queries to the
server, and we need up to n∗2n−1 ∗2l−n +(l−n)∗ (2n−
1) ∗ 2l−n−1 + n ∗ (2n − 1) ∗ 2l−n queries on the client.

Proof Outline: We have 2n − 1 different S and 2l differ-
ent T , but as explained above, for each pp0

i , we need to
consider only T including or not including pp0

i , thus only
2l−n different T . We need 2n−1 ∗ 2l−n queries of the form
/Ans/∗ for each Qi, (2n − 1) ∗ 2l−n−1 queries for each
ppj

i (j ≤ 1), and (2n − 1) ∗ 2l−n queries for each pp0
i . As

the lower bound, we actually need those number of views
and client queries when we have queries Q1, . . . , Qn of the
form Qi : //{a1

i }/. . . /{ali
i } for some distinct aj

i .

8 Related Work
There have been a large number of researches on the view
selection problem [18]. The main goal of the traditional
view selection problem is to choose a set of views that
minimizes the cost of answering queries within a limited
resource for storing views, and also within a limited cost
for maintaining them. On the other hand, the goal of our
research is to minimize the size of the data sent between
servers and clients over networks, which may actually in-
crease computation costs both on servers and clients.

A similar idea of computing minimal views to reduce
communication costs has been discussed in [11]. In that
paper, the authors discuss the problem of minimal views
in the context of relational databases, conjunctive queries,
and the redundancy caused by join operations. In this pa-
per, we discuss the minimal view problem in the context of
XML (or any data with nested structure), XPath queries (or
any language for nested data structure), and the redundancy
caused by the nested structure in the data.

In the context of client-server database architecture, the
concepts of semantic caching and remainder queries have
been proposed in [14], and they have also been studied in
the context of XML data in [10]. In semantic caching, the
client caches the answers to previous queries together with

the query expressions. When a user on the client issues a
new query whose answer partially overlaps with answers
to some previous queries, the client computes and submits
a “remainder query” that only retrieves data that are not
available in the cached answers. In general, however, some
context information may not be available in the cached an-
swers nor in their query expressions, and therefore, it is not
always possible to correctly extract part of answers to new
queries from the cached data only by looking at the expres-
sions and the answers of the cached queries. For example
if we submit Q9 in Section 3 first, and submit Q10 later, we
cannot extract the answers to Q10 from the cached answer
to Q9. On the other hand, in our problem setting, first we
are given a set of queries. For that, we can divide given
queries into smaller queries before submitting them so that
we can extract answers to overlapping queries. In addition,
[14] and [10] does not consider the duplication caused by
answers appearing as substructure of other answers.

The optimization of communication costs in query pro-
cessing over a network has also been studied in the context
of distributed databases [4], where distributed data servers
cooperate. In this paper, however, we assumed an environ-
ment where all clients can do is to submit queries, and they
cannot use special encodings or protocols.

The view minimization problem has also been studied in
[20]. Their goal is to minimize given views without losing
the power to answer queries, while our goal is to compute
a minimal view that can answer a given set of queries.

There also have been researches on answering queries
on tree or graph structured data using views [7, 15]. Their
goal is, however, to answer queries with a given view set,
not to compute minimal view set for a given set of queries.

9 Discussion and Conclusion

In this paper, we studied a problem in XML database sys-
tems on networks, which has recently become very impor-
tant both in the academy and in the industry. The prob-
lem is the redundancy in the answers to XPath queries sent
over the network, which wastes network resources. A sim-
ilar problem can occur in other data models and query lan-
guages, but this problem occurs especially frequently in the
context of XML and XPath. Even when a user submits a
single, quite ordinary XPath query, the answer to it may in-
clude significant redundancy. This problem comes from the
characteristics of XML and XPath: the data have a nested
structure and the language retrieves substructures appear-
ing at arbitrary levels. Therefore, although this paper dis-
cussed the problem in the context of XML and XPath, sim-
ilar problems occur in any nested data structure and query
languages that retrieves substructure at arbitrary level.

To solve this problem, we proposed the minimal view
approach. Given a set of queries, we compute a minimal
view set that can answer all the given queries, and submit
the queries asking for that view set to the database. Then,
the database sends that view set to the client, and the client
uses it to produce the answers to the original queries. We
showed algorithms that compute such a minimal view set.

58

Because view sets we compute are minimal in size, we can
optimize communication costs between database servers
and the clients.

One problem in this approach is that the queries for a
minimal view set are usually more complex than its original
queries, and it may increase the computation cost on the
server. To verify that this problem is not too serious for
our approach to be practical, we conducted experiments to
examine how much our approach improves communication
costs for practical queries, and how it affects computation
costs on the servers. Here, due to space limitations, we only
briefly summarize the result of our experiments. The detail
of the experiments will be reported in another publication.

