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Abstract

The data stream problem has been studied ex-
tensively in recent years, because of the great
ease in collection of stream data. The na-
ture of stream data makes it essential to use
algorithms which require only one pass over
the data. Recently, single-scan, stream anal-
ysis methods have been proposed in this con-
text. However, a lot of stream data is high-
dimensional in nature. High-dimensional data
is inherently more complex in clustering, clas-
sification, and similarity search. Recent re-
search discusses methods for projected clus-
tering over high-dimensional data sets. This
method is however difficult to generalize to
data streams because of the complexity of
the method and the large volume of the data
streams.

In this paper, we propose a new, high-
dimensional, projected data stream clustering
method, called HPStream. The method incor-
porates a fading cluster structure, and the pro-
jection based clustering methodology. It is in-
crementally updatable and is highly scalable
on both the number of dimensions and the
size of the data streams, and it achieves bet-
ter clustering quality in comparison with the
previous stream clustering methods. Our per-
formance study with both real and synthetic
data sets demonstrates the efficiency and ef-
fectiveness of our proposed framework and im-
plementation methods.
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1 Introduction

The problem of data streams has gained importance
in recent years because of advances in hardware tech-
nology. These advances have made it easy to store
and record numerous transactions and activities in
everyday life in an automated way. The ubiquitous
presence of data streams in a number of practical do-
mains has generated a lot of research in this area
[8, 10, 12, 13, 17]. One of the important problems
which has recently been explored in the data stream
domain is that of clustering [17]. The clustering prob-
lem is especially interesting for the data stream domain
because of its application to data summarization and
outlier detection.

The clustering problem is defined as follows: for a
given set of data points, we wish to partition them into
one or more groups of similar objects, where the notion
of similarity is defined by a distance function. There
have been a lot of research work devoted to scalable
cluster analysis in recent years [2, 6, 14, 15, 16, 18].
In the data stream domain, the clustering problem
requires a process which can continuously determine
the dominant clusters in the data without being dom-
inated by the previous history of the stream.

The high-dimensional case presents a special chal-
lenge to clustering algorithms even in the traditional
domain of static data sets. This is because of the spar-
sity of the data in the high-dimensional case. In high-
dimensional space, all pairs of points tend to be almost
equidistant from one another. As a result, it is often
unrealistic to define distance-based clusters in a mean-
ingful way. Some recent work on high-dimensional
data uses techniques for projected clustering which can
determine clusters for a specific subset of dimensions
[2, 6]. In these methods, the definitions of the clusters
are such that each cluster is specific to a particular
group of dimensions. This alleviates the sparsity prob-
lem in high-dimensional space to some extent. Even
though a cluster may not be meaningfully defined on
all the dimensions because of the sparsity of the data,
some subset of the dimensions can always be found on
which particular subsets of points form high quality
and meaningful clusters. Of course, these subsets of
dimensions may vary over the different clusters. Such
clusters are referred to as projected clusters [2].
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The concept of a projected cluster is formally de-
fined as follows. Assume that k is the number of clus-
ters to be found. In addition, the algorithm will take
as input the dimensionality l of the subspace in which
each cluster is reported. The output of the algorithm
will be twofold:
• A (k + 1)-way partition {C1, ..., Ck,O} of the data,

such that the points in each partition element ex-
cept the last form a cluster, whereas the points in
the last partition element are the outliers, which by
definition do not cluster well.

• A possibly different set Ei of dimensions for each
cluster Ci, 1 ≤ i ≤ k, such that the points in Ci clus-
ter well in the subspace defined by these vectors.
(The vectors for the outlier set O can be assumed
to be the empty set.) For each cluster Ci, the car-
dinality of the corresponding set Ei is equal to the
user-defined parameter l.

In the context of a data stream, the problem of find-
ing projected clusters becomes even more challenging.
This is because the additional problem of finding the
relevant set of dimensions for each cluster makes the
problem significantly more computationally intensive
in the data stream environment. While the problem
of clustering has recently been studied in the data
stream environment [3, 8, 11], these methods are for
the case of full dimensional clustering. In this paper,
we will work on the significantly more difficult problem
of clustering high-dimensional data stream by explor-
ing projected clustering methods. We note that ex-
isting projected clustering methods such as those dis-
cussed in [2] cannot be easily generalized to the data
stream problem because they typically require multi-
ple passes over the data. Furthermore, the algorithms
in [2] are too computationally intensive to be used for
the data stream problem. In addition, data streams
quickly evolve over time [4, 5] because of which it is
essential to design methods which are designed to ef-
fectively adjust with the progression of the stream.

In this paper, we will develop an algorithm for high-
dimensional projected stream clustering by continu-
ous refinement of the set of projected dimensions and
data points during the progression of the stream. We
will refer to this algorithm as HPStream, since it de-
scribes the High-dimensional Projected Stream clus-
tering method. The updating of the set of dimensions
associated with each cluster is performed in such a
way that the points and dimensions associated with
each cluster can effectively evolve over time. In or-
der to achieve this goal, we utilize a condensed rep-
resentation of the statistics of the points inside the
clusters. These condensed representations are chosen
in such a way that they can be updated effectively
in a fast data stream. At the same time, a sufficient
amount of statistics is stored so that important mea-
sures about the cluster in a given projection can be
quickly computed. In the next section, we will dis-
cuss the fading cluster structure which is useful for
such book-keeping. This structure is also capable of
performing the updates in such a way that outdated

data is temporally discounted. This ensures that in
an evolving data stream, the past history is gradually
discounted from the computation.

