
Efficiency-Quality Tradeoffs for Vector Score Aggregation

Pavan Kumar C. Singitham Mahathi S. Mahabhashyam Prabhakar Raghavan

Stanford University
Stanford

USA
pavan@cs.stanford.edu

Stanford University
Stanford

USA
mmahathi@cs.stanford.edu

Verity Inc.
Sunnyvale

USA
pragh@verity.com

Abstract

Finding the ` nearest neighbors to a query in
a vector space is an important primitive in
text and image retrieval. Here we study an
extension of this problem with applications
to XML and image retrieval: we have mul-
tiple vector spaces, and the query places a
weight on each space. Match scores from the
spaces are weighted by these weights to deter-
mine the overall match between each record
and the query; this is a case of score aggre-
gation. We study approximation algorithms
that use a small fraction of the computation
of exhaustive search through all records, while
returning nearly the best matches. We focus
on the tradeoff between the computation and
the quality of the results. We develop two ap-
proaches to retrieval from such multiple vec-
tor spaces. The first is inspired by resource
allocation. The second, inspired by computa-
tional geometry, combines the multiple vector
spaces together with all possible query weights
into a single larger space. While mathemat-
ically elegant, this abstraction is intractable
for implementation. We therefore devise an
approximation of this combined space. Ex-
periments show that all our approaches (to
varying extents) enable retrieval quality com-
parable to exhaustive search, while avoiding
its heavy computational cost.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

1 Overview: score aggregation

We have n records E = {e1, e2, . . . , en} and s sources
of evidence. For 1 ≤ i ≤ s, we have a source score
σi(ej) from source i for record ej. Additionally, we
have a positive real weight wi for each of the s sources.
For a specified positive integer `, we seek the ` records
of highest aggregate score defined as

S(ej) =

s
∑

i=1

wiσi(ej).

In the absence of further structure to exploit, no bet-
ter algorithm is known than to compute all the σi(ej)’s
and then compute all the S(ej)’s in identifying the top
` records. Can we perhaps determine ` records almost
as good as the ` best without such exhaustive search?
Note that the `-nearest neighbors problem is a spe-
cial case of this general setting, in which s = 1 and
the source score is a geometric proximity measure be-
tween a query and the records (represented as points).
We focus on an important case of score aggregation,
motivated below.

1.1 Motivation

A series of papers motivated by the GARLIC [7]
and QBIC [19] systems led to work on score aggrega-
tion [16, 17]. Recent work on the special case of rank
aggregation [8, 11, 14, 18] focuses on merging lists of
documents ranked by multiple search engines. We de-
tail two motivating applications:

1. In applications like Query By Image Content
(QBIC) [19], a user specifies the relative contri-
butions of score components such as color, tex-
ture, etc. Each component assigns a score to each
record (image) with respect to the query at hand.

2. In semi-structured retrieval for text and XML,
it is important to be able to weight the contri-
butions of various elements to an overall score.
This can range from simply weighting keywords in
text search [15, 27] to weighting fields in a semi-
structured document (“retrieve and rank books

624

with Aho in the author and algorithm in the
title, with the author score being twice as im-
portant as the title score”: the notion is that the
author and title fields each contribute a non-
negative score that is weighted and summed for
the overall score). Already a component of enter-
prise information retrieval platforms, such func-
tionality becomes even more critical in content-
oriented XML retrieval.

1.2 Vector score aggregation

No better algorithm is known for general score aggre-
gation short of an exhaustive search. We focus here on
an important case raised by the two examples above.
Suppose that record ej is represented by an s-tuple of
vectors Vj,i, 1 ≤ i ≤ s, in s vector spaces. For example
if each record is a semi-structured document, we would
have one vector space for author, one for title, etc.
Each vector space is built from the terms in that field,
as in classic information retrieval [30].

Definition 1 A composite vector query is a pair
Q = (q,w) where q is an s-tuple of query vectors
(q1, . . . , qs) in the corresponding vector spaces, while w

is an s-vector of non-negative real weights w1, . . . ws.

The weight wi represents the importance assigned by
the user to ith field; without loss of generality, we
henceforth assume that

∑s
i=1 wi = 1. We further as-

sume (as is typical in these applications) that the query
and record vectors are all normalized within their re-
spective fields, i.e., ||qi||2 = ||Vj,i||2 = 1.

Definition 2 The match score between query Q =
(q,w) and record ej = (Vj,i) is given by

Match(Q, ej) =

s
∑

i=1

wi(qi · Vj,i), (1)

where qi · Vj,i represents the dot product (a.k.a. cosine
similarity) between the query and record vector Vj,i in
the ith field.

Our problem then becomes: given a composite vec-
tor query, can we retrieve the ` records of highest
match score? In other words, how can we exploit the
fact that the s source scores are vector cosine similari-
ties? Note that for s = 1, this becomes the traditional
`-nearest-neighbor problem. Even for this special case
of computing the ` nearest neighbors in arbitrary di-
mensions, there appears to be no algorithm that in the
worst case avoids exhaustively computing the similar-
ity of the query to every record [1, 10, 23, 25]. This
prompts the question: can we find ` records that are
“almost as good” as the exact ` nearest neighbors,
while paying significantly less than exhaustive similar-
ity computation? In application settings, an approx-
imation is generally acceptable provided the quality

is high enough. For instance, a document or image
scoring 0.83 is not likely to be much worse than one
scoring (say) 0.87; there is already a (perhaps bigger)
approximation in using cosine similarity as a proxy for
the user’s perception of quality.

We therefore study efficiency-quality tradeoffs: sup-
pose that an algorithm A outputs a candidate set
C = A`(Q, E) of ` records1. Can we trade off the
computational effort of A against the quality of C?

