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Abstract 

Publish/subscribe systems have demonstrated the ability 
to scale to large numbers of users and high data rates 
when providing content-based data dissemination ser-
vices on the Internet. However, their services are limited 
by the data semantics and query expressiveness that they 
support. On the other hand, the recent work on selective 
dissemination of XML data has made significant progress 
in moving from XML filtering to the richer functionality 
of transformation for result customization, but in general 
has ignored the challenges of deploying such XML-based 
services on an Internet-scale. In this paper, we address 
these challenges in the context of incorporating the rich 
functionality of XML data dissemination in a highly 
scalable system. We present the architectural design of 
ONYX, a system based on an overlay network. We iden-
tify the salient technical challenges in supporting XML 
filtering and transformation in this environment and pro-
pose techniques for solving them.  

1 Introduction 

A large number of emerging applications, such as mobile 
services, stock tickers, sports tickers, personalized newspaper 
generation, network monitoring, traffic monitoring, and elec-
tronic auctions, has fuelled an increasing interest in Content-
Based Data Dissemination (CBDD). CBDD is a service that 
delivers information to users (equivalently, applications or 
organizations) based on the correspondence between the 
content of the information and the user data interests. Figure 
1 shows the context in which a data dissemination system 
providing this service operates. Users subscribe to the service 
by providing profiles expressing their data interests. Data 
sources publish their data by pushing messages to the system. 
The system delivers to each user the messages that match her 

data interests; these messages are presented in the format 
required by the user. 

Over the past few years, XML has rapidly gained popu-
larity as the standard for data exchange in enterprise intranets 
and on the Internet. The ability to augment data with seman-
tic and structural information using XML-based encoding 
raises the potential for more accurate and useful delivery of 
data. In the context of XML-based data dissemination, user 
profiles can involve constraints over both the structure and 
value of XML fragments, resulting in potentially more pre-
cise filtering of XML messages. In many emerging applica-
tions, the relevant XML messages also need to be trans-
formed for data and application integration, personalization, 
and adaptation to wireless devices.  

While XML filtering and transformation has aroused sig-
nificant interest in the database community [2][8][12][16] 
[20][22][26], little attention has been paid to deploying such 
XML-based dissemination services on an Internet-scale. In 
the latter scenario, services are faced with high data rates, 
large profile population, variable query life span, and tre-
mendous result volume. Distributed publish/subscribe sys-
tems developed in the networking community [1][4][9][10] 
[29] have demonstrated their scalability in applications such 
as sports tickers at the Olympics [21]. Integrating XML 
processing into such distributed environments appears to be a 
natural approach to supporting large-scale XML dissemina-
tion.  

1.1 Challenges 

Distributed pub/sub systems partition the profile population 
to multiple nodes and direct the message flow to the nodes 
hosting profiles based on the content of messages (referred to 
as content-driven routing). Integrating XML into content-
driven routing, however, brings the following key challenges. 
� As XML mixes structural and value-based information, 

content-driven routing needs to support constraints over 
both. The inherent repetition and recursion of element 
names in XML data also defeats well-known routing 
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techniques (e.g., the counting algorithms [10][19]) de-
signed for simpler data models. New techniques for 
XML-based content-driven routing are needed. 

� When XML transformation is introduced to a distributed 
system, the best venue to perform such transformation is 
another issue to address. 

� The criteria used to partition user profiles have an impact 
on the effectiveness of content-driven routing. The mix-
ture of structure and value-based constraints in profiles 
and the repetition of element names in XML data compli-
cate the profile partitioning problem.  

� As the verbosity of XML results in large messages and 
these large messages need to be parsed at each routing 
step, alternative formats should be considered for effi-
cient XML transmission. 
A number of XML query processors are available for 

providing XML processing in this environment. Among 
them, YFilter [16][17], a multi-query processor that we built 
previously, represents a set of profiles using an operator net-
work on top of a Non-Deterministic Finite Automaton (NFA) 
to share processing among those profiles. Using YFilter for 
distributed XML dissemination raises the issues of distribut-
ing the NFA-based operator network, and efficient schedul-
ing of the operators for both profile processing and content-
driven routing.  

1.2 Contr ibutions 

In this paper, we present the initial design of ONYX (Opera-
tor Network using YFilter for XML dissemination), a large-
scale dissemination system that delivers XML messages 
based on user specifications for filtering and transformation. 
The contributions of our work include the following.   
� We leverage the YFilter processor for content-driven 

routing. In particular, we use the NFA-based operator 
network to represent routing tables, and provide an initial 
solution to constructing the routing tables from the dis-
tributed profile population. 

� We address the issue of how to perform incremental mes-
sage transformation in the course of routing. 

� In order to boost the effectiveness of routing, we provide 
an algorithm that partitions the profile population based 
on exclusiveness of data interests.  

� We develop holistic message processing for sharing the 
work among various processing tasks at a node (i.e., con-
tent-driven routing, incremental transformation and user 
profile processing). Dependency-aware priority schedul-
ing is used to support such sharing while providing a fast 
path for routing.   

� We investigate various formats for efficient XML trans-
mission.  

� Last but not least, we provide an architectural design of 
the system and mechanisms for building such a system.  
The paper proceeds as follows. Section 2 details the re-

quirements and motivation. Section 3 describes our system 
model. Core techniques addressing the various challenges are 
presented in Section 4, followed by a detailed broker archi-
tecture design in Section 5. Section 6 includes extended re-
lated work. Section 7 concludes the paper. 

2 Requirements and Motivation 

In this section, we present the requirements for large-scale 
XML dissemination, and provide a brief survey of existing 
solutions, which motivates our work presented in this paper. 

2.1 Expressiveness 

A starting point for our requirements is the use of XML as 
the data model and a subset of XQuery [7] as the profile 
model. User profiles can contain constraints over both struc-
ture (using path expressions) and value (using value-based 
predicates) of XML fragments. For example, if a user is in-
terested in stock information distributed in San Francisco and 
under the subject “Stock” , she can express her interest using 
the query below (based on the NITF DTD [23]). It specifies 
that the root element nitf must (1) have a child element head 
that in turn contains a child element pubdata whose attribute 
edition.area has the value “SF” , and (2) have a descendant 
element tobject.subject whose attribute tobject.subject.type 
has the value “Stock” . 