In comparison with the previous literature, we have
made substantial progress in the following aspects:

1. HPStream introduces the concept of projected clus-
tering to data streams. Since a lot of stream data
is high-dimensional in nature, it is necessary to per-
form high quality high-dimensional clustering. How-
ever, the previous stream clustering methods, such
as STREAM and CluStream, cannot handle such data
well, due to their clustering of data in all the relevant
dimensions. Moreover, PROCLUS, though exploring
projected clustering, cannot handle data streams due
to its requirement of multiple scans of the data.

2. HPStream explores a linear update philosophy in
projected clustering, achieving both high scalabil-
ity and high clustering quality. This philosophy was
first proposed in BIRCH. CluStream introduces this
idea to stream clustering, however, it does not show
good quality with high dimensional data. With pro-
jected clustering, HPStream can reach consistently
high clustering quality due to its adaptability to the
nature of real data set, where data shows its tight
clustering behavior only at different subsets of di-
mension combinations.

Besides the above major progress, HPStream has pro-
posed and explored several other innovative ideas. For
example, the fading cluster structure, nicely integrates
historical and current data with a user-specified or
user-tunable fading factor. Also, using bit-vector for
registration and dynamic update of relevant dimen-
sions, and using minimal radius for clustering quality
enhancement have improved the clustering efficiency
and accuracy.

The remaining of the paper is organized as follows.
In Section 2, we will discuss the basic concepts that
are necessary for developing the algorithm. In Sec-
tion 3, we will introduce the HPStream algorithm of
this paper. Section 4 reports our performance study
on real and synthetic data sets. We will compare the
HPStream algorithm to the full dimensional CluStream
algorithm. A brief discussion of the possible extensions
of this work is included in Section 5. The conclusions
and summary are discussed in Section 6.

2 The Fading Cluster Structure: Mo-
tivation and Concepts

The data stream consists of a set of multi-
dimensional records X1 . . . Xk . . . arriving at time
stamps T1 . . . Tk . . .. Each data point Xi is a multi-
dimensional record containing d dimensions, denoted
by Xi = (x1

i . . . xd
i ). Since the stream clustering pro-

cess should provide a greater level of importance to re-
cent data points, we introduce the concept of a fading
data structure which is able to adjust for the recency of
the clusters in a flexible way. It is assumed that each
data point has a weight defined by a function f(t) to
the time t. The function f(t) is also referred to as the
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fading function. The value of the fading function lies
in the range (0, 1). It is also assumed that the fading
function is a monotonic decreasing function which de-
cays uniformly with time t. In particular, we choose
an exponential form for the fading function. The ex-
ponentially fading function is widely used in temporal
applications in which it is desirable to gradually dis-
count the history of past behavior. In order to formal-
ize the concept of the fading function, we will define
the half-life of a point in the data stream.

Definition 2.1 The half life t0 of a point is defined
as the time at which f(t0) = (1/2)f(0).

Conceptually, the aim of defining a half life is to define
the rate of decay of the weight assigned to each data
point in the stream. Correspondingly, the decay-rate
is defined as the inverse of the half life of the data
stream. We denote the decay rate by λ = 1/t0. In
order for the half-life property to hold, we define the
weight of each point in the data stream by f(t) =
2−λ·t. From the perspective of the clustering process,
the weight of each data point is f(t). It is easy to see
that this decay function creates a half life of 1/λ. It
is also evident that by changing the value of λ, it is
possible to change the rate at which the importance of
the historical information in the data stream decays.
The higher the value of λ, the lower the importance
of the historical information compared to more recent
data.

We will now define the fading cluster structure, a
data structure which is designed to capture key sta-
tistical characteristics of the clusters generated during
the course of a data stream. The aim of the fading
cluster structure is to capture a sufficient number of
the underlying statistics so that it is possible to com-
pute key characteristics of the underlying clusters.

Definition 2.2 A fading cluster structure at time t
for a set of d-dimensional points C = {Xi1 . . . Xin

}
with time stamps Ti1 . . . Tin

is defined as the (2 · d+1)

tuple FC(C, t) = (FC2x(C, t), FC1x(C, t),W (t)). The

vectors FC2x(C, t) and FC1x(C, t) each contain d en-
tries. We will now explain the significance of each of
these sets of entries:

1. For each dimension j, the jth entry of

FC2x(C, t) is given by the weighted sum of the
squares of the corresponding data values in that
dimension. The weight of each data point is de-
fined by its level of staleness since its arrival in

the data stream. Thus, FC2x(C, t) contains d

values. The j-th entry of FC2x(C, t) is equal to
∑n

k=1 f(t − Tik
) · (xj

ik
)2.

2. For each dimension j, the jth entry of

FC1x(C, t) is given by the weighted sum of the
corresponding data values. The weight of each
data point is defined by its level of staleness since

its arrival in the data stream. Thus, FC1x(C, t)

contains d values. The j-th entry of FC1x(C, t)

is equal to
∑n

k=1 f(t − Tik
) · (xj

ik
).

3. We also maintain a single entry W (t) contain-
ing the sum of all the weights of the data points
at time t. Thus, this entry is equal to W (t) =
∑n

k=1 f(t − Tik
).

The clustering structure discussed above satisfies a
number of interesting properties. These properties are
referred to as additivity and temporal multiplicity. The
additivity property is defined as follows:

Observation 2.1 Let C1 and C2 be two clusters with
cluster structures FC(C1, t) and FC(C2, t) respectively.
Then, the cluster structure of C1 ∪ C2 is given by
FC(C1 ∪ C2, t) = FC(C1, t) + FC(C2, t).

The additivity property follows from the fact that each
cluster can be expressed as a sum of its individual
components. The temporal multiplicity property is
defined as follows:

Observation 2.2 Consider the cluster structure at
the time FC(C, t). If no points are added to C in
the time interval (t, t + δt), then FC(C, t + δt) =
e−λδt · FC(C, t).

We note that this property holds because of the expo-
nential decay of each component of the cluster struc-
ture.