To study this question, we must first pinpoint the
answers to two questions: (1) how do we quantify the
computational effort of A in a principled manner inde-
pendent of the scheme A? (2) how do we measure the
goodness of a candidate set C = A`(Q, E) computed
by A? Once we address these questions, we have a
basis for comparing various algorithms.

1.3 Metrics

Computational cost: We seek a measure of com-
putational effort that is independent of a particular
runtime environment. For any algorithm A, a ba-
sic operation is the query-to-record score computa-
tion in equation (1) – specifically, this involves s in-
ner product computations. We therefore adopt the
number of such query-record score computations by A
as the fundamental measure of work; we denote it by
CC`(A,Q, E). We can thus speak of the work done
by A on a query, a query suite, etc. For exhaustive
search, CC`(Exhaustive,Q, E) is always n. Our inter-
est is in algorithms A for which CC`(A,Q, E) � n,
while delivering candidate sets of high quality.
Quality of results: To evaluate the performance of
an approximate retrieval scheme A on a given dataset
E and query suite Q1, . . . ,Qm, we use a benchmark
called the ground truth. For each query Q, let the true
set of ` highest scoring records be GT`(Q, E). We com-
pare the quality of a candidate set of ` records output
by an algorithm A against GT`(Q, E). To this end,
we employ two measures of quality. (For our experi-
ments in Section 4 we use exhaustive search to com-
pute GT`(Q, E).)

1. The aggregate goodness measure

AG`(A,Q, E) =
∑

e∈A`(Q,E)

Match(Q, e).

Simply put, this is adding up the match scores of
the ` records returned by A. The idea is that if
this net is suitably high, then the user has been
given a set of images/documents almost as good
as the ground truth. By itself, AG` does not
tell the whole story; for instance, Q may be a
query for which the ground truth does not contain
good matches. Rather, we will typically compare

1Any algorithm A in fact implies an ordering of the n records
in E with respect to the query Q; thus, C = A`(Q, E) consists
of the first ` in this ordering.

625

AG with the aggregate goodness of the ground
truth, measured by

∑

e∈GT`(Q,E) Match(Q, e); in

fact our experiments will compare these quanti-
ties averaged over a query ensemble rather than
on a single query.

2. The competitive recall of the top ` results

CR`(A,Q, E) = |A`(Q, E) ∩GT`(Q, E)|.

This computes the fraction of the ground truth
included in A’s candidate list of ` best records. It
is more stringent than aggregate goodness in that
it gives no credit for a document that may be
almost as good as those in GT`(Q, E). Note that
it hinges on comparison with the ` best records for
each `, rather on the Boolean notion of relevance
commonplace in defining precision and recall in
information retrieval. In this sense, our notion
of competitive recall is related to the competitive
analysis of algorithms [29] and is also related to
measures used in [20, 32].

All of the above definitions can be extended to an av-
erage over a query suite in the natural way.

2 Summary of contributions

We begin by summarizing related prior work in two
broad areas: score aggregation and nearest neighbors.
We do this in some depth (Section 2.1.1) for a partic-
ular approach to nearest neighbors in vector spaces,
that we call cluster pruning. We do so because clus-
ter pruning is basic building block for the subsequent
development of our approaches.

2.1 Related prior work

A series of papers [14, 16, 17] have looked at the prob-
lem of retrieving the ` best records from combining
source scores. They consider the general (not vec-
tor) score aggregation problem and insist on finding
the ` best results rather than ` good results as we
do. Their focus is on comparing, for a given instance
(records, score function and query) the computational
cost of an algorithm in comparison to that of the best
algorithm, on that instance. This in the worst case
could mean a computational cost of n; we instead
seek ways of spending far less computation and get-
ting good matches. Rank aggregation – the special
case in which each source orders the records without
assigning scores – owes its roots to voting theory, but
has enjoyed a modern renaissance with the advent of
metasearch engines [11, 18].

Nearest neighbor problems in vector spaces are the
special case s = 1 of vector score aggregation. A series
of index structures have been developed for this prob-
lem in various settings [2, 3, 21, 24, 26, 34]. These
studies use the CPU and disk I/O times during query
processing as a measure of speed, in contrast to our

higher-level measure of the number of cosine compu-
tations. ClusterTree [35] creates an index over the data
set that is a hierarchy of clusters and subclusters. The
nearest neighbors to a given query are obtained by
performing a depth first search in this hierarchy. This
approach effectively prunes the search space. They
examine the number of such clusters to be probed in
order to find all the ` nearest neighbors – this can be
viewed as one extreme in our tradeoff space (with no
approximate near-neighbors). This experimental ap-
proach is instructive but may be hard to use directly
– in practice we do not have a “stopping condition”
that informs us the instant we have found the cor-
rect ` nearest neighbors. In theoretical work related
to approximate nearest neighbors, [23, 25] reduce the
problem to point location in equal balls and suggest
bucketing and locality sensitive hashing algorithms.

More recently [20] show how simple k-means clus-
tering can do well at approximate nearest neighbor re-
trieval in multimedia databases. They evaluate qual-
ity by metrics that are the complement of competitive
recall, and by a matching distance measure. They fo-
cus on “progressive processing” of approximate nearest
neighbor searching: the user looks at the results for a
query, one page at a time. They use approximation
techniques with exact nearest-neighbor algorithms to
progressively improve results quality as the user keeps
looking at more results.

2.1.1 Cluster pruning

We build on a class of schemes for the `-nearest neigh-
bors problem that make use of clustering (the special
case of our problem where s = 1). The goal is to
avoid paying a cost of n cosine similarity computa-
tions, while still retrieving ` “reasonably near” neigh-
bors for any query. The generic idea is to first cluster
the vectors in the dataset E, in the process appointing
a representative for each of the K clusters [5, 22, 32].
Given a query, we first find the m� K centroids near-
est to the query and then compute cosine similarities
from the query only to the records in the clusters rep-
resented by these m centroids. All records in all other
clusters are ignored. The hope (with no absolute guar-
antee of course) is that many of the near neighbors are
in these m clusters. Thus we get near neighbors while
avoiding similarity computations with the majority of
the vectors in the dataset.