 $msg/nitf [head/pubdata[@edition.area = “SF”]] 
                  [.//tobject.subject[@tobject.subject.type = “Stock” ]] 

User profiles can also contain specifications for result cus-
tomization. For example, a user can use the query below to 
specify that for each NITF article that matches the for and 
where clauses (which are equivalent to the query above), 
transform it to a new article with the root element stock_news 
containing elements selected from the original article using 
path expressions “body/body.head/hedline” , and “body/body. 
content” .   

for  $n    in  $msg/nitf 
where  $n/head/pubdata/@edition.area = “SF”  
   and  $n//tobject.subject/@tobject.subject.type = “Stock”  
return <stock_news> 
  { $n/body/body.head/hedline}  
  { $n/body/body.content}  
 </stock_news> 

As the profile model is based on the XQuery language, in the 
sequel, we use the terms profile and query interchangeably. 

2.2 Scalability 

The second dimension of requirements is scalability. More 
specifically, the service must scale along the following di-
mensions. 

Data volume. The data volume is determined by the 
number of messages per second arriving at the system and 
the message size. Depending on the application, the number 
of messages per second ranges from several to thousands. 
For example, NASDAQ real-time data feeds include 3,000 to 
6,000 messages per second in the pre-market hours [43]; 
Network and application monitoring systems such as Net-
Logger can also receive up to a thousand messages per sec-
ond [44]. The message size can vary from 1 KB (e.g., XML 
encoded stock quote updates) to 20 KB (e.g., XML news 
articles). 

Query population. The query population in a dissemina-
tion system can also span a wide range, reaching millions of 
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queries for applications such as personalized newspaper gen-
eration and mobile operators providing stock quote updates.  

Frequency of query updates. A third scalability issue is 
the frequency with which users update their data interests. 
While in some applications queries change on a daily basis, 
in some others they can change much more frequently.  

Result Volume. When result customization is supported, 
the volume of results to be delivered can be tremendous. This 
is because for each message, point-to-point delivery is 
needed for every query matched by the message. Take, for 
example, a stock quote update service. Suppose that the peak 
message rate from a data source is 5000 per second, each 
message is 1 KB, the user population is 10 million, and the 
average query selectivity is as low as 0.001%. A back-of-the-
envelope calculation gives an estimation of the result volume 
as 4 Gb per second. Disseminating this volume of data from 
a central server can be prohibitively expensive.  

Having outlined the problem of large-scale XML-based 
data dissemination, we next present the position of our work 
within the large body of related work. 

2.3 Related Systems 

Publish/subscribe systems such as TIBCO Rendezvous [29], 
Gryphon [1][4], and Siena [9][10] provide distributed sub-
ject/content-based data dissemination. Distributed processing 
spreads the processing load and has the potential of scaling 
up for both service inputs and outputs. These systems, how-
ever, support limited expressiveness in message filtering. 
Earlier Publish/subscribe systems are subject-based [29]. In 
such systems, publishers label each message with a subject 
from a pre-defined set, and users subscribe to all the mes-
sages in a specific subject. The expressiveness of this service 
is restricted by the opaqueness of the message content in its 
data model. More recent publish/subscribe systems model 
messages as attribute-value pairs, and allow user profiles to 
contain a set of predicates over the values of those attributes 
[1][9][10][19][30]. The expressiveness of these systems 
amounts to filtering tuple-like messages based on the con-
stituent attributes. Combining low expressiveness and high 
scalability, distributed pub/sub systems are represented by 
the upper left corner of the matrix shown in Figure 2. 

More recently, a large number of XML filtering ap-
proaches have been developed [2][8][12][16][20][22][26] 
[38]. These approaches typically support a subset of XPath 
1.0 [15]. XML filtering provides more expressiveness in 
specifying data interests, resulting in more accurate filtering 
of messages. YFilter [17], a multi-query processor that we 
built previously, also supports result customization using a 
subset of XQuery. Although these XML filtering and trans-
formation systems provide higher levels of expressiveness, 
their centralized style of processing limits their scalability. 
Revisiting Figure 2, today’s XML filtering and transforma-
tion systems can be best described by the lower right corner 
of the matrix combining lower scalability and higher expres-
siveness. 

Our work on content-based data dissemination adopts the 
paradigm of distributed processing to exploit aggregated 
bandwidth and processing power. As indicated in Figure 2, 
our system ONYX incorporates the high level of expressive-

ness of XML filtering and transformation into a distributed 
data dissemination service.  

3 System Model 

In this section, we present the operational features of ONYX. 
ONYX provides content-based many-to-many data dissemi-
nation from publishers to end users. It consists of an overlay 
network of nodes. Most of the nodes serve as information 
brokers (or brokers, for short) that handle messages and user 
queries, while a few of them collaborate to provide a regis-
tration service. The overview is illustrated in Figure 3.  

3.1 Service Inter face  

The service interface provided by ONYX consists of several 
methods (some of which are similar to those in [3]):  

Register a data source: A data source registers with 
ONYX by contacting the registration service and providing 
information about its location, the schema used, the expected 
message rate and message size, etc. (as illustrated by mes-
sage 1 in Figure 3). The registration service assigns an ID to 
the data source, and chooses a broker as the root broker for 
the data source. The choice of the root broker is based on its 
topological distance to the data source, the bandwidth avail-
able, and the data volume expected from that source. After 
the service forwards the information about the new data 
source to the root broker (message 2), it returns the assigned 
ID and the address of the root broker to the data source (mes-
sage 3).  

Publish data: After registration, a data source publishes 
its data by attaching its ID to each message and pushing the 
message to its root broker (message 4). 

Register a data interest: To subscribe, the user contacts 
the registration service, and provides his profile and network 
address (message 5). The registration service assigns an ID to 
this profile, and chooses a broker as the host broker for this 
profile based on the user’s location and/or the content of the 
profile. At the end of the registration, the service forwards 
the profile and related information to the host broker (mes-
sage 6), and returns the profile ID and host broker address to 
the user (message 7). Thereafter, the host broker will deal 
with all the user requests concerning that profile.  