Since the algorithm in this paper is designed for pro-
jected clustering of data streams, a set of dimensions
is associated with each cluster. Therefore, with each
cluster C, we associate a d-dimensional bit vector B(C)
which corresponds to the relevant set of dimensions
in C. Each element in this d-dimensional vector has
a 1-0 value corresponding to whether or not a given
dimension is included in that cluster. This bit vector
is required for the book-keeping needed in the assign-
ment of incoming points to the appropriate cluster. As
the algorithm progresses, this bit vector varies in order
to reflect the changing set of dimensions. In the next
section, we will discuss the clustering algorithm along
with the various procedures which are used for cluster
maintenance.

3 The High Dimensional Projected
Clustering Algorithm

In this section, we will discuss how the individual clus-
ters are maintained in an online fashion. The algo-
rithm for high-dimensional clustering utilizes an itera-
tive approach which continuously determines new clus-
ter structures while re-defining the set of dimensions
included in each cluster.

At the beginning of the clustering process, we run
a normalization process in order to weigh different di-
mensions correctly. This is because the clustering algo-
rithm needs to pick the dimensions which are specific
to each cluster by comparing the radii along different
dimensions. We note that different dimensions may
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Algorithm HPStream (Data Stream Point: X, Cluster Structures: FCS,
Dimensionality Vector Sets: BS, MaxClusters: k, Dimensionality: l);

begin
{ Assume that FCS contains the relevant cluster structures denoted by FCS = {FCx(C1, t) . . .FCx(Cr, t) . . . } }
{ Assume that BS contains the relevant cluster dimensions denoted by BS = {B(C1) . . .B(Cr) . . . }

Receive the next data point X at current time t from stream DS;

BS =ComputeDimensions(FCS, l, X);
for r = 1 to |FCS| do

ds(r) = FindProjectedDist(FCx(Cr, t),B(Cr, X));
index = argmaxi{ds(i)};
s = FindLimitingRadius(FCx(Cindex, t, ),B(Cindex));
if ds(index) > s
then set index = |FCS| + 1 and add new fading cluster structure C|FCS|+1 with a solitary data point to FCS;

else add X to FCx(Cindex, t);
Remove those clusters from FCS which have zero dimensions assigned to them;
if |FCS| > k
then delete the least recently added cluster in FCS;

end;

Figure 1: Basic Algorithm for Clustering High-dimensional Data Streams

Algorithm FindProjectedDist(FadedClusterStructure : FCx(Cr, t), Bitvector : B(Cr, Datapoint : X);
begin

{ This procedure finds Manhattan Segmental Distance along the projected dimensions }
for each dimension with bit value of 1 in B(Cr)

find the distance between X and the centroid of B(Cr);
return average distance along the included dimensions;

end

Figure 2: Finding the Projected Distance

Algorithm ComputeDimensions(Faded Cluster Structures:FCS, NumberofDimensions: l, Incoming Point: X);
begin

Create |FCS| (tentative) fading cluster structures by adding X to each of the existing clusters;
Compute the |FCS| ∗ d radii of each of the |FCS| (tentative) clusters along each of the d dimensions;
Pick the |FCS ∗ l| dimensions with the least radii;
Create a bitvector B(Cr) for each cluster Cr reflecting its projected dimensions;

end;

Figure 3: Computing the Projected Dimensions

Algorithm FindLimitingRadius(Faded Cluster Structure: FCx(Cindex, t), Bitvector: B(Cindex))
begin
{ Find the radius r′ of the cluster using only the dimensions contained in B(Cindex);}

r2
j

= FC2x(C, t)j/W (t) − FC1x(C, t)j ∗ FC1x(C, t)j/W (t)2;

R =
∑

j∈B(C)
r2
j
;

Let d′ be the number of bits in B(C) with value of 1;

R =
√

R/d′;
return(R ∗ τ ;)

end

Figure 4: Finding the Limiting Radius of the Cluster
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refer to different scales of reference such as age, salary
or other attributes which have vastly different ranges
and variances. Therefore, it is not possible to com-
pare the dimensions in a meaningful way using the
original data. In order to be able to compare different
dimensions meaningfully, we perform a normalization
process. The aim is to equalize the standard devia-
tion along each dimension. We use an initial sample
of the data points to calculate the standard deviation
σi of each dimension i. Subsequently, the value of di-
mension i for each data point is divided by σi. We
note that since the data stream may evolve over time,
the values of σi may change as well. Therefore, the
normalization factor is recomputed on a periodic ba-
sis. Specifically, this process is repeated at an interval
of every N ′ points. However, whenever the value of
σi changes, the corresponding fading cluster statistics
may also need to be changed. Let us assume that the
standard deviation of dimension i changes from σi to
σ′

i during a normalization phase. Then, the cluster

statistics FC(C, t) = (FC2x(C, t), FC1x(C, t),W (t))
for each cluster C needs to be correspondingly mod-
ified. Specifically, the ith entry in (FC2x(C, t) needs
to be multiplied by σ2

i /σ′2
i , whereas the ith entry in

FC1x(C, t) needs to be multiplied by σi/σ
′
i.

In Figure 1, we have illustrated the basic (incre-
mental) algorithm for clustering high-dimensional data
streams. Thus, the incremental pseudo-code shows the
steps associated with adding one point to the data
stream. The input to the algorithm includes the cur-
rent cluster structure FCS, and the sets of dimensions
associated with each cluster. These cluster structures
and sets of dimensions are dynamically updated as the
algorithm progresses. The set of dimensions BS asso-
ciated with each cluster includes a d-dimensional bit
vector B(Ci) for each cluster structure in FCS. This
bit vector contains a 1 bit for each dimension which
is included in cluster Ci. In addition, the maximum
number of clusters k and the average cluster dimen-
sionality l is used as an input parameter. The average
cluster dimensionality l represents the average number
of dimensions used in the cluster projection.