The clean nature of cluster pruning raises hope that
it can be extended to s > 1; while this is the idea
underlying our approaches, some interesting challenges
and design decisions arise.

2.2 Contributions of this paper

• Concrete, usable metrics for cost-quality tradeoffs
that do not demand human relevance judgements
as in the TREC evaluations [36]. The idea of
quantifying the cost-quality tradeoff for scoring

626

has not been systematically studied, even for the
traditional `-nearest neighbor problem. All our
metrics can be applied to the general setting at
the beginning of Section 1.

• Two broad approaches to vector score aggregation:
one inspired by resource allocation (Section 3.1)
and the other by ideas from computational geom-
etry [12] (Section 3.2).

• Experiments with two variants of our scheme
based on resource allocation (Section 4), as well
as with the scheme inspired by geometry. We find
that all the schemes attain close to the quality of
results in the ground truth, at a computational
cost dramatically lower than exhaustive search.

• A comparison of the two families of schemes.
While the geometric indexes are larger than those
from resource allocation, they offer better re-
trieval quality for a given amount of computation
on a query.

3 Two approaches

3.1 Resource allocation schemes

The technical development of our schemes inspired by
resource allocation is cleaner if we think in terms of a
fixed budget B of the computational effort (number of
cosine similarities) that we can use to answer a query.
We can then ask how well we perform on the quality of
retrieved results for the given budget. We begin with
the general idea.

Consider again s vector spaces, one for each field.
In seeking a candidate set of ` records for a composite
vector query Q = (q,w) we instead retrieve a set Ci of
candidate records from the ith field, for each i ∈ [1, s].
Finally, we return the ` best matches from the records
in ∪s

i=1Ci.
These retrievals Ci for each i use the cluster pruning

scheme in Section 2.1.1; the precise implementation
details and parameter choices are deferred for now.
Essentially, we first retrieve nearly best matches from
each field, then pick the ` best matches from among
these candidates. An important question arises: given
our budget of B for computational effort, how do we
invest this budget across the s vector spaces? This is a
resource allocation problem and we study two natural
schemes for this investment. For example, consider a
simple allocation between two fields author and ti-

tle. Suppose that a query places a high weight on the
author field and relatively little weight on the title

field. We could on the one hand spread our budget
equally in the author and title vector spaces. On the
other hand, we could invest more of our budget into
retrieving candidates from the author space rather
from the title space, as this might give us better score-
aggregated quality.

title abstract

author (w1, w2, w3)

(x1, x2, x3)

P

Figure 1: Mapping from query weights to points in the
simplex: resource allocation.

Note that at query time we could make use of the
weights in w to determine this allocation. Interest-
ing questions arise: should we? If so, how do the
weights govern the allocation? This question may be
viewed at a slightly higher level (for conceptual de-
velopment only; eventually we will use the number of
cosine similarities as the measure of computational ef-
fort). Rather than a budget B of cosine similarities,
imagine a budget P of the number of probes: a probe is
a decision to evaluate the query against all the records
in any single cluster in any of the s spaces. This view
reflects the working of our algorithms built on clus-
ter pruning: the query is always evaluated against all
vectors in a cluster, or none.

A weight vector w in a query can natu-
rally be viewed as a point on the s-dimensional
simplex

∑s
i=1 wi = 1. Further, any point

x = (x1, . . . , xi, . . . , xs) on this simplex repre-
sents an allocation as follows: given a budget of P
probes, we dispatch xiP probes into field i. Figure 1
shows this idea for s = 3 where the fields are author,
title and abstract.

Definition 3 A probe resource allocation is a map-
ping P from the simplex onto itself, P : w→ x.

What properties should hold for an allocation func-
tion P? We propose these below; of these the first two
should clearly hold for all P , while the remainder are
plausible but (as we detail in Section 5) may not hold
in all situations.

1. P should map each vertex of the simplex into it-
self. This simply says that a query that places
all its weight into one field demands that all the
probes go into that vector space index.

2. P should map each edge (in general, lower-
dimensional simplex) of the simplex into itself.
This says that if a field gets no weight in the query,

627

Algorithm 1 Uniform.

1: number of cluster probes available = P; Query Q;
2: SearchSet = ∅;
3: for i← 1, 2, . . . , s do

4: NSet= set of P/s nearest clusters to Q taken
from field i;

5: SearchSet = SearchSet union records in NSet;
6: end for

7: for all record ∈ SearchSet do

8: compute Match(Q,record)
9: end for

10: Rank SearchSet based on Match

its vector space should not be probed. This is a
more stringent requirement than (1) above.

3. P should map the center of the simplex into itself.
In other words, if the query calls for a uniform
weighting on the fields, the investment should
be uniform; this should recursively hold for any
lower-dimensional simplex. In Figure 1, the re-
cursive requirement means that the mid-point of
each side of the triangle maps into itself.

4. P should act as the identity mapping on each edge
(lower-dimensional simplex) of the simplex. This
demands that if any field gets zero weight, the in-
vestment in the other fields is directly proportional
to their weights. In Figure 1 this implies the iden-
tity mapping for the perimeter of the triangle.

The third and fourth properties raise the question: can
P be the identity mapping itself? This is the second
of our two allocations, detailed below in Section 3.1.2.

3.1.1 Uniform allocation

In this scheme, we allocate the budget of cluster probes
uniformly across the vector spaces. Thus the query
weighting w is ignored for probe allocation purposes
(but of course remains in use for the score computa-
tions and quality measures). Uniform is described in
Algorithm 1.

