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Abstract

We investigate algebraic processing strate-
gies for large numeric datasets equipped
with a possibly irregular grid structure.
Such datasets arise, for example, in com-
putational simulations, observation networks,
medical imaging, and 2-D and 3-D rendering.
Existing approaches for manipulating these
datasets are incomplete: The performance of
SQL queries for manipulating large numeric
datasets is not competitive with specialized
tools. Database extensions for processing mul-
tidimensional discrete data can only model
regular, rectilinear grids. Visualization soft-
ware libraries are designed to process gridded
datasets efficiently, but no algebra has been
developed to simplify their use and afford opti-
mization. Further, these libraries are data de-
pendent – physical changes to data represen-
tation or organization break user programs.
In this paper, we present an algebra of grid-
fields for manipulating both regular and irreg-
ular gridded datasets, algebraic optimization
techniques, and an implementation backed by
experimental results. We compare our tech-
niques to those of spatial databases and vi-
sualization software libraries, using real ex-
amples from an Environmental Observation
and Forecasting System. We find that our ap-
proach can express optimized plans inaccessi-
ble to other techniques, resulting in improved
performance with reduced programming ef-
fort.
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Figure 1: Datasets bound to the nodes and polygons of a
2-D grid.

1 Introduction

Many scientific datasets can be characterized by the
topological structure, or grid, over which they are de-
fined. For example, a timeseries might be defined over
a 1-dimensional (1-D) grid, while the solution to a par-
tial differential equation using a finite-element method
might be defined over a 3-dimensional (3-D) grid.

These datasets consist of data tuples bound to the
cells of a grid. A grid may possess cells of many dimen-
sions; data can be associated with the nodes (0-cells),
edges (1-cells), polygons (2-cells), and so on. Figure 1
shows a 2-D irregular (non-rectilinear) grid with two
datasets bound to it. Geometric coordinates x and y
are associated with the nodes of the grid, as are salinity
and temperature values. Area and flux values are asso-
ciated with each polygon. The grid structure consists
of topological information only – generic cells, and in-
cidence and adjacency relationships between cells that
are invariant with respect to a particular geometric
embedding. A geometric embedding in this example
is captured by associating coordinate pairs with the
nodes. As these datasets are manipulated and trans-
formed, both the grid and the associated data must
be updated in tandem; new grid-aware operators are
required. Such operators must handle both regular
grids encoded as multidimensional arrays and irregular
grids that explicitly enumerate their cells. Since these
datasets tend to be large, efficiency is paramount.

Gridded datasets are especially common in scientific
and engineering domains. The context for our inter-
est in gridded data is CORIE [1], an Environmental
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Figure 2: The CORIE grid, extending from the Baja
peninsula to Alaska.

Observation and Forecasting System designed to sup-
port scientific and industrial interests in the Columbia
River estuary. The CORIE system both measures and
simulates the physical properties of the estuary, gener-
ating 5GB of data and thousands of data products for
each simulation run, including visualizations, aggre-
gated results and derived datasets. The data products
are consumed for many purposes, including salmon
habitability studies and environmental impact assess-
ments. Figure 2 shows the CORIE domain. The hori-
zontal irregular grid extends from the Baja peninsula
up to Alaska to capture the large-scale influences of
the Columbia River. The Columbia River estuary and
the ocean waters around the mouth of the river (in-
set) have a very high density of grid elements, to also
capture local hydrodynamic processes. Using a verti-
cal grid to discretize the depth of the river along with
this large horizontal grid, a 3-D grid can be generated.
Time represents a fourth dimension.

Traditional Approaches. Database languages
for processing multidimensional arrays have been pro-
posed [2, 13], but multidimensional arrays cannot di-
rectly model irregular grids, such as those used in the
CORIE system. A facility to manipulate both reg-
ular (rectilinear) grids and irregular (non-rectilinear)
grids is missing. Additionally, representing different
datasets bound to the nodes, edges, and faces of the
same grid is difficult with multidimensional arrays.
Raster GIS are similarly unable to model irregular
grids precisely.

Relational databases extended with spatial types
can model irregular grids, but have several weaknesses.
Explicit foreign keys and redundant geometric coordi-
nates1 can more than double database size. With 5-
20GB generated each day, even relatively inexpensive
disk space is at a premium. Transfer times into and
out of the database are excessive. Using the bulk load
facility of Postgres [23], loading one timestep of one
variable (about 800,000 floats) takes over one minute.
With six primary variables and 96 timesteps per day,
the load time approaches the time to generate the data

1Coordinates of a node are repeated everywhere the node is
referenced.

in the first place on a similar platform. Retrieving
data from the database involves copying tuples to fast,
memory-resident structures such as arrays. When re-
trieving numeric datasets from a relational database,
tuples are usually converted to arrays at the client, in-
curring an “impedance mismatch” penalty. The scale
of scientific datasets makes the performance issues as-
sociated with impedance mismatch more pronounced
[24]. In Section 3.5, we review modeling challenges
stemming from storing gridded datasets in relational
databases.

Visualization libraries such as the Visualization
Toolkit (VTK) [19] provide efficient grid processing,
but the routines are highly data dependent and there-
fore quite brittle. The library functions also exhibit
complex semantics, making algebraic properties diffi-
cult to derive if they exist. We discuss these issues in
more detail in Section 3.5.

Our Approach. These issues led us to seek a tech-
nology that 1) efficiently generates relevant data prod-
ucts, 2) reduces programming effort to design and im-
plement new data products by allowing manipulation
of grid structures directly, 3) integrates neatly with
client tools, especially rendering tools for visualization,
and 4) manages topology considerations for both reg-
ular and irregular grids transparently.