The data stream clustering algorithm utilizes an it-
erative approach by assigning data points to the clos-
est cluster structure at each step of the algorithm. The
closest cluster structure is determined by using a pro-
jected distance measure. For each cluster, only those
dimensions which are relevant to that cluster are uti-
lized in the distance computation. At the same time,
we continue to re-define the set of projected dimen-
sions associated with each cluster. The re-definition
of the projected dimensions aims to keep the radii of
the clusters over the projected dimensions as low as
possible. Thus, the clustering process requires a simul-
taneous maintenance of the clusters as well as the set
of dimensions associated with each cluster.

We will now proceed to systematically describe the
steps of the high-dimensional clustering algorithm. A
pseudo-code of the algorithm is described in Figure 1.

• The set of dimensions associated with each cluster

are updated using the procedure ComputeDimen-
sions. This procedure determines the dimensions in
such a way that the spread along the chosen dimen-
sions is as small as possible. We note that many
of the clusters may contain only a few points. This
makes it difficult to compute the dimensions in a
statistically robust way. In the extreme case, a clus-
ter may contain only one point. In this degenerate
case, the computation of the dimensions is not possi-
ble since the radii along different dimensions cannot
be distinguished. In order to deal with such degener-
ate cases, we need to use the incoming data point X
during the determination of the dimensions for each
cluster. It is desirable to pick the dimensions in such
a way that X fits the selected cluster well even after
the projected dimensions are selected. Specifically,
the data point X is temporarily added to each pos-
sible cluster during the process of determination of
dimensions. This makes significant difference to the
chosen dimensions for clusters which contain very
few data points. Once these selected dimensions
have been chosen, the corresponding bits are stored
in BS.

• The next step is the determination of the closest
cluster structure to the incoming data point X. In
order to do so, we compute the distance of X to
each cluster centroid using only the set of projected
dimensions for the corresponding cluster. This data
in BS is used as a book-keeping mechanism to deter-
mine the set of projected dimensions for each cluster
during the distance computation. The correspond-
ing procedure is referred to as FindProjectedDist.
We will discuss more details about this procedure
slightly later.

• Once it is decided which cluster the data point X
should be assigned to, we determine the natural lim-
iting radius of the corresponding cluster. The lim-
iting radius is considered a natural boundary of the
cluster. Data points which lie outside this natu-
ral boundary are not added to the cluster. Instead
such points create new clusters of their own. The
procedure for determination of the limiting radius
is denoted by FindLimitingRadius.

• If the incoming data point lies inside the limiting
radius, it is added to the cluster. Otherwise, a new
cluster needs to be constructed containing the soli-
tary data point X. We note that if the new data
point is noise, the newly created cluster will subse-
quently have few points added to it. As explained
below, this will ultimately lead to the deletion of
that cluster.

• In the event that a new cluster is created, the total
number of cluster structures in FCS may increase.
Therefore, one cluster needs to be deleted in order to
make room for the incoming cluster. In that case,
the cluster structure to which the least recent up-
dating was performed is deleted. Thus rule ensures
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that only stale and outdated clusters are removed
by the update process.

In order to determine the closest cluster to the incom-
ing data point, we use the procedure for determining
the projected distance of X from each cluster Cr. The
method for finding this distance is discussed in the
procedure FindProjectedDist, and is illustrated in Fig-
ure 2. In order to find the projected distance, the
distance along each dimension with bit value of 1 in
B(Cr) is determined. The average distance along these
dimensions (also known as the Manhattan Segmental
Distance [2]) is reported as the projected distance. We
note that it is not necessary to normalize the distance
measurements at this point, since the entire stream has
already been normalized at this point. This distance
value is computed for each cluster, and the data point
X is added to the cluster with the least distance value.

The procedure for finding the limiting radius is il-
lustrated in Figure 4. The motivation for finding the
limiting radius is to determine the natural boundary
of the clusters. Incoming data points which do not lie
within this limiting radius of their closest cluster must
be assigned a cluster of their own. This is because
these data points do not naturally fit inside any of the
existing clusters. The limiting radius is defined as a
certain factor τ of the average radius of the data points
in the cluster. This radius can be computed using the
statistics in the fading cluster structure.

We note that the fading cluster structure contains
the first and second order moments of the data points
inside the clusters. The average square radius along
the dimension j is given by:

r2
j = FC2x(C, t)j/W (t)−FC1x(C, t)j∗FC1x(C, t)j/W (t)2.

(1)
The square radius over the dimensions included in
B(C) is averaged in order to find the total square ra-
dius of the included dimensions. The square root of
this value is the relevant radius of the cluster along
the projected set of dimensions. Thus, we find R =
√

∑

j∈B(C) r2
j /d′. Here d′ is the number of dimensions

included in that projected cluster. This value is scaled
by a boundary factor τ in order to decide the final
value of the limiting radius. Thus, any incoming data
point which lies outside a factor τ of the average ra-
dius along the projected dimensions of its closest clus-
ter needs to create a new cluster containing a solitary
data point.

In Figure 3, we have illustrated the process of com-
putation of the projected dimensions. This is accom-
plished by calculating the spread along each dimension
for each cluster in FCS. Thus, a total of |FCS|∗d val-
ues are computed and ranked in increasing order. We
select the |FCS| ∗ l dimensions with the least radii as
the projected dimensions for that cluster. The incom-
ing data point X is included in each cluster for the
purpose of computation of dimensions. This ensures
that if the incoming data point is added to that cluster,
the corresponding set of projected dimensions reflect

the included data point X. This helps in a more stable
computation of the projected dimensionality when the
cluster contains a small number of data points.