3.1.2 Transparent allocation

Here P is the identity mapping; thus each field re-
ceives an allocation of probes in proportion to the
query weight for that field. Transparent is described
in Algorithm 2.

3.2 Cell decomposition indexes

An alternate approach to having separate vector
spaces for each field is to combine them all into a single
gigantic vector space. This is inspired by ideas from
combinatorial geometry which we now review; these
are elegant but not pragmatic at the dimensionality
we are discussing. Accordingly we will first develop
the approach, then coarsen it to make it practical.

Algorithm 2 Transparent.

1: number of cluster probes available = P; Query Q;
2: SearchSet = ∅;
3: for i← 1, 2, . . . , s do

4: NSet= set of wi*P nearest neighbor clusters to
Q from field i;

5: SearchSet = SearchSet union records in NSet;
6: end for

7: for all record ∈SearchSet do

8: compute Match(Q,record)
9: end for

10: Rank SearchSet based on Match

Consider first the standard `-nearest neighbors
problem, i.e., s = 1. The Voronoi decomposition [12]
partitions space into n polyhedral cells, one for each
record ei. The crucial property: for any query point
within ei’s cell, the nearest neighbor is ei.

2 Given a
query, the nearest-neighbor problem reduces to locat-
ing which cell the query lies in. Tight bounds exist
on the total number of facets in Voronoi decomposi-
tions as a function of n and the number of dimensions
d; these bounds are exponential in d. Consequently,
the computational costs of building the decomposition
and for point location are high when d is large; but
for d ≤ 3 this approach leads to pragmatic nearest
neighbor retrieval.

The notion of a Voronoi decomposition has been
generalized [12] for `-nearest neighbors. Instead of one
cell per record ei, we now have one cell for every sub-
set of ` records that is a valid answer to some query.
The cell decomposition now has the following prop-
erty: the same set of ` records constitute the ` nearest
neighbors for any query point within a given cell. Thus
identifying the ` nearest neighbors again reduces to
identifying the cell containing the query. Here too the
cells are known to be polyhedra (for cosine similarities
between unit vectors) and bounds are known for the
facet complexities. Despite its impracticality in high
dimensions, we nevertheless pursue this view a little
further, as it leads to our eventual index structure.

Let us extend the above notions to composite vector
retrieval: denote by D1, . . . , Ds the s vector spaces and
d1, . . . , ds the corresponding dimensionalities. Note
additionally that the set of all possible query weight-
ings w can be viewed as a vector space W in s dimen-
sions (in fact since

∑s
i=1 wi = 1, a simplex). Con-

sider a new vector space U = W ∪s
i=1 Di, having

u = s +
∑s

i=1 di dimensions. Any query Q = (q,w)
can be represented as a single point in U ; note however
that a record is not a single point in U . Nevertheless,
U can still be partitioned into cells such that for any
query (point in U), the set of ` nearest records is in-
variant. In this cell structure, it suffices to locate the

2In fact, the shapes of the cells depend on the distance metric;
for cosine similarities between unit vectors, we have unbounded
polyhedral cones whose apices are at the origin.

628

query point then read off the ` nearest neighbors for
any query in that cell. Besides the immense number of
cell boundaries due to the high dimensionality, there
is an added difficulty here: the cell boundaries are
no longer polyhedral, but rather described by (nonlin-
ear) algebraic functions. Point location thus becomes
highly non-trivial.

We give two generic ideas to overcome these diffi-
culties, leading to experimentation with a very basic
implementation of these ideas in Section 5.4.

1. We can group together cells in the decomposi-
tion that are “close together”, coarsening the de-
composition into a small number of coarse cells
with similar (rather than the same) answers. In
the process, we may project U down to a low-
dimensional space.

2. We can approximate the cell boundaries by linear
functions.

For any such coarse approximation U ′ of U , we now
have to address (1) point location in a coarse cell of U ′;
(2) for each coarse cell, an index tuned to efficiently
retrieve ` high-quality records for that cell. This is
necessary since there is no longer a unique set of `
answers within a coarse cells.

Example 1 We begin with an extremely simple man-
ifestation of the above ideas. Suppose we have three
vector spaces author, title and abstract as in Fig-
ure 1. Each query has three weights wauthor, wtitle
and wabstract, together with corresponding query vec-
tors qauthor, qtitle and qabstract. For any query in
which wauthor ≥ 0.34, we simply find the ` nearest
neighbors to qauthor in the author vector space alone,
ignoring the other fields. Similar rules can be invoked
for the title and abstract fields.

The intuition of this simplistic scheme: if the query
places the greatest weight in a field, we run a vector-
space query for that field alone and ignore the rest of
the query. Notice that this can be viewed as a projec-
tion of the huge vector space developed above down to
a simplex in three dimensions, a coarsening of this sim-
plex into three regions, and finally an efficient (if not
perhaps high-quality) retrieval scheme for all queries
falling in each one of these regions. Just as we did for
allocation maps P in Section 3.1, we can enumerate
basic symmetry requirements for any version of this
scheme; we omit these for brevity here. In Section 5.4
we experiment with a slightly more sophisticated ver-
sion of this scheme. The generic cell decomposition
retrieval algorithm is given in Algorithm 3 CellDec.

3.3 Comparing the schemes

In this section we compare the resource usages of the
resource allocation and cell decomposition schemes.
For the allocation schemes, we would need to maintain

Algorithm 3 CellDec.