Our approach has been to devise and implement
an algebra specially suited for manipulating gridded
datasets, extending previous work [9]. Our algebra
consists of grids, gridfields, and operators over these
structures. A gridfield represents the association of
a dataset with a grid. Several gridfields may share
the same grid; indeed this eventuality allows algebraic
identities important for optimization (see Section 6).
Our data model distinguishes topological information
from geometric information, handling geometry as or-
dinary data attributes. The separation of topology
and geometry allows multiple geometric embeddings
to be handled simultaneously, unlike other data mod-
els proposed, e.g., for scientific visualization [5, 8, 15].
Some of our operators are analogous to those of rela-
tional algebra, but extended to correctly handle the
grid structure. Other operators are specific to grid-
fields.

Contributions. We extend previous efforts at de-
vising scientific data models [3, 5, 8, 9, 18] by devel-
oping algebraic optimizations at both the logical and
physical levels. We contribute a data model and imple-
mentation that satisfies the goals above. Specifically:
1. The data model captures regular and irregular grids

uniformly.

2. The operators manipulate grid structures directly,
avoiding the complexity associated with encoding
grids as assemblies of arrays.

3. The design is well-aligned with client visualization
and analysis tools.
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4. Our operators admit algebraic identities and conse-
quent optimization techniques unique to gridfields.

5. We have tested our data model and implementation
on real applications; we present results from the
CORIE simulation system.
In this paper, we discuss the gridfield model, then

describe data representation, operator implementa-
tion, and algebraic optimization of gridfield recipes,
a form of query plan. Results are validated via exper-
imental comparisons with existing approaches.

2 Related Work

The database community has given multidimensional
discrete data (MDD) significant attention over the
past decade. OLAP systems have been extended
with visualization capabilities [21], but modeling and
querying irregular grids in a relational system is dif-
ficult, as we demonstrate. Query languages and pro-
cessing techniques based on multidimensional arrays
[6, 12, 13, 26] have been developed, but arrays are not
the correct abstraction for general grid manipulations.

Multidimensional arrays capture only rectilinear
grids. If, as in the CORIE system, cells in a particular
grid may be triangles, quadrilaterals, or a mix of cell
types, the grid structure is awkward to encode using
arrays. The interpretation of an assembly of arrays as
an irregular grid is left to the application, undermin-
ing data independence. Further, we encounter multi-
ple datasets bound to the same grid, but perhaps to
cells of different dimension. Using arrays, the relation-
ship between these datasets is lost; each must use its
own distinct “spatial domain” [2]. Finally, the topol-
ogy suggested by these grids is always implicit, making
it difficult to separate geometry from topology. This
capability is required when attempting to support two
geometric embeddings of the same grid simultaneously,
e.g., into different coordinate systems.

Several higher-level data models for scientific data
have been proposed that capture both regular and ir-
regular grids, and some separate topology from geom-
etry [3, 5, 8]. However, algebraic manipulation of grid
structures is not supported and experimental results
are not reported.

Others have demonstrated that relational databases
do not scale up to handle large scientific datasets
[16, 22]. One proposed solution is to treat scientific
datasets as external data sources, and access them
using the SQL standard for management of external
data (SQL-MED) [14]. Papiani et al. [17] report some
success applying the standard to manage turbulence
simulations.

Designers of spatial database systems are becom-
ing aware that topological “connection” information
can be as important as geometry for modeling and
query processing. ESRI’s ArcGIS version 8.3 [7] in-
cludes topology information modeled as integrity rules.
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c2

G = A ⊗⊗⊗⊗ B

Figure 3: The cross product of two simple grids.

Users can express the rule that every polygon repre-
senting a building must be explicitly connected to a
line segment representing a road. ESRI’s product also
supports raster data manipulation using a Map Alge-
bra, but irregular grids are difficult to model precisely
as raster data. Laser-Scan has produced a topology-
enabled GIS extension for Oracle called Radius [25].
They allow nodes to be snapped together to express
topological relationships independently of geometric
embeddings. However, there is no notion of a ma-
nipulable gridded dataset, and therefore, our Goals 2
and 3 are not met.

3 The Gridfield Algebra

Grids are constructed from sets of k-dimensional cells.
We refer to a cell of dimension k as a k-cell, following
the topology literature [3]. Intuitively, a 0-cell is a
point, a 1-cell is a line segment (or poly-line), a 2-cell is
a polygon, and so on. These geometric interpretations
of cells guide intuition, but a grid does not explicitly
indicate its cells’ geometry.

Nodes and Cells. We will refer to a 0-cell as a
node. A node is named, but is otherwise featureless. A
k-cell c is a set of nodes (c0, c1, . . . , cn), where k < n.
The order of the nodes allows interpretation of cells
as visual shapes, but is not strictly necessary in the
model. For example, a 1-cell must refer to at least two
nodes, but can refer to more. Let N(c) be the nodes
of a cell c viewed as a set. We say a cell c is incident
to a cell d if N(c) ⊆ N(d). The dimension k of a k-cell
c is written dim(c).

Node sets and the incidence relationship are suffi-
cient to encode some topological relationships. Two
cells are adjacent if they share nodes but neither is in-
cident to the other. Two cells are connected if they ap-
pear in the transitive closure of the adjacency relation-
ship. A topological distance measure can be defined
by counting the number of cells traversed through the
adjacency relationship to reach another cell. Note that
containment and overlap are geometric relationships,
since they depend on a particular geometric embed-
ding.

Namespaces. Nodes are referenced with respect
to a namespace. For example, nodes can be named by
their physical position within an array. Let L be a set
of labels and C be a set of nodes. A namespace is a 1-1
function h : C → L. Cell equality is only defined with
respect to a particular namespace. Cells in different
namespaces are assumed to be unequal.
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3.1 Grids

A grid is a sequence of sets of cells,
[G0, G1, G2, . . . , Gd], where each set Gi contains
cells of dimension i. A non-empty grid must have
a non-empty set of 0-cells (nodes). The dimension
of a grid G is the greatest i such that Gi is non-
empty. A grid’s dimension is written dim(G). In
Figure 1, the grid has four 0-cells, six 1-cells, and
three 2-cells, and it therefore has dimension 2. Note
that a d-dimensional grid G must have a non-empty
component Gd, but may have an empty component
Gi for 0 < i < d.