We note that whenever a data point is assigned to
a cluster, it needs to be added to the statistics of the
corresponding cluster. For this purpose, we need to
use the additive and temporal multiplicity properties.
The temporal multiplicity is applied in a lazy way at
specific instants when a new data point is added to a
cluster. Thus, the temporal component of the cluster
statistics may remain stale in many cases. However,
this does not affect the execution of the overall algo-
rithm. This is because the computation of other mea-
sures such as finding the projected distance or com-
puting the dimensions is not affected by the temporal
decay factor. The first step in assigning a data point to
a cluster is to update the temporal decay function for
each cluster. Let t be the current time and tup be the
last update time for that cluster. Then, each item in
the fading cluster structure is multiplied by the factor
e−λ·(t−tup). At this point, the statistics for the incom-
ing data point are added to the corresponding fad-
ing cluster structure statistics. The additivity prop-
erty ensures that the updated cluster is represented
by these statistics.

At the beginning of the data stream clustering pro-
cess, it is necessary to perform an additional initializa-
tion process by which the original clusters are created.
For this purpose, a certain initial portion (containing
InitNumber points) is utilized. An offline process is
used in order to create the initial clusters. This process
is implemented as a K-means algorithm on an initial
sample of the data points. First, a full dimensional K-
means algorithm is applied to the data points so as to
create the initial set of clusters. Then, the ComputeD-
imensions procedure is applied in order to determine
the most relevant dimensions for each cluster. The set
of dimensions associated with each cluster is used to
compute a new set of assignments of data points to
the corresponding centroids. We note that this new
assignment is different from the full dimensional as-
signments, since the set of projected dimensions are
used in order to calculate the closest centroid to each
data point. These new assignments are utilized to cre-
ate a new set of K centers. The process of recom-
puting the dimensions and the centroids is repeated
iteratively until the procedure converges to a final set
of clusters. These clusters are used to create the fading
cluster structures at the beginning of the data stream
computation.

We observe that the number of projected dimen-
sions l is used as an input parameter. The ComputeD-
imensions procedure uses this input parameter in pick-
ing the |FCS ∗ l| dimensions with the least radii. In-
stead of using a fixed number of projected dimensions
based on the radius rank, we can use a threshold on
the radii of the different dimensions. This would al-
low the number of projected dimensions to vary over
the course of the execution of the data stream cluster-
ing process. The use of such a threshold can often be
more intuitively appealing over a wide variety of data
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sets. Since the data normalization ensures that the
standard deviation along each dimension is one unit,
the threshold can be chosen in terms of the number of
standard deviations per dimension. While there may
be some variation across data sets in picking this value,
this choice has better statistical interpretation.

4 Empirical Results

In this section we present our thorough experimental
study in evaluating the various aspects of HPStream al-
gorithm. All the experiments were performed on a In-
tel Pentium IV processor computer with 256MB mem-
ory and running on Windows XP professional. In [3],
the authors proposed the CluStream algorithm, which
has shown better clustering quality than the previously
designed STREAM clustering algorithm [17]. In testing
the clustering accuracy and efficiency, we compared
our HPStream algorithm with CluStream. We imple-
mented both algorithms in Microsoft Visual C++.

In the experiments, HPStream maintained the same
number of the fading cluster structures as that of
micro-clusters used by CluStream. The algorithm pa-
rameters for CluStream were chosen the same as those
adopted in [3]. Unless otherwise mentioned, the pa-
rameters for HPStream were set as follows: decay-rate
λ = 0.5, spread radius factor τ = 2, InitNumber =
2000. Both real and synthetic data sets were used in
evaluating HPStream’s clustering quality, stream pro-
cessing rate, scalability, and sensitivity.
Real data sets. Many previously proposed stream
clustering algorithms [17, 3] chose the sum of square
distance (or SSQ for short) to evaluate the cluster-
ing quality. The SSQ at current time Tc with a given
horizon H (denoted as SSQ(Tc, H)) is computed as
follows. For each point pi, we find the centroid Cpi

of its closest cluster structure, and compute d(pi, Cpi
),

the distance between pi and Cpi
. Then SSQ(Tc, H)

is equal to the sum of d2(pi, Cpi
) for all the points

within the previous horizon H. However, SSQ is not
a good measure in evaluating projected clustering be-
cause full dimensional measures are not very useful
for measuring the quality of a projected clustering al-
gorithm. For this purpose, we will try to find some
large real data sets which contain class labels for the
data points, although we do not use the class labels in
the clustering process. Instead of using SSQ, we will
use the cluster purity to assess the clustering accuracy.
As in [1], the cluster purity is defined as the average
percentage of the dominant class label in each cluster.
Only those subset of points which arrive within a pre-
defined window of time from the current instant were
used to compute the cluster purity. Our empirical re-
sults showed that the qualitative results were generally
not very sensitive to this choice of window or horizon.

The first real data set used was the KDD-CUP’99
Network Intrusion Detection stream data set which
has been used to evaluate the clustering accuracy for
several stream clustering algorithms [17, 3]. This data
set corresponds to the important problem of automatic
and real-time detection of cyber attacks and consists

of a series of TCP connection records from two weeks
of LAN network traffic managed by MIT Lincoln Labs.
Each record can either correspond to a normal connec-
tion, or an intrusion which can be classified into one
of 22 types. Most of the connections in this data set
are normal, but occasionally there could be a burst of
attacks at certain times. Also, this data set contains
totally 494020 connection records, and each connec-
tion record has 42 attributes. As in [17, 3], all 34
continuous attributes will be used for clustering and
one outlier point has been removed.