1: number of cluster probes available = P;
2: Query Q = (q,w);
3: Identify the cell decomposition index of the coarse

cell i based on the query template.
4: NSet = set of P nearest clusters to Q from index

of coarse cell i;
5: SearchSet = Union of records in NSet;
6: for all record ∈SearchSet do

7: compute Match(Q,record)
8: end for

9: Rank SearchSet based on Match

s separate indexes, one for each of the s vector spaces.
For CellDec the number of indexes maintained, r, is
the number of coarse cells used in the decomposition.
In our running examples with three fields (author,

title and abstract), we use 3 indexes for the alloca-
tion schemes but r indexes for CellDec. In Example 1,
r = 3; in the version we experiment with in Section 5.4,
r = 4. The index size is arguably larger for CellDec,
since we are looking at a combined vector space rep-
resenting all features spaces and their dimensions. On
the other hand, there is a trade-off involved in the com-
putational cost at query-time; we study this now. The
computational cost(number of cosine similarity com-
putations) stems from two sources in all schemes de-
rived from cluster pruning (including all ours): cosine
computations for

• (query,cluster centroid) pairs and

• (query,records in the set SearchSet from the al-
gorithms above). This measure is an invariant in
the number of scalar multiplications, across all the
three algorithms above, because the Match com-
putation is over the entire record irrespective of
the higher level indexing scheme used.

For the allocation schemes, the total computation cost
is

s ·K + |SearchSet| (2)

where K is the number of clusters in each of the s
fields. For CellDec, with each index having K clusters
each as well, the cost is

K + |SearchSet|

since we are exploring only one coarse cell index for a
query. In both cases, if n is the total number of records
in the data set,

E[|SearchSet|] = O(Pn/K)

where E[] denotes the expectation of a random vari-
able. Thus with CellDec we gain an advantage of
nearly (s−1)K cosine computations at query time, by
investing all the P probes into one coarse cell index.
A point to keep in mind though is that the advan-
tage is not exactly (s− 1)K, because of the potential
difference in centroid lengths of the two schemes.

629

4 Experimental setup

We now describe the data used in our experiments,
followed by the query suite. In Section 5 we describe
our findings on the computation-quality tradeoff.

4.1 Data set and preparation

We perform our experiments on a data set obtained
from crawling citeseer [37]. This data consists of
480,000 documents; for each document, we have three
fields – author, title and abstract. This data
is processed by stemming and stop-word elimination
(standard data preparation steps in information re-
trieval [30]) and inserted into three base tables in a
mySQL database. For each of the fields, the frequency
of each term (tf) is computed and normalized; thus,
within each field for each document, the squares of
the frequencies of various terms add up to one. At
this point we have three vectors for each document,
one for each field.

Thus if a vector has m features with term frequen-
cies {tf1, ..., tfm}, the weight wi of the ith term is

tfi/

√

√

√

√(

m
∑

j=1

tf2
j).

4.2 Query suite

Our query suite consists of two sets each having 250
query prototypes, each of which is a triplet of vectors
corresponding to an instance of q in Section 1.2. The
first, Set A, is meant to model typical user queries from
researchers searching a corpus such as citeseer using
composite queries on the three fields. Set B is meant
to explore the tradeoffs by systematically neutralizing
certain inherent asymmetries in three fields with rather
different term distributions (e.g., the author field in
most documents has fewer than three terms (author
names); but few abstract fields have fewer than 30 dis-
tinct terms). We motivate Set B further in Section 5.

4.2.1 Query prototypes

For Set A we pick the 250 most popular co-author
pairs. From the pool of titles and abstracts of doc-
uments authored by each pair, we randomly select
words from the 100 most frequent words. This gives
us queries of the form (author1, author2, titleword1,
titleword2, abstractword1, abstractword2). Thus
our query prototypes will not pair (say) authors
Garcia-Molina (a database researcher) and Micali

(a cryptographer); because they have not co-authored
a paper, it is unlikely that a user is searching for doc-
uments co-authored by the pair. Extending the same
principle to conditioning the generation of titleword1,
titleword2, abstractword1 and abstractword2, we en-
sure that the query prototypes of Set A are likely to
correspond to documents that a user might actually

T# wauthor wtitle wabstract
1 0.33 0.33 0.34
2 0.4 0.4 0.2
3 0.4 0.2 0.4
4 0.2 0.4 0.4
5 0.6 0.2 0.2
6 0.2 0.6 0.2
7 0.2 0.2 0.6

Table 1: Weight templates.

search for. This also ensures that there are likely to
be at least some documents in the corpus that are
high-quality matches for each query.

For Set B, we use a set of 250 randomly generated
queries on a new synthetic data set. This new data
set has three fields f1, f2 and f3 that are all gener-
ated from the title field of our original data set. Each
synthetic document is composed of 3 random original
document titles, each title forming a field fi. Given
titlei, i ∈ 1, 2, ..., n of documents OriginalDoci in the
original collection, the documents SyntheticDocj, j ∈
1, 2, ..., n/3 in the synthetic data set are

f1 = titlej, f2 = titlen/3+j, f3 = title2n/3+j

In this data set the document vector lengths in the
three field spaces become comparable. Each query in
Set B consists of two terms from each field, generated
uniformly at random.

4.2.2 Weight templates

For each query prototype we apply seven weight tem-
plates, each a triplet of weights. The weights in a
template sum to one and model skewed user weight-
ing. The templates are given in the Table 1.

Note that templates 2-4 are rotations (around the
fields) of each other; likewise for templates 5-7. The
first template is meant to model an unbiased query
(the user does not emphasize any field); note that for
such queries an alternative approach would be to treat
the entire document (with all its fields) as one “bag of
words” (a single vector) and treat the user query terms
also as a single vector. Templates 2-4 model situations
where the user emphasizes two fields but is less certain
or demanding about the third. Similarly, templates 5-
7 model situations where the user emphasizes a single
field at the expense of the other two. These broad
situations clearly span the gamut of symmetric user
needs. The rotations are meant to elicit the effects
of asymmetries between the three fields. Templates
5, 6 and 7 are especially useful to study: they can
be viewed as a “basis” using which an arbitrary w

can be expressed as a linear combination; thus results
on allocation on these templates can be combined to
devise allocations for arbitrary weight vectors.