Update a data interest: Subsequent changes to a profile 
(including updates and deletion) are sent directly to the host 
broker (message 8).  

Fig. 2. Combining expressiveness and scalability 
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Note that users do not need a method to retrieve the mes-
sages matching their interests, because those messages are 
pushed to them from the system (e.g., message 9). Additional 
methods are provided for data sources to update the schema 
and other information sent previously. 

Fault-tolerance can be achieved by having backup nodes 
for the registration service and the brokers or using other 
techniques. That discussion is beyond the scope of this paper.   

 

3.2 Two Planes of Content-Based Processing  

ONYX is an application-level overlay network. It consists of 
two layers of functionality. The lower layer, called the con-
trol plane, deals with application-level broadcast trees and 
gives each broker a broadcast tree rooted at that broker that 
reaches all other brokers in the network. Figure 4 shows such 
a tree in a network consisting of six brokers. Algorithms for 
constructing broadcast trees have been provided elsewhere 
(e.g., [14]).  

In this section, we focus on the higher layer of function-
ality in ONYX – content-based processing, which is the pri-
mary concern of this paper. We decompose the operations in 
this layer into two planes of processing - the data plane and 
the query plane. The data plane captures the flow of mes-
sages in the system while the query plane captures the flow 
of queries and query-related updates in the system. As we 
will see, the duality of data and query is a pervasive feature 
of ONYX. We now discuss the three tasks performed in this 
layer – content-driven routing, incremental transformation, 
and user query processing. 

Content-dr iven routing is necessary to avoid the flood-
ing of messages to all brokers in the network. It builds on top 
of the broadcast tree described above. The routing is content-
driven because instead of forwarding a message to all the 
children in the broadcast tree, a broker sends it to only the 
subset that is “ interested”  in the message. This routing 
scheme, which matches a message’s content with routing 
table entries (or routing queries) representing the interests of 
child brokers, is in sharp contrast to the address-based IP 
routing scheme. 

Figure 4 shows an example of routing a message based 
on its content. The routing tables for Broker 1 and 4 are 
shown conceptually. The table at Broker 1 specifies a routing 
query “ /nitf/head/pubdata[@edition.area= “NY” ]”  for Bro-
ker 2, and a similar one “ /nitf/head/pubdata[@edition.area= 
“SF” ]”  for Broker 4. The matching of a new message arriv-
ing at Broker 1 with either routing query results in routing 

the message to the corresponding child. The building of such 
routing tables by summarizing the queries of downstream 
brokers is a subtask in the query plane. The matching of mes-
sages against routing queries occurs in the data plane. 

Incremental transformation is the second task in the 
content-based processing layer. Interesting cases of trans-
forming messages during routing include (1) early projection, 
i.e., removal of data, and (2) early restructuring. An example 
of early projection is as follows. A data source publishes 
messages containing multiple news articles. If all the user 
queries downstream of a link are interested only in a subset 
of the articles (e.g., those distributed in the area “SF” ), mes-
sages can be projected onto the articles of interest before they 
are forwarded along that link using the following query: 

<batched-nitf> 
{   for $n    in  $msg/batched-nitf/nitf 
   where  $n/head/pubdata/@edition.area =“SF”  
   return $n 
}  
</batched-nitf> 

An example of restructuring is message transcoding based on 
the profiles of wireless users, say, when all users downstream 
of a link require images and comments to be removed and 
tables to be converted to lists. Incremental transformation 
helps reduce message sizes and avoids repeated work at mul-
tiple brokers. 

We enable incremental transformation by attaching trans-
formation queries to the output links of brokers on the path 
of routing. User queries downstream of a link are aggregated 
and the commonality in their transformation requirements is 
extracted to form the transformation query. These subtasks 
happen in the query plane. The corresponding subtask in the 
data plane consists of transforming messages using these 
queries, before the messages are sent to the output links. 

User query processing is the task of matching and trans-
forming messages against individual user queries at their host 
brokers. For the user queries resident at a particular broker, 
this is the last step of message processing (although the arriv-
ing messages may be routed and transformed for other down-
stream user queries). The subtask in the query plane consists 
of issues such as indexing of user queries for which the bro-
ker is a host broker, and the subtask in the data plane consists 
of matching messages against these indexes.  

Table 1 summarizes the content-based processing tasks in 
ONYX and their subtasks over the query and data planes. 

 

Fig. 4. Message routing based on content 
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System Task Query Plane Data Plane 

Content-driven routing 
build routing 
tables 

lookup in routing 
tables 

Incremental transformation 
build transforma-
tion plans 

execute transforma-
tion plans 

User query processing build query plans execute query plans 

Table 1: System tasks over the two planes of processing 

4 Core Techniques 

In this section, we describe three key aspects of ONYX, the 
query plane, the data plane, and the query partitioning strat-
egy. YFilter serves as a basis for these components, so we 
first present some YFilter basics.  

4.1 YFilter  Basics 

YFilter [16][17] is an XML filtering and transformation en-
gine that processes multiple queries in a shared fashion. In 
the core of YFilter, a Non-Deterministic Finite Automaton 
(NFA) is used to represent a set of simple linear paths and 
support prefix sharing among those paths. YFilter provides a 
fast algorithm for running the NFA on an input message to 
match the contained paths simultaneously, and an incre-
mental approach for maintaining the NFA when some of the 
paths change. 

While the structural components of path expressions are 
handled by the NFA, for the remaining portions of the que-
ries, YFilter builds a network of operators starting from the 
accepting states of the NFA. Each operator performs a spe-
cific task, such as evaluation of value-based predicates, 
evaluation of nested paths, or transformation. The operators 
residing at an accepting state of the NFA can be executed 
when that accepting state is reached. Downstream operators 
in the network are activated when all their preceding opera-
tors are finished. In addition, some accepting states and op-
erators are annotated with query identifiers. These identifiers 
specify that if an annotated accepting state is reached or an 
annotated operator is successfully evaluated, the queries cor-
responding to the identifiers are satisfied.  