This definition is very general; a grid may be a col-
lection of unconnected polygons for GIS data, a set
of scattered points for values of a random variable, or
a well-connected graph modeling the truss structure
of a bridge. The grids in our application are used to
discretize the Columbia River estuary, for solving the
3-D transport equations via a finite-element method.

We can define set-like operations on grids with re-
spect to a namespace to test cell equality. The in-
tersection of two grids G and F is the component-
wise intersection of the sets Gi and Fi. That is,
G ∩ F = [G0 ∩ F0, G1 ∩ F1, . . . ]. Union and difference
can be defined similarly.

Grids must be well-formed ; no cell in Gi may refer-
ence a node not in G0, for 0 < i ≤ dim(G). Operations
on grids must preserve well-formedness. If nodes are
removed from a grid, then cells that reference those
nodes must also be removed.

Cross Product. The cross product of two grids
generates a higher-dimensional grid based on cross
products of their constituent sets. The node product
of two 0-cells a and b is written ab. The result is a
0-cell x in a new namespace. The cell product of a
cell c = (c1, c2, . . . , cn) and a cell d = (d1, d2, . . . , dm),
written c × d, is a cell e with dim(e) = dim(c) +
dim(d) such that e = (c1d1, c1d2, . . . , c1dm, c2d1, c2d2,
. . . , c2dm, . . . , cnd1, cnd2, . . . , cndm).

Figure 3 shows an example of the cross product.
The cross product of grids A and B contains six 0-cells,
nine 1-cells, five 2-cells, and one 3-cell. The 3-cell is
the interior of the prism, the 2-cells are the three rect-
angular faces and the two triangular bases, the 1-cells
are the edges, and the 0-cells are the vertices.

We capture all these cases using the set-theoretic
cross product of the components of the grids A and
B. For example, the 3-cell prism in G is generated by
sweeping the triangle of A through a third dimension
defined by the line segment of B. This construction
can be expressed as the cross product of the 2-cells of
grid A (A2) and the 1-cells of grid B (B1). The rect-
angular faces are generated by sweeping the 1-cells of
A through the space defined by the 1-cell of B. Again,
the construction is expressed as the cross product of

A1 and B1. More precisely, the cells of G are given by

G0 = A0 ×B0

G1 = (A1 ×B0) ∪ (A0 ×B1)
G2 = (A2 ×B0) ∪ (A1 ×B1)
G3 = A2 ×B1

Evaluating these expressions, we obtain

G0 = {a1, b1, c1, a2, b2, c2}
G1 = {(a1, b1), (b1, c1), (c1, a1), (a2, b2),

(b2, c2), (c2, a2), (a1, a2), (b1, b2), (c1, c2)}
G2 = {(a1, b1, c1), (a2, b2, c2),

(a1, a2, b1, b2), (b1, b2, c1, c2), (c1, c2, a1, a2)}
G3 = {(a1, a2, b1, b2, c1, c2)}

In general, let A = [A0, A1, . . . , Aa] and B =
[B0, B1, . . . , Bb] be grids. The cross product of A and
B, written A⊗B, is a grid [G0, G1, . . . , Gd] such that
Gk =

⋃k
j=0 Aj ×Bk−j for 0 ≤ k ≤ a + b.

We have used the cross product operator frequently
in expressing the data products of the CORIE system.
The 3-D CORIE grid is the cross product of a 2-D hor-
izontal grid and a 1-D vertical grid. The time dimen-
sion can be incorporated with another cross product.
Note that simpler rectilinear grids can be modeled as
the cross product of two 1-D grids. By commuting
other operations through the cross product, we can
reduce its complexity or remove it altogether. Tools
that do not provide an explicit cross product operator
do not have access to these optimizations, as we shall
see.

3.2 Gridfields

When data is bound to a grid, the grid becomes a
gridfield. Formally, a gridfield G is a triple (G, k, f),
where G is a grid, k is a non-negative integer, and f is
a function Gk → τ for some type τ . The integer k is
called the rank and can be extracted from a gridfield
G by writing rank(G). The type of a gridfield is the
return type τ of its function component f , written
G : τ . We will generally use only primitive numeric
types and tuples of primitive numeric types as return
types.

Earlier we used a trussed bridge as an example of
a grid. Gridfields defined over such a grid might re-
turn the net force at each node, or the linear force
along each truss. Gridfields capture both cases natu-
rally by binding data to 0-cells or 1-cells, respectively.
Images can be viewed naturally as a gridfield defined
over 2-cells of a rectilinear grid. We can also model
unstructured sets as a gridfield over a grid consisting
solely of 0-cells.

To support multiple geometric embeddings, geo-
metric information is modeled as ordinary data values
bound to the cells of a grid. A simple example is a
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(a) (c)(b)

Figure 4: Three different geometric realizations of the
same topological grid.

2-D grid with a gridfield binding (x, y) pairs to the
nodes, which embeds the grid in Euclidean space. Ad-
ditional coordinate systems can be captured through
additional attributes. Many models [3, 8, 19] dis-
tinguish geometric attributes from other data, conse-
quently requiring two versions of common operations:
one for geometric attributes and one for ordinary at-
tributes. Non-standard geometries that are not antic-
ipated by the system designer are left unsupported.
For example, the curvilinear grid shown in Figure 4
requires interpolation functions to be associated with
each k-cell to specify how the cell curves in a geomet-
ric space. Our model can express such an embedding.
Further, our model captures the topological equiva-
lence between all three grids in Figure 4. Systems
commonly use geometry as the identifying feature of a
grid, thereby obscuring this equivalence.

3.3 Operators

The operators for manipulating gridfields must cor-
rectly handle both the grid and the bound data val-
ues. Some operators we define are analogous to rela-
tional operators, but grid-enabled. For example, our
restrict operator filters a gridfield by removing cells
whose bound data values do not satisfy a predicate.
However, restrict also ensures the output grid is well-
formed, and that cells of all dimensions are passed
along. Other operators are novel, such as aggregate.
The aggregate operator maps data from one grid onto
another and then aggregates the values.