630

n= 50K 128 256 512
AG 91.54 93.57 91.80
CR 68.37 71.47 67.09

Table 2: Performance for different values of K for col-
lection size 50,000.

n=100K 128 256 512
AG 87.57 92.53 89.80
CR 64.97 66.82 65.27

Table 3: Performance for different values of K for col-
lection size 100,000.

5 Results and analysis

We implement the traditional K-means algorithm in
clustering each of the 3 fields. To represent a centroid
of the cluster, we use the mean of the document vectors
within a cluster. Each cluster centroid is implemented
as a hashtable of terms and the term weights, so that
the lookup is much faster while performing a similar-
ity computation between the query and the centroid.
In order to nullify the difference in size of the index
between the cell decomposition and allocation schemes
we do the following:

• Use the same number of clusters K for both kinds
of indexes.

• Store only the top 1000 highest weight terms of
the mean of all document vectors, in the centroid.

This ensures that centroid lengths and index sizes
for both the schemes are the same and we can
invoke Section 3.3 to determine CC`(A,Q, E) and
CC`(CellDec,Q, E); hereA represents either allocation
algorithm.

5.1 Choosing the right value of K

Theoretically, the optimal value of K can be estimated
as follows. From Equation 2 the computational ef-
fort involved for one cluster probe CC`(Uniform,Q, E)
with 3 vector spaces, is given by 3K + n/K. This

is minimized when K =
√

n/3. For our corpus size

of 480K documents, the value of
√

(n/3) is 400. To
further validate this estimate for K, we conduct some
experiments. For this, we measure the performance of
Uniform against the ground truth for different values
of K. We experiment with subsets of our document
set with 50,000 and 100,000 documents, and cluster
them using various values of K. In each case we fix
the computational cost at roughly 2500 (there is some
variation because when we decide to probe a set of
clusters, their sizes may not add up to exactly 2500).
The results (for both metrics) are shown in Tables 2
and 3.

We see that the quality peaks around K = 256 for
both the sample corpora. For n = 50, 000, the value

n=480K 300 350 400 450 500
AG 96.69 96.85 97.28 97.38 95.54
CR 80.55 80.88 83.67 83.98 75.12

Table 4: Performance for different values of K for col-
lection size 480,000.

80

82

84

86

88

90

92

94

96

98

100

3 6 9 12 15 18

Number of cluster probes

P
er

ce
n

ta
g

e
A

g
g

re
g

at
e

G
o

o
d

n
es

s

Template 1
Template 2
Template 3
Template 4
Template 5
Template 6
Template 7

Figure 2: Uniform vs. the ground truth – aggregate
goodness.

of
√

n/3 is 128 (approximately) and for n = 100, 000,
this value is 182.

For the collection size n = 480, 000, we perform the
experiments with different values of K.The results are
shown in table 4. We choose K = 450 as the number
of clusters for further experiments on the full data set.

5.2 Uniform vs. the ground truth

We explore the performance of Uniform in further de-
tail. Figures 2 and 3 show its performance for each
weight template against the ground truth, for the
queries in Set A. The figures illustrate the fundamen-
tal tradeoff between computational effort and quality:
at low effort the quality (by either measure) is quite
modest. By the point where we invest three probes
in each field index, we begin to see a significant (but
tailing off) improvement. Other key conclusions:

• Cluster pruning even with Uniform performs
very well in returning high-quality results with a
minuscule fraction of the clusters probed (3 out
of 450, which means our computational effort is
only 0.67% of exhaustive search).

• The y-axis in Figure 2 is the percentage of the
aggregate goodness of the ground truth, averaged
over the queries. Note that unlike the (more strin-
gent) competitive recall measure, we quickly get
close to 100% by this metric. Thus users get doc-
uments essentially as good as (if not the same as)
the ground truth.

631

20

30

40

50

60

70

80

90

100

3 6 9 12 15 18

Number of cluster probes

C
o

m
p

et
it

iv
e

re
ca

ll Template 1
Template 2
Template 3
Template 4
Template 5
Template 6
Template 7

Figure 3: Uniform vs. the ground truth – competitive
recall.

We observe that for templates with high weight on the
author field (Templates 2 and 5), the retrieval quality
is much higher than the other templates.

This happens because of two biases:

• The asymmetry of the fields: Each document is
represented by fewer nonzero vector components
in the author field than (for instance) the ab-

stract field. Consequently, any match on authors
tends to dominate the similarity score more than
a similar match on abstracts.

• The query generation scheme for Set A is con-
ditioned by an author pair chosen from the au-

thor field. The significance is not that our query
generation is skewed or misleading. Rather, an
application using resource allocation should bias
the mapping P towards the dominant mode by
which users think of query tasks (e.g., if they be-
gin by thinking of titles as the primary driver of
their queries, P should invest disproportionately
additional work in the title index).

5.3 Uniform vs. Transparent

Transparent gives only marginal improvements over
Uniform on Set A. This stems from our mode of gen-
eration of the queries in Set A; so we studied Set
B instead to see if a different class of queries would
highlight the differences between Uniform and Trans-
parent. The results are shown in Figures 4 and 5.
For these comparisons we show the number of clus-
ter probes P invested on the x-axis (since the com-
putational costs of both the allocation schemes are
linear in and proportional to the number of probes
invested). We observe that Transparent performs con-
sistently better than Uniform, for all the templates. In
particular, it is interesting to note that it beats Uni-
form especially on highly skewed templates. This sug-
gests that when user needs come from a more homo-
geneous setting such as Set B, non-uniform allocation

40

50

60

70

80

90

100

0 5 10 15 20 25 30

P
er

ce
nt

ag
e

A
gg

re
ga

te
 G

oo
dn

es
s

Number of Cluster probes

Transparent

40

50

60

70

80

90

100

0 5 10 15 20 25 30

P
er

ce
nt

ag
e

A
gg

re
ga

te
 G

oo
dn

es
s

Number of Cluster probes

Uniform

Figure 4: Transparent vs. Uniform - Aggregate Good-
ness.