Figure 5 shows three example queries and their represen-
tation in YFilter. Take Q1 for example. It contains a root 
element “ /nitf”  with two nested paths applied to it. YFilter 
decomposes the query into two linear paths “ /nitf/head/ 
pubdata[@edition.area=“SF”]” , and “ /nitf//tobject.subject 

[@tobject.subject.type=“Stock” ]” . The structural part of 
these paths is represented using the NFA (see Figure 5(b)), 
with the common prefix “ /nitf”  shared between the two 
paths. The accepting states of these paths are state 4 and state 
6, where the network of operators (represented as boxes) for 
the remainder of Q1 starts. At the bottom of the network, 
there is a selection (σ) operator below each accepting state to 
handle the value-based predicate in the corresponding path. 
For example, the box below state 4 specifies that the predi-
cate on the attribute edition.area should be evaluated against 
the element that drove the transition to state 4. To handle the 
correlation between the two paths (e.g., the requirement that 
it should be the same nitf element that makes these two paths 
evaluate to true), YFilter applies a join (��) operator after the 
two selections. This operator realizes the correct semantics of 
the nested paths. In Figure 5(b), the left most join operator is 
annotated with the query identifier Q1. This means that if the 
join is successfully evaluated, then Q1 is satisfied.  

The representation of Q2 follows the same two paths in 
the NFA as Q1 and uses the same selection at state 4 to proc-
ess the common predicate with Q1, but it contains a separate 
selection at state 6 to evaluate the different predicate in the 
second path. A distinct join operator is built on these two 
selections. The representation of Q3 is similar to that of Q1 
and Q2 for the for and where clauses, but contains an addi-
tional box for transformation using the return clause. For 
more details on YFilter, the interested reader is referred to 
[16][17]. 

4.2 Query Plane  

In this subsection, we focus on two issues on the query plane: 
routing table construction and the generation of incremental 
transformation plans. Our solutions are based on an exten-
sion of the YFilter processor. Note that we do not discuss 
user query processing, as it is completely handled by YFilter. 

4.2.1 Routing Table Construction 

As stated previously, a routing table conceptually consists of 
routing query-output link pairs, where each routing query is 
aggregated from user queries downstream of the correspond-
ing output link. In our work, we decided to implement rout-
ing tables using YFilter for three reasons: (1) fast structure 
matching of path expressions using the NFA, (2) the small 
maintenance cost of an NFA for query updates (e.g., com-

 Q1:  $msg/nitf[head/pubdata[@edition.area=“SF” ]] 
         [.//tobject.subject[@tobject.subject.type=“Stock”]]  
  
 Q2:  $msg/nitf[head/pubdata[@edition.area=“SF” ]] 
       [.//tobject.subject[@tobject.subject.matter=“fishing”]] 
  
 Q3:  
   <nitf> 
   {   for $n    in  $msg/nitf 
      where  $n/head/pubdata/@edition.area =“SF”   
          and   $n//series/@series.name =“Tide Forecasts”  
      return { $n/body/body.content}   
   }  
   </nitf> 

Fig. 5. Example queries and their representation in YFilter 
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pared to deterministic automata), and (3) extensibility for 
supporting new operations using operator networks. Here, we 
present the representation of routing tables and mechanisms 
to construct them. For the purpose of routing, we only con-
sider the matching part of a query, i.e., the for and where 
clauses of a query written in XQuery. This part can be con-
verted to a single path expression with equivalent semantics, 
which we refer to as the matching path of a query.  

In our current design, routing queries are represented us-
ing a Disjunctive Normal Form (DNF) of absolute linear path 
expressions. If a matching path contains n nested paths, it is 
decomposed into n+1 absolute linear paths (possibly with 
value-based predicates). The routing query constructed for 
this matching path is the conjunction of the resulting n+1 
paths. Multiple routing queries can be connected using or 
operators to create a new routing query. Note that an alterna-
tive could be to allow any matching path to be a routing 
query and use or operators to connect them. In comparison, 
DNF relaxes the semantics of nested paths. The motivation 
of using DNF is that join operators used to evaluate nested 
paths are relatively expensive, whereas logical and operators 
between path expressions can be evaluated much more effi-
ciently. Investigation of alternative forms is one direction of 
our future work. 

Routing table construction from a distributed query popu-
lation consists of applying three functions, Map( ), Collect( ), 
and Aggregate( ), to create routing queries in the chosen 
form.  
� Map( ) maps the matching path of a user query to the ca-

nonical form of a routing query; 
� Collect( ) gathers routing queries sent from the child bro-

kers into the routing table of a broker; 
� Aggregate( ) merges the routing queries in the routing 

table of a broker with those mapped from the user queries 

at the broker, and generates a new routing query to repre-
sent the broker in its parent broker.  
These three functions are illustrated for Brokers 4 and 5 

in Figure 6(a). Broker 5 is a host broker with matching paths 
Q1 and Q2. It uses function Map( ) to create a routing query 
for each of them. Then it applies Aggregate( ) to those rout-
ing queries to generate a new one that will represent it in its 
parent (Broker 4). Note that as a leaf, Broker 5 does not con-
tain a routing table. Broker 4 has child brokers Broker 5 and 
Broker 6, but no user queries. It uses function Collect( ) to 
merge the routing queries sent from the child brokers into a 
routing table, and then applies Aggregate( ) to the routing 
table to generate a routing query that will represent it in its 
parent.    

Construction operations. Next we present the imple-
mentation of the three functions using YFilter.  

Map( ) takes as input a YFilter operator network repre-
senting a set of matching paths. To create the DNF represen-
tations of their routing queries, Map( ) simply replaces each 
join operator in the operator network with an and operator.  

Collect( ) merges routing queries sent from downstream 
brokers into a routing table of a parent broker. This operation 
simply merges the YFilter operator networks that represent 
those routing queries.  