Bind. The bind operator constructs a gridfield
from a grid G, an integer k, and a function f : Gk → τ .
Bind allows us to perform operations on grids prior to
associating data. We can therefore construct a topo-
logically regular grid via cross product, but then bind
irregular geometry functions to it, as in Figure 4b. The
bind operator is rather simple at the logical layer, but
at the physical layer, the bind operator is important
for correct and efficient processing (see Section 6).

Restrict. The restrict operator behaves like a re-
lational select, except that the output must be defined
on a well-formed grid. If rank(G) = 0, then cells that
reference deleted nodes must themselves be deleted.
Note that if rank(G) = k > 0, then only the k-cells
need to be removed; the grid is guaranteed to be well-
formed. Formally, let A = (A, k, f) be a gridfield,
with f : Ak → τ . Let p be a predicate over data
values of type τ . Then restrict(p,A) is a gridfield

(G, k, f). For the case k > 0, G = [G0, G1, . . . , Gn],
where Gk = {c | c ∈ Ak , p ◦ f(c) = true} and
Gi = Ai for all i 6= k and i ≤ dim(A). The pred-
icate p is used to filter out some cells of dimension
k, but all other cells are included in G. For the
case k = 0, Gk is defined as before but we must re-
move any cells that reference deleted nodes. Thus,
Gi = {c | c ∈ Ai , ∀v ∈ N(c).p ◦ f(c) = true}

Merge. The merge operator computes the inter-
section of two grids and retains data values defined
over this intersection. If the input gridfields are of
different ranks, then the data values of the second ar-
gument are discarded and the rank of the result is
the rank of the first argument. In this case, merge
is not commutative. Formally, let A = (A, i, f) and
B = (B, j, g) be gridfields. Then merge(A,B) pro-
duces a gridfield G = (A∩B, i, h). For the case i = j,
h(e) = 〈f(e), g(e)〉. For the case i 6= j, h(e) = f(e).

Cross Product. The cross product operator for
gridfields builds on the cross product operator on
grids. Let A = (A, i, f) and B = (B, j, g) be gridfields.
The cross product of A and B, written A⊗B, is a grid-
field G = (A⊗B, i + j, h), where h(c) = 〈g(c), f(c)〉.

This definition can result in a gridfield with a par-
tial function if there are multiple ways to form cells of
intermediate dimension in the cross product. To avoid
this complication in the current implementation, we
force the function h to be total by requiring that either
rank(A) = rank(B) = 0, or that rank(A) = dim(A) and
rank(B) = dim(B).

Aggregate The aggregate operator maps a source
gridfield’s cells onto a target gridfield’s cells, and then
aggregates the data values bound to the mapped cells.
The behavior of aggregate is controlled by two func-
tions, an assignment function and an aggregation func-
tion. The assignment function associates each cell in
the target grid with a set of cells in the source grid. To
perform the assignment, the function may use topolog-
ical information only (e.g., a “neighbors” function that
identifies incident cells), or it may use the attributes
of the two gridfields (e.g., an “overlaps” function that
uses geometry data).

To illustrate a simple use of aggregate, consider a
timeseries of temperature values for a particular point
in the river. We discretize the time dimension using
a 1-D source grid S, as shown in Figure 5a. One use
of the aggregate operator is to perform a “chunking”
operation to coarsen the resolution of the grid. The
assignment function maps each node in the target grid
T to a set of n nodes, the chunk, in the source grid S
(Figure 5b). The aggregation function can then, say,
average the n nodes to obtain a single value (Figure
5c).

We could also pass a “window” function as the as-
signment function to perform a smoothing operation.
The target grid and the source grid are the same in
that case. For target node i, the window function as-
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Figure 5: (a) A 1-D gridfield returning temperatures. (b)
Assignment to the target grid T . (c) Aggregation using
arithmetic mean.

signs source nodes [i−k, i−k+1, . . . , i, i+1, . . . , i+k].
The aggregation function could be anything, but for
smoothing, an arithmetic or weighted mean seems ap-
propriate. We have used a 1-D example for illustra-
tion, but multidimensional window and chunking func-
tions are common.

Formally, let T = (T, k, f) and S = (S, j, g) be grid-
fields, where f : Tk → α and g : Sj → β. Let m be
a function m : Tk → P(Sj). Let a : P(β) → γ be a
function for some type γ. Then aggregate(T,m, a,S)
produces a gridfield G = (T, k, h) where h(c) =
a({g(e) | e ∈ m(c)}).

3.4 Benefits

We summarize the benefits of our data model:
• Grids are first-class and of arbitrary dimension.
• Grids can be shared between datasets.
• Geometry is modeled as data, exposing topologi-

cal equivalences between geometric interpretations;
e.g., different coordinate systems.

• Data can be associated with cells of any dimension,
avoiding ambiguities arising from associating, for
example, cell areas with nodes.

• The data model captures irregular grids directly,
but the cross product operator expresses the reg-
ularity of rectilinear grids.

• The aggregate operator is extensible, allowing
application-specific assignment and aggregation
functions.

• The operators obey algebraic identities enabling op-
timization (see Section 6).

• Client programs can process grids without intricate
array manipulations.

3.5 Detailed Example

Many of the CORIE datasets are defined over a 3-D
grid constructed as the cross product of a 2-D irreg-
ular grid and a 1-D grid. The 2-D grid H describes
the domain parallel to the earth’s surface, a horizon-
tal orientation. The 1-D grid V extends in a vertical
direction perpendicular to the earth’s surface. These
grids are illustrated in Figures 2 and 6, respectively.