20

25

30

35

40

45

50

55

60

65

70

0 5 10 15 20 25 30

C
om

pe
tit

iv
e

R
ec

al
l

Number of cluster probes

Transparent

20

25

30

35

40

45

50

55

60

65

70

0 5 10 15 20 25 30

C
om

pe
tit

iv
e

R
ec

al
l

Number of cluster probes

Uniform

Figure 5: Transparent vs Uniform - Competitive recall.

makes a difference. An interesting area that now opens
up: can more sophisticated allocation than Transpar-
ent make a bigger difference? How do we design the
optimal policy P?

5.4 Cell decomposition indexes

We now describe experiments with a slightly more so-
phisticated cell-decomposition than the simple scheme
of Example 1 in Section 3.2. Consider the unit simplex
of query weights for each of the three fields, Figure 6.
This simplex is partitioned into four cells labeled 1, 2, 3
and 4. Each cell corresponds to a range of weights that
a query can take. We maintain one optimized index
for each cell; whenever the weights in a query fall into
cell i, 1 ≤ i ≤ 4, we use index i. Recall Table 1 listing
the weight templates for our experiments; we thus note
that Templates 1–4 fall in region 2, with templates 5,
6 and 7 falling respectively in regions 2, 3 and 4.

Next, we describe the index for each region:

• Region 1: For 1 ≤ j ≤ n and 1 ≤ i ≤ 3, let Vj,i

and denote the vector for record j in field i. For
each record j we compute a composite vector

Vj =

3
∑

i=1

Vj,i.

We now build an index based on cluster prun-
ing on the single vector space spanned by the

632

title abstract

author

2

1
3 4

Figure 6: Regions of the triangular simplex covered by
each index.

Vj ’s. Intuitively: in region 1 the query weights
are “roughly the same” so we simply treat all the
contents of a record – authors, title, abstract – as
one bag of words and use cluster pruning on the
resulting vectors.

• The index for region 2 is created by a linear com-
bination of the author vector and the vectors from
the other two fields – titles and abstracts – the lat-
ter each multiplied by a squeeze factor, θ. Thus

Vj = V1 + θ ∗ V2 + θ ∗ V3.

The indices for 3 and 4 are also created similarly
by squeezing a different pair of axes. Intuitively,
we are attenuating the vectors from fields that are
de-emphasized in the queries using the particular
region.

Note that these indexes are created up front; when
a query specifies a particular weight vector w, it is
sent to the index that is likely to yield the best quality
results for that weight vector.

While creating the clusters for cluster pruning, we
do K-means clustering of the vectors thus obtained,
just as in our earlier schemes. The only difference
comes in the computation of the centroid for each
cluster. While calculating the mean of the documents
within a cluster, we do an L2-normalization within the
terms of each field in a document, before calculating
the centroid. This ensures that fields with very few
dimensions are not under-represented.

To estimate a good value for the squeeze factor θ,
we use a sampled subset of the documents containing
10000 random documents and values of θ ∈ [0.1, 1].
The results are shown in Figure 7. We observe that
for θ = 0.5, queries from all the three templates do the
best. Hence we now choose this as our squeeze factor
to compare the performance of the cell decomposition
scheme with respect to both the uniform and trans-
parent allocation schemes, using the same data set of

30

35

40

45

50

55

60

0.2 0.4 0.5 0.6 0.8 1

squeeze factors

co
m

p
et

it
iv

e
re

ca
ll

template5
template6
template7

Figure 7: Performance for different squeeze factors.

40

50

60

70

80

90

100

110

750 1350 1950 2550 3250

Computational cost

P
er

ce
n

ta
g

e
ag

g
re

g
at

e
g

o
o

d
n

es
s

Uniform
Transparent
CellDec

Figure 8: Aggregate goodness vs. Computational cost.

10000 documents. The results are shown in Figures 8
and 9.

We observe that even our simple cell decomposi-
tion scheme consistently outperforms both Uniform
and Transparent, whether for a fixed cost or for a fixed
quality.

6 Conclusions and further work

Our work (particularly with the aggregate goodness
measure) suggests that we can find high quality re-
sults for vector score aggregation at a small fraction
of the computation of exhaustive search. Our exper-
iments raise the pursuit of more sophisticated alloca-
tion schemes. This becomes especially intriguing with
recursive cluster pruning schemes, where the alloca-
tion at higher levels can depend on what is deeper
in each sub-tree. The second area for further work
is on more sophisticated cell decomposition schemes:
given an application, how do we determine the best cell
decomposition scheme based on system parameters?
How (for either class of schemes) should the algorithm
parameters be data-dependent? Empirically studying
cost-quality tradeoffs in more general settings [13, 6]

633

30

40

50

60

70

80

90

750 1350 2250 3000 3750

Computational cost

C
o

m
p

et
it

iv
e

R
ec

al
l

Uniform
Transparent
CellDec

Figure 9: Competitive recall vs. Computational cost.

is an exciting direction.

References

[1] P.K. Agarwal, J. Erickson. Geometric Range
Searching and Its Relatives. In CRC Handbook of
Computational Geometry, 1997.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.
Seeger. The R*-tree: An efficient and robust ac-
cess method for points and rectangles. Proceedings
of ACM SIGMOD, 322–331, 1990.