Aggregate( ) performs re-labeling on a YFilter operator 
network. It changes all the identifier annotations (for queries 
or brokers) to the identifier of this broker, so that the anno-
tated places become marks for routing to this broker. It es-
sentially adds “or”  semantics to those annotated places, as 
encountering any one of them can cause routing of messages 
to this broker. YFilter treats broker identifiers the same as 
query identifiers, so these identifiers are simply called “ tar-
gets”  in the sequel.  

An example is shown in Figure 6(b). Box (a) in this fig-
ure shows the YFilter operator network built for queries Q1 
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and Q2 from Broker 5. Box (b) represents the routing query 
created for Broker 5 after applying Map( ) and Aggregate( ) 
to box (a). Box (c) depicts the result of merging box (b) with 
the routing query sent from Broker 6 (assumed to be the rout-
ing query created for query Q3 in Figure 5(a)). Box (d), the 
result of applying Aggregate( ) to box (c), will be explained 
shortly below. 

Shar ing among routing quer ies. It is important to note 
the difference between the conceptual representation of a 
routing table (i.e., routing query-output link pairs) and our 
implementation of it. Instead of creating a separate operator 
network for each routing query, we represent all the routing 
queries in a routing table using a single combined operator 
network. As a result, the common portions of the routing 
queries will be processed only once. As an example, box (c) 
in Figure 6(b) shows that the path leading to accepting state 4 
and the selection operator attached to that state can be shared 
between the routing query for Broker 5 and that for Broker 6. 
When the commonality among routing queries is significant, 
the benefit of sharing can be tremendous. 

The or semantics introduced to routing queries, however, 
complicates the issue of sharing. When using separate opera-
tor networks for routing queries, a short-cut evaluation strat-
egy can be applied in the evaluation of each routing query. 
Consider box (b) in Figure 6(b) as an operator network cre-
ated for the routing query for Broker 5. If during execution, 
one of the two targets labeled as Broker 5 is encountered, the 
processing for this routing query can stop immediately. In 
contrast, when using the combined operator network shown 
in box (c), after a target for Broker 5 is encountered, the 
processing of the combined operator network has to continue 
as the target for Broker 6 has not been reached. If care is not 
taken, some future work may be performed which only leads 
to the targets for Broker 5. In other words, naïve ways of 
executing a combined operator network for shared process-
ing may perform wasteful work.  

To solve this problem, our solution is to have a runtime 
mechanism that instructs YFilter to ignore the processing for 
duplicate targets but not the processing for different targets. 
This mechanism is based on a dynamic analysis of the opera-
tor network which reports the portions of the combined op-
erator network that will only lead to the targets that have 
already been reached.  

Content generalization. Another issue to address in 
routing table construction is the size of routing tables (i.e., 
the size of their operator network representation). Larger 
routing tables can incur high overhead for routing table 
lookup, thus slowing the critical path of message routing. 
They may also cause memory problems in environments with 
scarce memory. For these reasons, we introduce content gen-
eralization as an additional step that can be performed in 
Collect( ) or Aggregate( ). Generalizing the routing table 
essentially trades the filtering power of the routing table for 
processing or space efficiency.  

We propose an initial set of methods for content gener-
alization. Some of methods generalize individual path ex-
pressions with respect to their structural or value-based con-
straints. Some other methods generalize all the disjuncts in a 
routing query. For instance, one such method preserves only 
the path expressions common to all the disjuncts in the new 

routing query. Consider the routing table shown in box (c) in 
Figure 6(b). When applying Aggregate( ) to this routing ta-
ble, calling this method after re-labelling the identifiers will 
result in an operator network containing a single path, as 
shown in box (d). This generalized operator network will be 
used to represent Broker 4 in its parent.  

4.2.2 Incremental Message Transformation  

Incremental transformation happens in the course of routing. 
As mentioned in Section 3, it can be an early projection or an 
early restructuring. In this subsection, we briefly describe the 
extraction of incremental transformation queries from user 
queries and the placement of these transformation queries.  

A transformation query for early projection can be at-
tached to an output link at a broker, if (1) its for clause is 
shared by all the user queries downstream of the link, (2) its 
where clause generalises the where clauses of all those que-
ries, and (3) the binding of its for clause provides all the in-
formation that the return clauses of those queries require. 
The last requirement implies that the return clauses of the 
user queries downstream cannot contain absolute paths or the 
backward axis “ ..”  to navigate outside the binding.  

Similarly, a transformation query for early restructuring 
can be applied to an output link, if conditions (1) and (2) 
above are satisfied, and (3) the return clauses of the down-
stream queries all contain a series of transformation steps 
(e.g., removing images and then converting tables to lists), 
and the first few steps are shared among all those queries. 
This transformation query will carry out the common trans-
formation steps on matching messages earlier at this broker. 

When opportunities for early transformation are identi-
fied at host brokers based on the above conditions, incre-
mental transformation queries representing them are gener-
ated and propagated to the parent broker. At the parent, these 
transformation queries are compared and the commonality 
among them is extracted to create a new transformation 
query for its own parent and a set of “ remainder queries”  for 
its output links. A remainder query is one that combined with 
the new transformation query constitutes the original trans-
formation query. Each remainder query is attached to the 
output link where the corresponding original transformation 
query came from. The new transformation query is propa-
gated up, and the above process repeats.  

A final remark is that although our algorithms for routing 
table construction and incremental transformation plan con-
struction as presented consider all the user queries in a batch, 
they can also be applied for incremental maintenance of rout-
ing tables or transformation plans. In that case, “delta”  rout-
ing/transformation queries are constructed and propagated, 
instead. Details are omitted here due to space constraints. 

4.3 Data Plane  

Having described the query plane, we now turn to the data 
plane that handles the XML message flow. In the following, 
we describe two aspects of this plane, holistic message proc-
essing for various tasks and efficient XML transmission. 

4.3.1 Holistic Message Processing 

In ONYX, a single YFilter instance is used at each broker to 
build a shared, “holistic”  execution plan for the routing table, 
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incremental transformation queries, and local user queries 
(by holistic, we mean that all these processing tasks are con-
sidered as a whole in the data plane). Processing of an XML 
message using this shared plan is sketched in this section. 