Although the simulation code operates over the grid
formed from the cross product of H and V , the output

Figure 6: The vertical grid and the river’s bathymetry in
the CORIE domain.

datasets are produced on a reduced grid. To see why,
consider Figure 6. The shaded region illustrates the
bathymetry of the river. The horizontal grid is defined
to cover the entire surface of the water. Below the sur-
face, some nodes in the full 3-D cross product grid are
positioned underground! The simulation code outputs
only valid, “wet,” data values to conserve disk space.
Therefore, we must define this “wet” grid to obtain an
adequate description of the topology of the data. The
bathymetry data can be modeled as a gridfield over
the horizontal grid H, associating a depth with each
node. To filter out nodes in the product grid G that
are deeper than the river bottom, we need to compare
the node’s depth (bound to V ) with the bottom depth
(bound to H). In the following, we will refer to a rank
0 gridfield H constructed from the 2-D horizontal grid
H and attributes x, y, b. The attribute b captures the
river’s bathymetry at a particular location. We will
also refer to a rank 0 gridfield V constructed from the
1-D vertical grid V and an attribute z.

The task is to construct the grid over which the
simulation outputs are defined, bind a dataset to it,
and visualize the results. The recipe for this task is
shown in Figure 7. Each gray oval is an operator in
our algebra. The unfilled oval at the right represents
a client task: render the grid as an image. The recipe
begins at left with the H and V gridfields. The cross
product operator produces a different, 3-D gridfield.
After using restrict to filter out the river bottom, we
have our “wetgrid” (at the point labelled in Figure
7). After binding a salinity dataset to the wetgrid, we
restrict the grid to a user-supplied region. The term
“region” is shorthand for a bounding-box condition
involving x, y, and z.

Using a Relational Database. Our initial at-
tempt to manage the CORIE datasets was to load
them into a relational table and manipulate them us-
ing SQL. The first task is to devise a schema that cap-
tures both the grid and the data. One method is to
store each logical gridfield as a separate relation: one
attribute stores the cells to which the data is bound,
while the other attributes store the bound data. A
problem with this approach is that each scalar dataset
bound to a grid is modeled as an attribute of a re-
lation. New datasets are generated daily. To capture
each new dataset, we can either extend the existing ta-
ble with an additional attribute or add the new dataset
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H : (x,y,b)

V : (z)

r(z>b) b(s) r(region) render
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Figure 7: A recipe for visualizing a 3-D CORIE dataset.

as a separate table. Either way, we are changing the
database schema daily, making robust queries difficult
to write.

A better strategy for modeling grids and gridfields
using an RDBMS is to allow any number of datasets
to be bound to the same grid. The relation grid stores
metadata about the grid. Each grid is associated with
a number of cells of varying dimension, stored in the
relation kcell. Tuples in the values relation are bound
to cells using foreign keys, perhaps integers. Now no
schema changes are required to insert new datasets,
but binding a particular dataset to its grid involves
a join between the kcells relation and the values rela-
tion using the ordinal. Including the bound cell’s def-
inition itself in the value relation seems to avoid the
join. However, working with multiple bound datasets
simultaneously requires a self-join on the cell column
for each dataset. Computing joins on these complex
columns is more expensive than computing joins on an
integer column.

To associate cells with data values, we already must
have computed the appropriate grid. However, it is
valuable at times to store grids intensionally; that is,
decomposed. For example, a frequently used CORIE
grid is the cross product of the horizontal grid H and
the vertical grid V . Although a relational approach
allows us to express the cross product as a query, we
cannot declare that the tuples in a physical table have
a foreign key to a query result. An alternative is to use
a 2-part foreign key, where the first part references a
cell in the grid H, and the second part references a cell
in the grid V . Now the space required is higher, and
datasets bound to cross-product grids are accessed dif-
ferently from other datasets. Precomputing and stor-
ing an intensional grid consumes space and obscures
the relationship between the composed grid and its
base grids.

Using Visualization Software. Another ap-
proach, which sacrifices data management capabilities
for a richer toolset, is to use a visualization library
specifically designed to work with gridded datasets.
Such libraries are usually oriented toward working
with a single dataset at a time, and therefore pro-
vide little support for reasoning about the relation-
ships between datasets. Unfortunately, recognizing
and exploiting relationships between datasets is a great
source of optimization opportunities, as we show later.
Further, the programmer is under a significant burden
in making use of the library, as each tool has compli-
cated and nuanced semantics.

Software libraries provide functions (or objects) for

each specific task. The programmer is often asked
to choose between two similar functions that differ
only in the type of data on which they operate or the
particular algorithm they implement. For example,
in the Visualization Toolkit [19], to extract a subset
of a grid, there are a variety of functions to choose
from. The operation vtkExtractUnstructuredGrid
accepts internal ids of points and cells, or a func-
tion over the geometry of the points. The operation
vtkExtractGrid works only on structured grids and
accepts i, j, and k index ranges that define a struc-
tured subgrid. The operation vtkExtractGeometry
works on a wider range of datasets, but accepts only
geometric functions rather than topological ids. A
more efficient version is available for polygonal data,
vtkExtractPolyDataGeometry. Another operator,
vtkThreshold filters grids based on non-geometric at-
tributes.

The physical concerns of representations and algo-
rithms are intermingled with semantic concerns such
as which data is used to filter the grid. All of the op-
erations above can be implemented using the restrict
operator, possibly with the aggregate operator to eval-
uate complex geometric functions. The distinction be-
tween filtering geometric data and other bound data
is removed in our model.

As we gained experience with VTK and another
visualization library [10], we found that simple con-
cepts we used to describe our data products often did
not have counterparts in these libraries. Below we list
some specific concepts we found weak or missing.
• Cross Product Grids.
• Shared Grids.
• Combinatorial algorithms. Berti observes that com-

binatorial algorithms for grid manipulation are su-
perior to geometric algorithms [3].

• Aggregation. Both libraries we reviewed implement
particular instances of aggregation, but do not pro-
vide a general aggregation abstraction.

• Time. We found it useful to reason about time sim-
ilarly to other dimensions.

• Irregular Grids. Manipulating regular grids is eas-
ier than manipulating unstructured grids. Since
CORIE involves both kinds of grids, we sought a
unifying model.