The second real data set we tested is the For-
est CoverType data set and was obtained from
the UCI machine learning repository website (i.e.,
http://www.ics.uci.edu/∼mlearn). This data set con-
tains totally 581012 observations and each observa-
tion consists of 54 attributes, including 10 quantita-
tive variables, 4 binary wilderness areas and 40 binary
soil type variables. In our testing, we used all the 10
quantitative variables. There are seven forest cover
type classes.

Synthetic datasets. We also generated several syn-
thetic data sets to test the clustering quality, efficiency
and scalability. Because we know the true cluster dis-
tribution a priori, we can compare the clusters found
with the true clusters and compute the cluster purity.
The synthetic data set generator takes four parameters
as input: the number of data points N , the number of
natural clusters K, the number of dimensions d, and
the average number of projected dimensions l (we re-
quired l > bd

2c). The number of projected dimensions
in each cluster is uniformly distributed and drawn from
[l − x, l + x], where 1 ≤ x ≤ b d

2c and (l − x) ≥ 2. The
projected dimensions for each cluster were chosen ran-
domly. The data points of each cluster are normally
distributed with the mean for each cluster uniformly
chosen from [0,K). The standard deviation was de-
fined as

√
v for each projected dimension of any clus-

ter, and y × √
v where (y > 1) for each of the other

dimensions, where v was always randomly chosen from
[0.5, 2.5] for any dimension. In our experiments, we
set parameters x and y at 2 and 3, respectively.

The data points for different clusters were generated
at different times according to a pre-defined probabil-
ity distribution. In order to reflect the evolution of
the stream data over time, we randomly re-computed
the probability of the appearance of a certain cluster
periodically. We also assume the projected dimensions
will evolve a little over time. In order to capture this
kind of evolution, we randomly dropped one of the pro-
jected dimensions in one of the clusters and replaced it
by a new dimension in a (possibly different) cluster. In
addition, we will use the following notations in nam-
ing the synthetic data sets: ‘B’ indicates the base size,
i.e., the number of data points in the data set, whereas
‘C’, ‘D’, and ‘L’ indicate the number of natural clus-
ters, the dimensionality of each point, and the average
number of projected dimensions, respectively. For ex-
ample, B100kC10D50L30 means the data set contains
in total 100K data points of 50-dimensions, belonging
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to 10 different clusters, and on average, the number of
projected dimensions is 30.

4.1 Clustering Evaluation

Here we present and analyze our experimental results
on clustering quality (accuracy) and the efficiency of
the comparing algorithms. An important discovery is
that SSQ is no longer a good measure of clustering
quality. Instead, cluster purity is taken as the measure
of the clustering quality.
Accuracy comparison. We evaluated the clustering
quality of the HPStream algorithm in comparison with
the CluStream algorithm using both real and synthetic
data sets.
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Figure 5: Quality comparison (Network Intrusion data
set, horizon = 1, stream speed = 200)
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Figure 6: Quality comparison (Network Intrusion data
set, horizon = 10, stream speed = 100)

Figure 5 and Figure 6 show the clustering quality
comparison results for the Network Intrusion Detec-
tion data set. In the experiments CluStream used all
the 34 dimensions, while we set the average number of
projected dimensions at 20 (i.e., l = 20) for HPStream,
which means on average HPStream used 20 projected
dimensions. In Figure 5, the stream speed is set at 200
points per time unit and horizon H = 1. We chose a se-
ries of time points when there were some kind of attack
connections happened. For example, at time T = 211
there were 1 “phf ” connection, 23 “portsweep” con-
nections, and 176 “normal” connections during the
past 1 horizon, while at time T = 1857, there were
totally 79 “smurf ”, 99 “teardrop”, and 22 “pod” at-
tack connections for the last horizon. From Figure 5,
we can see that HPStream has a very good cluster-
ing quality: its clustering purity is always higher than
90% and better than CluStream. For example, at time

T = 1857, HPStream grouped different attack connec-
tions into different clusters, while CluStream grouped
all kinds of attacks into one cluster, this is why HP-

Stream’s cluster purity is more than 20% higher than
that of CluStream. We also set the stream speed at
100 points per time unit and horizon H at 10 to test
the clustering quality, Figure 6 shows the results. Ex-
cept at time T = 2500, HPStream always has a much
higher cluster purity than CluStream. We checked the
original class labels for the connections in the last ten
horizons from the current time 2500 and found all the
connections belong to one attack type, “smurf ”. As a
result, no matter what clustering algorithms we used,
they would always have a 100% cluster purity and this
does not mean CluStream can do good job in this case.
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Figure 7: Quality comparison (Forest CoverType data
set, horizon=1, stream speed=200)

We also tested the clustering quality of HPStream

for another real data set, Forest CoverType. For this
data set, we set the average number of projected di-
mensions at 8 (i.e., l = 8). Figure 7 and Figure 8 show
the clustering quality comparison results. In Figure 7,
we set the stream speed at 200 points per time unit
and compute the cluster purity at different time for
the last one horizon (i.e., H = 1). Figure 7 shows
that HPStream always has higher cluster purity than
CluStream, even for such a data set with a not very
high dimensionality (here d = 10). We then changed
the stream speed to 100 points per time unit and hori-
zon H to 10 and compare the cluster quality for the
two algorithms. Figure 8 shows the similar picture:
HPStream always has higher cluster purity than CluS-

tream.
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Figure 8: Quality comparison (Forest CoverType data
set, horizon = 10, stream speed = 100)

We generated one synthetic data set,
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Figure 9: Quality comparison (Synthetic data set
B100kC10D50L30, horizon = 1, stream speed = 200)
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Figure 10: Quality comparison (Synthetic data set
B100kC10D50L30, horizon = 10, stream speed = 400)