The execution algorithm for holistic message processing 
is an extension of the push-based YFilter execution algorithm 
[17]. As in that previous work, elements from an XML mes-
sage are used to drive the execution of NFA. At an accepting 
state of the NFA, path tuples are created and passed to the 
operators associated with the state. The network of operators 
is executed from such operators (i.e., right below accepting 
states) to their downstream operators. In YFilter, the order of 
operator execution is based on a FCFS policy among the 
operators whose upstream operators have all been completed. 

In contrast to earlier work, however, the holistic plan 
contains multiple types of queries, i.e., routing queries, in-
cremental transformation queries, and local user queries. The 
first two types are on the critical path of message routing. 
They should not be delayed by the processing for local que-
ries. Moreover, incremental transformation is useful only if 
the routing query for the corresponding link can be satisfied, 
which implies the dependency of transformation queries on 
the routing queries in execution. For these reasons, we pro-
pose a dependency-aware priority scheduling algorithm to 
support shared holistic message processing.  

Dependency-aware pr ior ity scheduling. In this algo-
rithm, operators that contribute to routing queries are as-
signed high priority; among other operators, those that con-
tribute to incremental transformation queries have medium 
priority; and the rest of the operators have low priority. The 
second priority class, however, is declared to be dependent 
on the first class with the following condition: an operator in 
the second class is executed only if at least one incremental 
transformation query that it contributes to has been necessi-
tated by the successful evaluation of the corresponding rout-
ing query. In our implementation, an FCFS queue is assigned 
to each priority class. In addition, a wait queue is assigned to 
the dependent class. Priority scheduling works as in a typical 
OS, except that operators in the dependent class are first 
placed in the wait queue, and then moved to the FCFS queue 
when their dependency conditions have been satisfied.  

4.3.2 Efficient XML Transmission 

Low cost transmission of XML messages is also a paramount 
concern in a multi-hop distributed dissemination system. 
XML raises two challenges in this context. First, the verbose 
nature of XML can cause many redundant bytes in the mes-
sages. Second, XML messages need to be parsed at each 
broker, which can be expensive [16][36].  In this section, we 
address these two challenges. 

The inherent verbosity of XML has led to compression 
algorithms such as XMill [27]. Compression, however, 
solves only the first of the above challenges but not the pars-
ing problem. A promising approach that we explored to 
counter this problem, is using an element stream format for 
XML transmission. This format is an in-memory binary rep-
resentation of XML messages that can be input to the YFilter 
processor without any pre-processing or parsing. The binary 
format is also more space-efficient than raw XML because 
the latter has white spaces and delimiters. The “wire size”  of 

an XML message can be further reduced by compressing this 
binary representation.  

We also explore schema-aware representation of XML 
for transmission. Given that the control plane can be used to 
broadcast the schema of a publishing source to all the brokers 
in the network, we can perform schema-aware XML encod-
ing of messages for transmission between brokers. In particu-
lar, we use a dictionary encoding scheme that maps XML 
element and attribute names from the schema to a more 
space-efficient key space. As future work, we would like to 
explore more advanced schema-aware optimizations, such as 
avoiding storing parent-child relationships in the binary for-
mat, as they can be recovered from the schema. 

We experimented with six XML transmission formats: 
text, binary (i.e., the element stream format), binary with 
dictionary encoding, and their corresponding compressed 
versions. Messages were generated using the YFilter XML 
Generator [16] based on the NITF DTD. The two parameters 
- DocDepth (that bounds the depth of element nesting in the 
message) and MaxRepeats (that determines the number of 
times an element can repeat in its parent element) allow us to 
vary the complexity of messages. All our compression was 
performed using ZLIB, gzip’s library, because it outperforms 
XMill for the relatively small-sized messages (like ours), as 
reported in [27]. 

Figure 7 summarizes the performance of different XML 
formats over our first metric, the wire size, for messages of 
different complexities. Although the element stream format  
does not remarkably outperform the text format, dictionary 
encoding gives promising results. Compression helps reduce 
the wire size for all formats significantly.  

Figure 8 presents the evaluation of these XML formats 
on the complementary metric of message processing delay. 
While uncompressed formats require only serializing mes-
sages at the sender and deserializing them at the receiver, the 
raw format additionally requires parsing and thus proves to 
be expensive. Compressed formats have significant costs of 
compression at the sender and decompression at the receiver.  

The choice of XML format for transmission must weigh 
both the wire size and processing delay metrics to get a com-
bined metric. This decision will invariably be influenced by 
implementation details like the transport protocol used. For 
example, in the distributed PlanetLab testbed [31], all the 
message sizes involved in our experiments gave the same 
transmission delay using TCP. This was attributed to the 
connection establishment time dominating in TCP for small 
message sizes. Thus, the message processing delay turned 
out to be a more important concern than the message size, 
making compression rather undesirable. On the other hand, if 
the DCP protocol [36] that sends data in redundant streams 
over UDP can be employed, compression may be useful. 

4.4 Query Population Par titioning  

Previous work on distributed publish/subscribe [1][4][10] 
assumes that queries naturally reside on their nearest brokers, 
without considering alternative schemes for partitioning the 
query population. In this subsection, we address the effect of 
query partitioning on the filtering power of content-driven 
routing, which is captured by the fraction of query partitions 
that a message can match.  
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We start with an investigation of the properties of query 
partitioning and their effect on content-driven routing. Query 
similarity within a partition seems to be an intuitive property, 
but is not effective in filtering. For example, in the ideal case 
that all the queries in one partition are “ /a/b”  and all the que-
ries in the other partition are “ /a/c” , a message can still match 
both partitions by containing the two required elements. Dis-
similarity between partitions is another candidate. Consider 
one partition with two queries “ //a”  and “ //b” , and the other 
partition with “ //c”  and “ //d” . Though these two partitions 
have little in common, it is still quite likely that a message 
matches both partitions. Mutual exclusiveness turns out to be 
a desired property. For example, if one partition requires 
“ /a/b[@id=1]”  and the other requests “ /a/b[@id=2]” , the 
chance that a message satisfies both can be low. The message 
surely cannot satisfy both if it contains only one “b”  element. 