4 Gridfield Representations

A goal of this work is to support and exploit multiple
representations of gridfields, for two reasons: First,
supporting a variety of representations can promote
interoperability with existing systems. Second, no one
representation is efficient for all recipes.

We have identified four major patterns of gridfield
representation used in practice. The tabular repre-
sentation forms 〈cell, value〉 tuples, making it easy to
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Figure 8: Internal representation of a gridfield in our cur-
rent implementation.

pipeline data from one operator to another, but diffi-
cult to separate grid from data.

The parallel representation uses a separate array
for each attribute, all aligned positionally with an-
other array for the cells to which the attributes are
bound. With this representation, binding in new at-
tributes and projecting out unneeded ones are trivial
operations.

The decomposed representation stores gridfields in-
tensionally, requiring the client program to assemble
the gridfield as needed. Cross product grids are often
decomposed in order to save space.

The nested representation involves gridfield at-
tributes that can themselves be gridfields. A 4-D time-
space gridfield may be a timeseries (the outer grid) and
a 3-D spatial grid (the inner, nested grid).

Our Representation. Figure 8 illustrates the rep-
resentation we use in our current implementation. The
gridfield at top stores an integer rank k, and pointers
to the grid and each attribute. An attribute is an ar-
ray of data values, and a grid is a sequence of arrays
of cells. Cells of dimension k are aligned positionally
with the attributes; we use the parallel representation
described above. We began with the parallel represen-
tation because it exhibits good performance charac-
teristics (see Section 8) and is used frequently in client
software [10, 19] and standard file formats (cf. [11]).

A hash index (H in Figure 8) maps cell definitions
to their ordinal position. This index allows the func-
tion semantics prescribed by the model to be evalu-
ated in constant time on average. A cell definition
is mapped to an array index, which is then used to
lookup a data value in each of the attribute arrays.
The hash function used maps each cell to its first node,
exploiting the fact that seldom do more than 4 or 5
cells touch any one node. Our tests show that this
hash function generates very few collisions while offer-
ing fast evaluation time.

Another index (not shown in Figure 8) speeds up
navigation of the incidence relationship. Each node in
the grid is mapped to the cells to which it is incident.
The aggregate operator frequently uses this index.

5 Operator Implementation

Our operators are implemented in C++, with in-
memory indices implemented using the Standard Tem-
plate Library (STL) [20]. Physical recipes are cur-
rently constructed by hand, though we are designing a
declarative query language as an interface to the phys-
ical operators.

The parallel representation improves performance
in some cases. Binding a new attribute to a grid is
inexpensive, as is projecting out attributes. We need
not iterate of the arrays; we can simply make a copy of
the gridfield header structure (see Figure 8) containing
pointers to the information we want.

The merge operator might compute the intersec-
tion of two grids during evaluation, and is therefore
potentially expensive. However, if the two argument
gridfields are defined over the same grid, merge can
be evaluated in constant time. Since gridfields may
share grids via pointers, checking for grid equivalence
is essentially free.

The aggregate operator admits specialized imple-
mentations for syntactic convenience and to exploit ef-
ficient algorithms. The apply specialization uses iden-
tical source and target grids, but applies an arithmetic
expression to the data values. The project specializa-
tion also uses identical source and target grids, but
simply removes attributes from each logical tuple. The
affix operator changes the rank of a gridfield by trans-
ferring the data values to cells of a different dimension
and averaging. The unify operator aggregates all of
the values in a grid, binding the result to the unit grid
consisting of a single node.

Cross product is usually the most expensive opera-
tor in the algebra. In the next section, we investigate
algebraic rewrites to reduce its cost or remove it al-
together. We can also improve its implementation in
some cases. The cross product of a grid with nodes,
edges, and polygons and a grid with nodes and edges
produces nodes, edges, polygons, and polyhedra. How-
ever, for visualization purposes, we may only need the
polyhedra and the nodes; cells of intermediate dimen-
sions need not be computed. However, to use such a
“prune” implementation, we must be able to determine
which dimension cells will be consumed downstream.

Another implementation of the cross product oper-
ator (applicable to Figure 7) exploits the fact that it is
followed immediately by a restrict. In relational alge-
bra, a join is semantically equivalent to a cross prod-
uct followed by a restrict. We can create an analogous
“join” operator that evaluates the restrict as the cross
product is computed, computing fewer cells overall.

6 Optimization

Having described our data representation and opera-
tor implementation, we now present optimization tech-
niques enabled by our algebra for improving the per-
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Figure 9: An optimized recipe for visualizing a 3-D
CORIE dataset.

formance of recipes. Our examples are actual CORIE
data products, though the techniques we use generalize
to any domain involving irregular grids, cross product
grids, or selected sub-regions.

Forward Binding. The recipe in Figure 7 com-
putes a 3-D salinity gridfield, then restricts the result
to a user-specified region. The logical model allows us
to freely commute the restrict operator with the bind,
and then with the cross product [9], to significantly
reduce the size of the intermediate results. However,
the physical implementation materializes functions as
arrays, so special handling is required. The array we
wish to bind can only be correctly interpreted using
the ordinal positions of the wetgrid. If we push the
restrict earlier, we will produce a grid smaller than
the wetgrid, and the bound array will be misaligned.
To solve this problem, we can pre-compute the ordinal
positions of cells in the wetgrid and record these values
in an attribute. This attribute can then be passed to
the bind operator and used as offsets into the array on
disk.

Our goal is to push the restrict on “region” before
the cross product, but there are two obstacles. One
is the cross product itself, and the other is another
restrict involving attributes b and z from H and V,
respectively2. A cell’s ordinal position in a cross prod-
uct grid can be derived from the ordinal positions of
the cells used to construct it. However, the grid we
want is not just a cross product of two grids, but the
restriction of a cross product. Therefore, the ordinals
of the cells of the wetgrid are dependent on the condi-
tion used to filter out the “dry” cells.