B100kC10D50L30, to test the clustering quality.
This data set contains 100,000 points that has a
total dimensionality of 50 and an average number
of projected dimensions 30. The data points belong
to 10 different clusters. In the experiments, we set
l at 30 for HPStream. As Figure 9 shows when we
set the stream speed at 200 points per time unit
and horizon at 1, HPStream consistently has much
better clustering quality than CluStream: On average,
the cluster purity of HPStream is about 20% higher
than that of CluStream. We then changed the stream
speed to 400 points per time unit and used a lager
horizon, H = 10, to test the clustering quality. Figure
10 shows that the cluster purity of the HPStream

algorithm is always over 15% higher than that of
CluStream.
Efficiency test. We used both the Network Intrusion
Detection and Forest CoverType data sets to test the
efficiency of HPStream against CluStream. Because the
CluStream algorithm needs to periodically store away
the current snapshot of micro-clusters under the Pyra-
midal Time Framework, we implemented two versions
of the CluStream algorithm: One uses disk to maintain
the snapshots of micro-clusters, and the other stores
the snapshots of micro-clusters in memory. The algo-
rithm efficiency is measured by the stream processing
rate versus progression of the stream, which is defined
as the inverse of the time required to process the last
1000 points (The unit is in points/second). In the ex-
periments, we fixed the stream speed at 200 points per
second.

Figure 11 shows the stream processing rate for
Network Intrusion data set, from which we can see
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Figure 11: Stream Processing Rate (Network Intrusion
data set, stream speed = 200)
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Figure 12: Stream Processing Rate (Forest CoverType
data set, stream speed = 200)

that HPStream is more efficient than the disk-based
CluStream algorithm and is only marginally slower
than the memory-based CluStream algorithm. How-
ever, as we know, the memory-based CluStream al-
gorithm will consume much more memory than HP-

Stream. In addition, for this data set, the processing
rate of HPStream is very stable and is around 11,000
points/second, which means HPStream can support a
high stream speed at 10,000 points/second. Figure 12
shows the stream processing rate for the Forest Cover-
Type data set. Because this data set has a smaller di-
mensionality than the Network Intrusion data set, all
these algorithms have a higher stream processing rate.
For example, both HPStream and the memory-based
CluStream algorithms have a stream processing speed
around 35,000 points/second. Similarly, HPStream has
a higher processing speed than the disk-based CluS-

tream algorithm while consumes less memory than the
memory-based CluStream algorithm.

4.2 Sensitivity Analysis

In sensitivity analysis, we show how sensitive the clus-
tering quality is in relevance to the average projected
dimensionality, the radius threshold, and the decay
rate.
Choice of the average projected dimensional-
ity l. The average projected dimensionality l plays
an important role in choosing a proper set of pro-
jected dimensions that are used by HPStream to do
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clustering, we want to know how sensitive it is in af-
fecting the clustering quality. Because we know the
true average projected dimensionality in advance for
synthetic data sets, we will use the synthetic data
set B100kC10D50L30 to test the clustering quality by
choosing different average projected dimensionality l.
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Figure 13: Choice of l (Synthetic data set
B100kC10D50L30, horizon = 5, stream speed = 200)
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Figure 14: Choice of l (Synthetic data set
B100kC10D50L30, horizon = 10, stream speed = 400)

B100kC10D50L30 was generated with an average
projected dimensionality l = 30, in our experiments
we used a series of different l’s, i.e., {10, 20, 30, 40,
50}, to test the clustering quality. We first fixed the
stream speed at 200 points per time unit and horizon
at 5. Figure 13 shows the result. As we can see, overall
l = 30 can lead to the best cluster purity, and a too
small l at 10 or a too large l at 50 will generate very
poor clustering quality. In addition, the cluster purity
for l = 20 or l = 40 is very similar to that for l = 30,
which suggests as long as we choose a value for l in the
range from 20 to 40, HPStream will have a very good
clustering quality.

We then set the stream speed at 400 points per
time unit and horizon H at 10, and did the same set
of tests. Figure 14 shows the result, which is very
similar to that in Figure 13. In addition, under the
same settings and with the same data set, from Figure
10 we know CluStream never generated a cluster purity
higher than 80%, as a result, no matter what value we
choose for l from 20, 30, or 40, HPStream always has
much better cluster purity than CluStream

The above experiments about the sensitivity of the
average projected dimensionality l demonstrate that as
long as we choose for l a value not too deviated from
the true average projected dimensionality, HPStream

will have a high clustering quality. We also did some
further tests using the Network Intrusion Detection
data set and found HPStream always generated similar
clustering solution if we chose for l a value in the range
from 20 to 30.
Choice of the radius threshold. Although the
average projected dimensionality l provides a very
flexible and natural way for HPStream to pick the
set of well correlated dimensions for clustering high-
dimensional data, however, in some cases a radius
threshold may be more intuitively chosen as an al-
ternative in selecting the set of projected dimen-
sions. This quality-controlled parameter would allow
the number of projected dimensions evolve over the
stream. For example, among the 34 dimensions for
Network Intrusion Detection data set, most of them
have a deviation 0 for a certain type of connections. If
the user has this knowledge in advance, he may choose
a radius threshold which is very close to 0 in defining
the set of projected dimensions.
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Figure 15: Quality comparison based on the radius
threshold (Network Intrusion data set, horizon = 1,
stream speed = 200)