[3] S. Berchtold, D. A. Keim, and H.-P.Kriegel. The x-
tree: An index structure for high-dimensional data.
Proc. of the 22th VLDB Conference, 1996.

[4] M. W. Berry, S. Dumais, G. W. O’Brien. Using
Linear Algebra for Intelligent Information Retrieval.
SIAM Review 37:4 (1995).

[5] S. Bhatia, J. Deogun. Cluster characterization
in Information retrieval. ACM-SAC 1993 Indiana
USA, 721-727.

[6] M. Charikar, R. Fagin, V. Guruswami, J. Klein-
berg, P. Raghavan and A. Sahai. Query strategies
for priced information. Journal of Computer and
System Sciences 64(4):785-819, 2002.

[7] W. Cody, L. Haas, W. Niblack, M. Arya, M. Carey,
M. Flickner, D. Lee, D. Petkovic, P. Schwarz, J.
Thomas, M. Tork Roth, J. Williams, R. Fagin and
E. Wimmers. Querying multimedia data from multi-
ple repositories by content: the Garlic project. IFIP
2.6 3rd Working Conference on Visual Database
Systems (VDB-3), 1995.

[8] M.-J. Condorcet. Essai sur l’application de
l’analyse a la probabilite des decisions rendues a la
pluralite des voix, 1785.

[9] T. Cover, P. Hart. Nearest Neighbor pattern classi-
fication. IEEE Transactions on Information Theory,
13 (1967), 21–27.

[10] D. Dobkin, R. Lipton. Multidimensional Search
Problems. SIAM Journal of Computing, 5 (1976),
181–186.

[11] C. Dwork, R. Kumar, M. Naor and D. Sivakumar.
Rank aggregation methods for the web. Proceedings
of WWW10, 2001.

[12] H. Edelsbrunner. Algorithms in Combinatorial
Geometry. Springer-Verlag, 1987.

[13] O. Etzioni, S. Hanks, T. Jiang, R.M. Karp, O.
Madani and O. Waarts. Efficient Information Gath-
ering on the Internet, 37th Annual Symposium on
Foundations of Computer Science , 1996.

[14] R. Fagin. Combining Fuzzy information from mul-
tiple systems. Journal of Computer and System Sci-
ences, 58(1):83–99, 1999.

[15] R. Fagin and Y. Maarek. Allowing users to weight
search terms, RIAO (Recherche d’Informations As-
sistee par Ordinateur), 682–700 (2000).

[16] R. Fagin and E. Wimmers. A formula for incorpo-
rating weights into scoring rules. Theoretical Com-
puter Science 239, 2000.

[17] R. Fagin, A. Lotem and M. Naor. Optimal aggre-
gation algorithms for middleware. J. Computer and
System Sciences 66, 2003.

[18] R. Fagin, R. Kumar, D. Sivakumar. Efficient sim-
ilarity search and classification via rank aggregation
Proceedings of ACM SIGMOD, 2003.

[19] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack,
D. Petkovic and R. Barber. Efficient and Effective
Querying by Image Content. Journal of Intelligent
Information Systems, 1994.

[20] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal
and A.E. Abbadi. Approximate Nearest Neighbor
Searching in Multimedia Databases. Technical Re-
port TRCS00-24, Comp. Sci. Dept., UC Santa Bar-
bara, 2000.

[21] A. Guttman. R-trees: a dynamic index structure
for spatial searching. Proceedings of ACM SIGMOD,
47–57, 1984.

[22] J. Hafner, N. Megiddo and E. Upfal. US Patent
5848404: Fast query search in large dimension
database, 1998.

[23] P. Indyk and R. Motwani. Approximate Nearest
Neighbors: Towards Removing the Curse of Dimen-
sionality. In Proc. of 30th STOC, 604–613, 1998.

[24] N. Katayama and S. Satoh. The SR-tree: An In-
dex Structure for High-Dimensional N earest Neigh-
bor Queries. Proceedings of ACM SIGMOD, 1997.

634

[25] J. Kleinberg. Two algorithms for nearest-neighbor
search in high dimensions. Proc. 29th ACM Sympo-
sium on Theory of Computing, 1997.

[26] K.-I. Lin, H. V. Jagadish and C. Faloutsos. The
TV-tree: An Index Structure for High Dimensional
Data. VLDB Journal, 3(4):517–542, 1992.

[27] X. Long and T. Suel. Optimized Query Execution
in Large Search Engines with Global Page Ordering.
Proceedings of VLDB, 2003.

[28] D.G. Luenberger. Investment Science. Oxford
Press, 1997.

[29] On-line Problems. Journal of Algorithms, 11:208-
230, 1990.

[30] G. Salton. The SMART Retrieval System – Ex-
periments in automatic document processing. Pren-
tice Hall Inc., Englewood Cliffs, 1971.

[31] T. Sellis, N. Roussopoulos and C. Faloutsos. The
R+-Tree: A Dynamic Index For Multi-Dimensional
Objects. VLDB Journal, 1987.

[32] S. Sitarama, U. Mahadevan, M. Abrol. Efficient
cluster representation in similar document search.
Proceedings of WWW conference, 2004.

[33] I.H. Witten, A. Moffat, T.C. Bell, Managing Gi-
gabytes: Compressing and Indexing Documents and
Images, 1994.

[34] D.A. White and R. Jain. Similarity Indexing with
the SS-tree. In Proceeding s of the 12th Intl. Conf.
on Data Engineering, 1996.

[35] D. Yu, A. Zhang. ClusterTree: Integration
of Cluster Representation and Nearest Neighbor
Search for Large Datasets with High Dimensional-
ity. IEEE Internati onal Conference on Multimedia
and Expo, 2000

[36] http://trec.nist.gov/ : Text Retrieval Conference
series.

[37] http://citeseer.nj.nec.com : Citeseer Scientific
Digital Library.

635