In the general case, the 1000th cell in the grid prior
to a restrict could be the 1st cell or the 1000th cell
in the restricted grid. However, we know a physical
property of the gridfield V: It is sorted on the at-
tribute z. We can therefore compute the positions of
the wetgrid’s cells without actually materializing the
grid itself.

Recall the attribute b of the gridfield H stores
bathymetry information for the river. Specifically, b
is an index into the gridfield V. Since V is sorted on
z, we can use b to determine the number of cells in
each vertical column of water. With these cell counts,
we can compute an offset into the array to be bound
to the wetgrid.

The result of these transformations is the optimized
recipe shown in Figure 9. The potentially highly se-
lective restricts on x, y and z are evaluated prior to

2This restrict compares attributes from both H and V and
does therefore not commute with the cross product.

a)

b)

Figure 10: (a) A vertical slice data product. (b) A hori-
zontal slice data product.

the cross product.
Lowering Dimensionality Two common 2-D

CORIE data products are horizontal and vertical
“slices.” Examples of these data products for the salin-
ity variable are shown in Figure 10. One way to express
the horizontal slice data product is to use the same
recipe as in Figure 7, but restrict the z dimension to
a single node. As before, we could push the restricts
through the cross product. This time, though, we ob-
serve that restricting V to a single node produces the
unit grid. The unit grid is the identity for the cross
product operator, up to namespace isomorphism. We
can therefore remove the cross product operator alto-
gether.

This optimization is unavailable to systems that
cannot reason about grids algebraically. We have not
only produced a faster recipe, but we have also natu-
rally expressed a critical correctness criteria: The out-
put grid is 2-D. Although the wetgrid is constructed
from prism-shaped cells, this data product is defined
over triangles. (We have assumed that the depth at
which a slice is to be taken corresponds to one of the
depths in the vertical grid V . We could relax this
assumption by using an aggregate operator equipped
with an interpolation function.)

Computing a vertical slice is more difficult. The
horizontal grid H has an irregular topology consist-
ing of triangles. To take a vertical slice, we must still
project the 3-D grid down to two dimensions, but the
target is a new grid not appearing elsewhere in the
recipe. Consider a user who wants to view a vertical
profile of the salinity intrusion along a deep channel
near the mouth of the estuary. To specify “along a
deep channel” to the system, the user selects a se-
quence of points in the xy plane, as shown in Figure
11a. We can connect these points to form a 1-D grid,
P . A cross product with the vertical grid gives us a
2-D slice, P ⊗ V (Figure 11b).

Using VTK, we must manually construct the grid
P ⊗ V producing points in 3-D space. For each point,
we must search in the 3-D wetgrid for the cell that
contains the point, then perform a 3-D interpolation
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Figure 11: Four intermediate steps in an efficient “vertical
slice” recipe.

of salinity values.
With the gridfield algebra, we can do the work in

two dimensions for considerable savings. Each point
in P can be positioned in a triangle in the horizontal
grid H. We can restrict H to only those cells that
contain one or more points in P using the aggregate
operator followed by a restrict, producing a grid M
(Figure 11c).

Since the grid M is a restriction of the grid H, we
can use forward binding (as we did previously) to con-
struct a 3-D grid (not shown in Figure 11) and bind the
appropriate salinity values to it. We can now perform
the same search-and-interpolate operation required by
VTK, but using a much smaller 3-D grid.

An additional optimization is possible. Instead of
considering V as a 1-D grid, we prune the 1-cells,
leaving only the nodes. Call this grid V ′. The grid
M ⊗ V ′ consists of “stacks” of 2-D triangles (Figure
11d), rather than a connected set of 3-D prisms. In-
terpolation using triangles is much cheaper than inter-
polation using prisms, further reducing the cost.

By working primarily in two dimensions, we were
able to produce a less expensive recipe. Lowering the
dimension of the intermediate results saves time since
a) higher dimensional gridfields tend to have more
cells, and b) algorithms for manipulating 3-D cells are
more expensive than their 2-D counterparts.

Merging Related Grids The plume is the region
of water beyond the mouth of the river with a salt con-
tent below a given threshold. The recipe to compute
the plume extends the recipe to bind salinity to the
wetgrid in Section 6. We encode the definition of the
plume as conditions passed to the restrict operator.

Consider a recipe to find the portion of the plume
above a certain temperature. Assume temperature
data has been bound, separately, to another instance
of the wetgrid, and we now need to merge this data
with the salinity gridfield.

We need to evaluate two restrict operators (r) and
one merge operator (m) to obtain the correct gridfield.
Three versions of the relevant fragment of this new
recipe are shown in Figure 12. Figure 12a shows the
two restricts evaluated after the merge. Previously, we
improved performance by evaluating restricts early, as
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Figure 12: Three equivalent sub-recipes. (a) Restrict op-
erations are combined into one. (b) The restrict operators
are pushed through a merge, resulting in a less efficient
plan. (c) Evaluating one restrict at a time might require
less memory.

in Figure 12b. In this case the merge operator must
compute the intersection of two grids – an O(nm) al-
gorithm, where n and m are the number of cells in S
and T, respectively. But observe that in Figure 12a,
both arguments are defined over the same grid. This
knowledge allows the merge to be evaluated trivially.
The recipe in Figure 12c may also be a good choice.
Since the grid T is known to be a subset of the grid S,
we can still evaluate the merge in constant time. We
can also evict the attribute t from memory right after
we have evaluated the first restrict, possibly lowering
the memory footprint of the overall recipe.

7 Experimental Results

We performed experiments to 1) validate our design
choices in the physical implementation and 2) to deter-
mine whether algebraic optimization techniques could
improve performance over more traditional solutions.

The experiments were run on a dual 2.4 GHz pro-
cessor with 4GB of RAM. This machine is nearly iden-
tical to one node of the cluster on which the CORIE
simulations are executed. Each experiment involved
5 trials, and three experiments were done at different
times. The samples produced a variance of less than
1% of the mean, demonstrating stability.