As test data, we generated 233MB of artificial auction
data by XMark [26]. We ran experiments in two settings.
First, we stored XML data in a plain file, and evaluated
XPath using a DOM-based in-memory XPath processor
Xalan [27]. Second, we stored the data in a RDBMS, Ora-
cle 9i, using a standard relational encoding scheme of XML
used in many researches, such as [16], and evaluated XPath
by transforming them into SQL. We tested various practi-
cal queries, and for non-recursive queries, we could even
reduce the computation cost on the server in many cases.
For example, we tested the queries below:

Q1 : /site/region/namerica/item
Q2 : /site/region/europe/item
Q3 : /site/region/∗/item/description

which asks for complete information on auction items in
North America and Europe, and also asks for descriptions
of auction items in any region. Our algorithm computes the
view set consisting of Q1 and Q2 above, and q3 below:

q3 : /site/region/{namerica,europe}/item/description

Then, the total size of the query results, i.e., the size of the
data to be sent over the network was reduced by more than
60%. It is not surprising, but a more surprising result is
even the computation cost was reduced slightly in the DOM
setting, and by more than 25% in the relational encoding
setting. This is because the evaluation cost includes some
factors which are proportional to the answer size, and view
queries are more complicated but have smaller answers.

For recursive queries, if we evaluate −Qi//* directly, its
computation cost was very high. However, by expanding //
into a union of many queries, we could reduce the computa-
tion cost in many cases. The detail of such optimization of
the queries produced by our algorithm shown in this paper
is an important future work.

It is also interesting to investigate the interaction be-
tween our approach and the compression approach, which
compresses the data before sending, and decompresses it
on the client. Because compression removes redundancy, it
may offset the difference of the size of the original answers
and our minimal views. It is another important future work.

References
[1] M. Cherniack, S. B. Zdonik, M. H. Nodine: To Form a More

Perfect Union (Intersection, Difference). In DBPL, 1995

[2] M. Altinel and M. J. Franklin. Efficient filtering of XML
documents for selective dissemination of information. In
VLDB, pp. 53–64, 2000.

[3] S. Amer-Yahia, et al. Minimization of tree pattern queries.
In SIGMOD, pp. 497–508, 2001.

[4] P. M. G. Apers. Data allocation in distributed database sys-
tems. TODS, 13(3):263–304, 1988.

[5] C. Barton, et al. Streaming XPath processing with forward
and backward axes. In ICDE, pp. 455–466, 2003.

[6] M. Benedikt, W. Fan, G. M. Kuper. Structural properties of
XPath fragments. In ICDT, pp. 79–95, 2003.

[7] D. Calvanese, et al. Answering regular path queries using
views. In ICDE, pp. 389–398, 2000.

[8] C.-Y. Chan, et al. Efficient filtering of XML documents with
XPath expressions. In ICDE, pp. 235–244, 2002.

[9] J. Chen, et al. NiagaraCQ: A scalable continuous query sys-
tem for internet databases. In SIGMOD, pp. 379–390, 2000.

[10] L. Chen and E. A. Rundensteiner. ACE-XQ: A CachE-
aware XQuery answering system. In WebDB, pp. 31–36,
2002

[11] R. Chirkova and C. Li. Materializing views with minimal
size to answer queries. In PODS, pp. 38–48, 2003.

[12] J. Clark and S. DeRose, eds. XML Path Language (XPath)
Version 1.0 – W3C Recommendation, 1999.

[13] J. Clark and S. DeRose, eds. XML Path Language (XPath)
Version 2.0 – W3C Working Draft, 2003.

[14] S. Dar, et al. Semantic Data Caching and Replacement. In
VLDB, pp. 330–341, 1996.

[15] G. Grahne and A. Thomo. Query containment and rewriting
using views for regular path queries under constraints. In
PODS, pp. 111–122, 2003.

[16] T. Grust. Accelerating XPath location steps. In SIGMOD,
pp. 109–120, 2002.

[17] A. K. Gupta and D. Suciu. Stream processing of XPath
queries with predicates. In SIGMOD, pp. 419–430, 2003.

[18] A. Y. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4):270–294, 2001.

[19] D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern
matching in strings. SIAM Journal of Computing, 6:323–
350, 1977.

[20] C. Li, M. Bawa, J. D. Ullman. Minimizing view sets without
losing query-answering power. In ICDT, pp. 99–113, 2001.

[21] L. Liu, C. Pu, W. Tang. Continual queries for internet scale
event-drive information delivery. TKDE, 11(4):610–628,
1999.

[22] B. Ludäscher, P. Mukhopadhyay, Y. Papakonstantinou. A
transducer-based XML query processor. In VLDB, pp. 227–
238, 2002.

[23] G. Miklau and D. Suciu. Containment and equivalence for
an XPath fragment. In PODS, pp. 65–76, 2002.

[24] D. Olteanu, et al. XPath: looking forward. In XMLDM, pp.
109–127, 2002.

[25] F. Peng and S. S. Chawathe. XPath queries on streaming
data. In SIGMOD, pp. 431–442, 2003.

[26] A. Schmidt, et al. XMark: A benchmark for XML data
management. In VLDB, pp. 974–985, 2002.

[27] Xalan. http://xml.apache.org/xalan-j/.

59