The next question is what path expressions can establish 
such mutual exclusiveness among query partitions. In this 
regard, we make three key observations. The first is that 
structural constraints alone are not enough (see the first two 
examples above). This is because the schema never specifies 
that two paths are mutually exclusive in a message. In fact, 
path expressions exhibit potential exclusiveness if they in-
volve the same structure, and contain value-based predicates 
that address the same target (e.g., an attribute or the data of a 
specific element), use the “=”  operator, but contain different 
values (see the third example above). We call the common 
part of these paths an exclusiveness pattern. The second ob-
servation is that repetition of element names in XML mes-
sages limits the exclusiveness of such patterns. Thus, the best 
choice of an exclusiveness pattern would be one that can 
appear at most once in any message, as dictated by the 
schema. The third observation is that in general the coverage 
of an exclusiveness pattern in the query population could be 
rather limited, due to the diversity of user data interests. 
Thus, using a single exclusiveness pattern for query parti-
tioning could cause the majority of queries to be placed in a 
partition called “don’ t care” . In that case, a set of exclusive-
ness patterns should be used.  

Partitioning based on Exclusiveness Patterns. To 
achieve exclusiveness of data interests among query parti-
tions, we propose a query partitioning scheme, called Parti-
tioning based on Exclusiveness Patterns (PEP). Due to space 
constraints, we only briefly describe the two steps of this 
scheme, assuming for now that this algorithm can be run 
over the entire query population in a centralized fashion. (1) 

Identifying a set of exclusiveness patterns. PEP first searches 
the YFilter representation of the entire query population, and 
aggregates the predicates contained in the selection operators 
at each accepting state to exclusiveness patterns. These pat-
terns are sorted by their coverage of the query population 
(i.e., the number of queries involving them). Then PEP uses a 
greedy algorithm to choose a set of patterns such that every 
query involves at least one pattern from the set. Heuristics 
can be used to perturb this set with other unselected patterns 
so that more patterns included in the set can appear at most 
once in a message, but the coverage of the query population 
is not sacrificed. (2) Partition creation. In the second step, K 
query partitions are created using the M patterns selected in 
the first step. To do so, the value range of each exclusiveness 
pattern is partitioned into K buckets, numbering 1, 2, …, K.  
Then queries are assigned to the K*M buckets based on their 
values in the contained exclusiveness patterns. As a query 
must involve at least one of those patterns, it must belong to 
at least one bucket. If the query involves multiple patterns, it 
is randomly assigned to one of the matching buckets. Finally, 
K query partitions are created by assigning the queries in the 
i th bucket of any pattern to query partition i. 

In the ideal case, where each exclusiveness pattern ap-
pears at most once in a message, a message can match at 
most M query partitions, i.e., one bucket per pattern. Thus 
the filtering power of content-driven routing, i.e., the fraction 
of query partitions that a message can match, can achieve 
M/K (e.g., 10 patterns, 100 partitions, and filtering power ≈ 
1/10). If some patterns can appear multiple times in a mes-
sage, their repetition degrades the filtering power (in many 
cases linearly).  

To study the potential benefit of our PEP scheme, we 
compared its performance with the random query partition-
ing scheme that randomly assigns queries to partitions. We 
considered assigning a population of 1 million queries to 200 
partitions. Every query contained two patterns, each chosen 
uniformly from a set of 10 exclusiveness patterns. PEP ex-
ploited these 10 patterns for partitioning. Figure 9 shows how 
the percentage of the partitions that a random message 
matches varies with the amount of repetition of element 
names in the XML message. Clearly, the random partitioning 
scheme ends up matching almost all partitions with messages 
even with a small amount of repetition of element names. In 
contrast, PEP leads to many fewer partition matches. Unless 
user interests are influenced by geography, a system that 
assigns user queries to the closest brokers will end up doing 
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random partitioning of queries, leading to many messages 
being exchanged between the brokers of the system.   

An important remark is that in ONYX, PEP is a core al-
gorithm for query placement used by the registration service. 
In addition to PEP, query placement also involves the deci-
sion of mapping query partitions to brokers, and the use of 
distributed protocols to perform the initial query partitioning 
and to maintain the partitions as user queries change over 
time. These issues will be addressed in our future work. 

5 Broker  Architecture  

Having described the broker functionality in the query and 
data planes, we now turn to a discussion of the broker archi-
tecture that implements this functionality. This architecture is 
shown in Figure 10. It contains the following components. 

Packet Listener. This component listens to each packet 
arriving at the broker and based on the header, assigns the 
packet to one of the four flows: catalog packets, XML mes-
sages, query packets, and network control packets.  

Catalog manager. Catalog packets contain information 
about a data source. They may originate from the registration 
service concerning a new data source or from a registered 
data source to update information sent previously. The cata-
log manager parses these packets, and stores the information 
in the local catalog. If the packet is for a new data source, a 
new entry is added to the catalog including the ID of the data 
source, information on the data rate, the schema used, etc. If 
the information relates to a known data source, the existing 
entry in the catalog describing this data source is updated by 
the new information. The catalog will be used in other com-

ponents for message validation, XML formatting, query 
processing, etc. 

Message pre-processor. XML messages can come from 
data sources as well as other brokers in the system. The mes-
sages from a data source carry the source ID and are in the 
text format. On receiving such a message, the root broker of 
the data source validates the source ID attached to the mes-
sage using its catalog. It also parses the message to an in-
memory representation for later routing and query process-
ing. If the message comes from an internal broker, source 
validation is skipped. Depending on the internal representa-
tion of XML, the message can be in one of several formats 
that we discussed earlier, and will need suitable pre-
processing (like decompression, deserialization, etc.).  

Query pre-processor. This is analogous to the message 
pre-processor in functionality, except that it also maintains a 
database of the profiles for which it is the host broker. 

Control plane: Taking the control messages, the control 
plane maintains the broadcast tree for each root broker in the 
system. Specifically, it records the parent node and the child 
nodes of a broker on a particular root broker’s broadcast tree. 
It provides two methods for use of the content layer, one for 
forwarding messages along a broadcast tree, the other for 
reverse forwarding of queries. The control plane is also re-
sponsible for disseminating catalog information for the pur-
poses of optimizing content-based processing. For example, 
the schema information can be used to optimize query proc-
essing and support schema-aware XML encoding. 