Figure 15 shows the test result for the Network In-
trusion data set by setting the stream speed at 200
points per time unit and horizon H at 1. In the ex-
periments, we test against CluStream the clustering
quality of HPStream with varying radius threshold as
an input parameter. The result shows that if we set
the radius threshold at 0.001 or 0.0001, HPStream al-
ways has much better clustering quality than CluS-

tream. For example, at time T = 1857, the cluster pu-
rity of HPStream is more than 20% higher than that
of CluStream. This suggests a radius threshold in the
range [0.0001, 0.001] could make HPStream generate
very good clustering solutions for the Network Intru-
sion data set.
Choice of the decay rate λ. Another important
parameter for HPStream is the decay rate λ, which
defines the importance of the historical data. In sec-
tion 4.1, we set λ at a moderate value, 0.5, with which
HPStream showed much better clustering quality than
CluStream. We also did several experiments to iso-
late the effect of decay rate λ by changing λ from a
small value to a large one. We used the synthetic data
set B100kC10D50L30 and set the stream speed at 200
points per time unit and average projected dimension-
ality l = 30 to test the cluster purity of HPStream at
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Figure 16: Choice of decay rate λ (Synthetic data set
B100kC10D50L30, stream speed = 200, H = 10, time
units = 100, l = 30)

time T = 100 with horizon 10. Figure 16 shows the
results corresponding to a series of decay rates, 0.0005,
0.005, 0.05, 0.5, 1, 2, and 4. If 0.0005 ≤ λ ≤ 2, HP-

Stream has a relatively stable cluster purity which is
much better than that of CluStream. However, when
we use a very high value for λ like 4, HPStream’s qual-
ity deteriorates quickly, but still is a little better than
that of CluStream. We note that the choice of λ = 4
represents a pathological case in which the clusters are
determined based on only a small number of recently
arriving data points. In such cases, both algorithms
tends to show relatively similar behavior.

4.3 Scalability Test

The scalability tests presented below show that HP-

Stream is linearly scalable with both dimensionality
and the number of clusters. We have already shown
that HPStream has very stable stream processing speed
along with the progression of the stream for the two
real data sets. High scalability in terms of dimension-
ality and the number of clusters is also very critical to
the success of a high-dimensional clustering algorithm.
We generated a series of synthetic data sets to test the
scalability of HPStream.
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Figure 17: Scalability with dimensionality
(stream speed = 100, l = 0.8 × d)

We first generated 3 data sets with varying num-
ber of dimensions to test the scalability against di-

mensionality. B100kC5 contains 100K points and 5
natural clusters, B200kC10 contains 200K points and
10 clusters, and B400kC20 contains 400K points and
20 clusters. For each series of data sets, we generated
4 data sets with dimensionality d set at 10, 20, 40,
and 80, respectively. The average number of projected
dimensions for each data set is set at 0.8 × d and the
stream speed is set at 100 points per time unit. Figure
17 shows that when we varied the dimensionality from
10 to 80, HPStream has linear increase in runtime for
data sets with different number of points and different
number of clusters. For example, for data set series
B200kC10, the runtime increases from 6.579 seconds
to 49.401 seconds when the dimensionality is changed
from 10 to 80.
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Figure 18: Scalability with number of clusters
(stream speed=100, l = 0.6 × d)

To test the scalability against the number of nat-
ural clusters, we generated another 3 series of data
sets with varying number of clusters. B100kD10 con-
tains 100K 10-dimensional data points, B200kD20 has
200K 20-d data points, and B400kD40 has 400K 40-d
data points. For each series of data sets, we generated
4 data sets with the number of natural clusters set
at 5, 10, 20, and 40, respectively. The average num-
ber of projected dimensions for each data set is set at
0.6 × d and the stream speed at 100 points per time
unit. Figure 18 shows that the runtime of HPStream

has very good scalability in terms of the number of
clusters for data sets with different number of points
and dimensionality. The high scalability of HPStream

in terms of the number of clusters stems from both
the algorithm design and implementation. Among the
three most costly functions in HPStream algorithm, the
computation of FindLimitingRadius has nothing to do
with the number of clusters, FindProjectedDist is lin-
early scalable to the the number of clusters, whereas
for ComputeDimensions, we can exploit the temporal
locality to improve its efficiency: At a certain period,
the points usually only belong to a small number of
clusters, and only the dimensions of these clusters will
be changed during the past period with the necessity
to re-compute their radii.
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5 Discussion

Our experiments have shown that the HPStream

framework leads to accurate and efficient high-
dimensional stream clustering. This framework can be
extended in many ways to assist stream data mining.

First, some methodologies, such as the cluster struc-
ture and micro-clustering ideas, though designed for
projected stream clustering, can be applied to pro-
jected clustering of non-stream data as well. Moreover,
the method worked out here for high-dimensional pro-
jected stream clustering represents a general method-
ology, independent of particular evaluation measures
and implementation techniques. For example, one can
change the distance measure from Euclidean distance
to other measures, or change detailed clustering algo-
rithm, such as k-means, to other methods, the general
methodology should still be applicable. However, it
is interesting to work out the detail implementation
techniques for particular applications.

Second, one extension of the framework is to use
tilted time windows to store data at different time
granularity. This may take somewhat more space in
cluster structure, however, it may give user more flex-
ibility to dynamically assign or modify fading ratio, as
well as to discover clusters at more flexibly specified
windows or time periods to facilitate the discovery of
cluster evolution regularity.

Finally, this study may promote the development of
new streaming data mining functions, such as stream
classification and similarity analysis based on dynam-
ically discovered projected clusters.

6 Conclusions

We have presented a new framework, HPStream, for
high-dimensional projected clustering of data streams.
It finds projected clusters in particular subsets of the
dimensions by maintaining condensed representations
of the clusters over time. The algorithm provides bet-
ter quality clusters than full dimensional data stream
clustering algorithms. We tested the algorithm on a
number of real and synthetic data sets. In each case,
we found that the HPStream algorithm was more ef-
fective than the full dimensional CluStream algorithm.

High-dimensional projected clustering of data
streams opens a new direction for exploration of
stream data mining. With this methodology, one
can treat projected clustering as a preprocessing step,
which may promote more effective methods for stream
classification, similarity, evolution and outlier analysis.
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