The CORIE horizontal grid consists of 29,602 nodes
and 55,081 2-cells. The vertical grid has 62 nodes and
61 1-cells. The wetgrid has 829,852 nodes, and there-
fore each timestep of each dataset has 829,852 values.

Our first experiment compared physical implemen-
tations of the cross product operator. The “prune”
implementation avoids extra work by computing only
the nodes and polyhedra of the 3-D cross product. The
“join” implementation composes the cross product and
subsequent restrict. Figure 13 shows results for the
original cross product implementation (“no opt”), the
“prune” implementation (“prune”) and with both im-
provements (“both”). If Cw and Cr are the cardinali-
ties of the wetgrid and the result gridfield, respectively,
then the selectivity (x-axis) is 1− Cr

Cw
.

Times reflect overall execution time of the 3-D
scalar data product described in Section 3.5, highlight-
ing the cross product operator’s significant cost rela-
tive to the other operators in the recipe. The graph
shows that avoiding cell materialization does indeed

933



0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1
selectivity

ti
m

e 
(s

ec
s)

no opt

prune

both

Figure 13: Comparing implementations of the cross prod-
uct operator.

improve performance. On average, the prune imple-
mentation results in 35% faster times than comput-
ing the full cross product. The join implementation
does not provide a consistent improvement. With the
standard cross product implementation, we can pre-
dict precisely the space requirements of the output.
With the join implementation, we must estimate the
selectivity of the join condition and dynamically re-
size arrays when we are wrong. Although the join
implementation produces no unnecessary cells, the ex-
tra complexity of memory management washes out the
performance gain.

The second experiment compares our algebraically
optimized recipe in Figure 9 with the unoptimized
recipe in Figure 7, as well as with two more traditional
approaches. First, we used a relational database ex-
tended with spatial data types to represent the cells.
Second, we used VTK along with custom code that
handles those operations inexpressible in VTK.

The relational approach uses SQL to join data with
cells and select the “wet” values. Our test DBMS was
Postgres [23], configured appropriately for the large
main memory of our experiment platform.

The times for the relational approach are artificially
low, as we did not include the time to extract the re-
sults to the client. Instead, the results were simply
loaded into a temporary table on the server. We felt
that the diversity of potential client interfaces muddles
the results, and a query-only experiment represents a
conservative lower bound. For our own approach, we
did include the time required to convert our gridfield
representation into a form suitable for rendering by a
third party library, but not the rendering time itself.

The implementation in VTK required a custom
reader for our file formats. Restrictions were imple-
mented using the VTKThreshold object. The cross
product and bind operators were implemented in a
custom reader since these tools were not available in
VTK. Unlike our general operators, we were free to de-
sign the reader for specific tasks: reading in a CORIE
dataset, computing the wetgrid, and building a VTK
object. This focused goal afforded a very efficient de-
sign. Indeed, the reader was not the bottleneck despite
representing the majority of work.
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Figure 14: Optimized and unoptimized recipes compared
with two traditional approaches.
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Figure 15: Experimental results for the vertical slice data
product.

Figure 14 shows test results for various size regions,
which translate to various selectivities of the full wet-
grid. Observe that our unoptimized recipe is slower
than the VTK implementation, even though they im-
plement similar recipes. The specialized reader, im-
plementing the cross product, restrict, and bind oper-
ations constitutes only about 15% of the total execu-
tion time. In our program, these operations constitute
about 30% of the total. The specialized reader is in-
deed more efficient than the generic operators.

The optimized recipe performs better in all but the
lowest selectivities. The advantage of reducing dataset
size as early as possible is apparent here just as it is in
relational processing. Note that VTK’s times are ef-
fectively the same for all selectivities, as would be ex-
pected given the recipe of Figure 7a. Regardless of the
region being displayed, the entire 3-D grid is generated
and iterated through. The relational approach is far
behind in all but the highest selectivities. Although
the optimizer produces query plans that behave like
our optimized recipe, the overhead of processing grid-
ded datasets using joins dwarfs the effect.

The third experiment compares the optimized ver-
tical slice recipe against a VTK program and an SQL
query (Figure 15). The bar labelled “interp” uses in-
terpolation as described above. The bar labelled “sim-
ple” approximates interpolation and improves perfor-
mance by taking the value of a random node in the
cell. The bars labelled with the ‘o’ suffix make use of
a semantic optimization: We restrict the grid to the
relevant region before searching for cells that contain
points. Note that even our recipes that do not exploit
this optimization outperform the optimized VTK pro-
gram and the optimized SQL query.
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8 Future Work and Conclusions

Our primary goal is a data server that can accept grid-
field recipes expressed in a declarative query language
and produce gridded dataset answers in a flexible yet
efficient manner. As a first step, we have derived an al-
gebra that captures procedural recipes. We are build-
ing prototype applications that will generate recipes
in this algebra.

We are modeling the taxonomy of gridfield represen-
tations more precisely, so as to include representations
in our space of optimization techniques. Nested grid-
fields seem especially flexible, as they are key to mod-
eling and processing multi-resolution grids. Nested
gridfields also provide a mechanism by which we may
segment a large grid for parallel processing or for sec-
ondary storage management.

The recipes we have used in this paper have in-
volved only a few gridfields. In reality, there are ter-
abytes of gridded datasets one might wish to manipu-
late. Finding and retrieving these gridded datasets re-
quires a form of catalog, for which relational or object-
relational databases are quite appropriate. Technology
such as IBM’s Datalinks [4] for managing files external
to the database may be useful.

We are studying additional grid properties and de-
riving versions of the operators to preserve them. For
example, notions of grid quality are used by grid gen-
eration packages.

We have presented an implementation of an algebra
for manipulating scientific datasets and shown that
this approach offers benefits in both expression and
performance. In summary, our contributions are:
• A design and implementation of a gridfield algebra.
• Algebraic optimization techniques for improving

performance of gridfield recipes.
• Application to real data products.
• Experimental evidence that such processing strate-

gies result in superior performance.
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