Data plane. The broker performs three tasks in the data 
plane, when receiving an XML message. First, it takes a se-
quence of steps to route the message: (a) if the broker is the 
root broker for the message, it attaches its broker identifier to 

Fig. 10. Broker Architecture 
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the message; (b) it retrieves its output links in the broadcast 
tree that is specified by the root broker identifier attached to 
the message; and (c) it looks up in the content-based routing 
table to filter those output links. Second, for each output link 
selected, the broker transforms the message, if a transforma-
tion plan is attached to that link. Last, the broker processes 
the message on local queries to generate results. These three 
tasks are all realized by the YFilter processor.  

Query plane. The query plane exhibits duality with the 
data plane. If an arriving query is from a user, the local query 
processing plan is updated. If the query comes from another 
broker to update the routing table (i.e., it is a routing query) 
or the incremental transformation plan (i.e., it is an incre-
mental transformation query), the modification of the routing 
table or the transformation plan will cause a new query to be 
generated for delivery to its parent broker.  

YFilter Processor. YFilter has been described in Section 
4.1. In this work, it is leveraged to build a holistic processing 
plan for all the processing tasks, so that the shared processing 
among the tasks is maximized. For the query plane, it is ex-
tended to support the routing table construction operations 
(as described in Section 4.2.1). For the data plane, its sched-
uler is augmented to prioritize the processing for different 
types of queries while exploiting the sharing among them 
(see Section 4.3.1).  

Message and query Post-processor. The results from the 
data plane are passed to the message post-processor. Results 
of local query processing are translated into XML messages 
for delivery to end users, while results of routing and incre-
mental transformation are serialized (and possibly com-
pressed). Queries generated from the query plane also follow 
the path of serialization and compression.  

Packet Sender. This component attaches a header to each 
packet, specifying the type of flow, the identifier of the root 
broker (if the packet is an XML message), and the format 
used. Then it multiplexes the four types of flows into the 
output channel, through a scheduler and a network manager 
that sends packets through TCP, UDP, etc. 

6 Related Work 

Our work is related to a large body of research work in both 
database and networking communities. Some areas like XML 
filtering have been described in detail already; we now pre-
sent a brief overview of other related work.  

Multicast. Multicast allows a source to send the same 
content to multiple receivers. Though bandwidth-efficient, IP 
multicast [24] is not flexible because of being a network 
layer paradigm. This has led to application-layer solutions 
such as Overcast [25] and i3 [37]. Proposals for augmenting 
IP multicast with content-based routing features have been 
presented in [35][30]. However, none of this work gives the 
user fine-grained ways of specifying their interests, like a 
powerful query language over XML. 

Content Distr ibution Networks (CDN). CDNs provide 
an infrastructure that delivers static or dynamic Web objects 
to clients from nearby Web caches or data replicas [13][40], 
thus offloading the main website. Recent work has focused 
on allowing the user to specify coherence requirements over 
data [1][34]. This differs from our approach as it does not 

give the user a powerful query language to specify her inter-
ests. Also, we are dealing with streams of XML messages 
rather than Web objects. 

Publish/Subscr ibe systems. Publish/Subscribe systems 
are event-based and provide many-to-many communication 
between event publishers and subscribers. The SIFT system 
[41] provided support for matching keyword queries over 
large sets of documents and some ideas for building a dis-
tributed filtering system. Many recent systems [1][9][10][19] 
[30] model an event as a conjunction of (attribute, value) 
pairs and support relational predicates in subscriptions speci-
fying event interests. We are addressing a more challenging 
problem as support for rich XML messages and queries leads 
to increased complexity of query processing, data forwarding 
and routing table construction. 

XML-based over lay networks. A mesh-based overlay 
network has been proposed in [36] with support for simple 
XML queries. However, the authors do not address XML 
query processing issues. The query aggregation scheme 
given in [11] has been used to perform content-based routing 
in [13]. However, they do not support powerful query lan-
guage features like customized transformations.  

Transcoding. The transformation functionality in our 
system is closely related to the transcoding of Web content to 
suit the profiles of heterogeneous end users, like the users of 
mobile phones and hand-held computers [42]. However, such 
a profile usually does not provide expressiveness in querying 
content as much as the subset of XQuery we support.  

7 Status and Future Work 

In this paper, we presented our initial design of ONYX, a 
distributed system providing large-scale XML dissemination. 
In particular, we provided a detailed architectural design of 
the system, and addressed the various challenges in distrib-
uted XML dissemination in the context of leveraging YFilter, 
a state-of-the-art XML processor. While we view this work 
as an initial step towards Internet-scale XML dissemination 
services, the proposed architecture and solutions to critical 
issues such as routing table construction and query popula-
tion partitioning lay the foundation for offering high expres-
siveness and scalability in such services in massively distrib-
uted environments. 

As of June 2004, we have implemented the components 
for message/query pre-processing and post-processing. A 
collaboration with the Berkeley networking group to build 
the networking related components, such as the control 
plane, is underway. We expect to fully implement the data 
and query planes using YFilter over the course of the sum-
mer, and deploy our system on PlanetLab [31] in the fall.  

We also plan to extend our research work in the follow-
ing directions. We will explore alternative forms of routing 
query representation in addition to DNF and other content 
generalization algorithms. Typical workloads of XML rout-
ing will be collected to evaluate these alternative forms and 
algorithms to gain insights into the various tradeoffs. We will 
also exploit the schema for optimization in routing table con-
struction. Furthermore, we plan to extend the notion of 
data/query duality in the context of multi-source routing; 
analogous to placing routing queries to filter and direct the 
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message flow, we can place data source descriptions in the 
network to prune and forward the query flow from host bro-
kers to root brokers. Last, we will address the networking 
issues that occur when using PEP to move queries away from 
their closest brokers, and provide distributed protocols to 
carry out PEP and to maintain the quality of query partition-
ing as user queries change over time.  
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