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Abstract

We study the fundamental limitations of re-
lational algebra (RA) and SQL in supporting
sequence and stream queries, and present ef-
fective query language and data model enrich-
ments to deal with them. We begin by ob-
serving the well-known limitations of SQL in
application domains which are important for
data streams, such as sequence queries and
data mining. Then we present a formal proof
that, for continuous queries on data streams,
SQL suffers from additional expressive power
problems. We begin by focusing on the notion
of nonblocking (NB) queries that are the only
continuous queries that can be supported on
data streams. We characterize the notion of
nonblocking queries by showing that they are
equivalent to monotonic queries. Therefore
the notion of NB-completeness for RA can be
formalized as its ability to express all mono-
tonic queries expressible in RA using only the
monotonic operators of RA. We show that RA
is not NB-complete, and SQL is not more
powerful than RA for monotonic queries.

To solve these problems, we propose exten-
sions that allow SQL to support all the mono-
tonic queries expressible by a Turing ma-
chine using only monotonic operators. We
show that these extensions are (i) user-defined
aggregates (UDAs) natively coded in SQL
(rather than in an external language), and
(ii) a generalization of the union operator to
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support the merging of multiple streams ac-
cording to their timestamps. These query
language extensions require matching exten-
sions to basic relational data model to sup-
port sequences explicitly ordered by times-
tamps. Along with the formulation of very
powerful queries, the proposed extensions en-
tail more efficient expressions for many simple
queries. In particular, we show that nonblock-
ing queries are simple to characterize accord-
ing to their syntactic structure.

1 Introduction

Data stream management systems represent a vibrant
area of research [5, 6, 31, 10, 12, 19, 30, 17, 11, 8, 13].
The solution approach taken by most projects con-
sists of extending database query languages and data
models to support efficiently continuous queries on
stream data, and is based on the sound rationale that,
since many applications will span traditional databases
and data streams, an unified programming environ-
ment will simplify their development. Nevertheless,
database query languages were designed for persistent
data residing on disks, rather than for transient data
flowing through the wires: therefore their suitability to
the new task need to be evaluated critically, and their
limitations in this new role must be addressed. In-
deed, the limitations of SQL in this new role are many
and severe. For instance, the ineffectiveness of SQL
to express queries on time series and sequences has
been long recognized in the field and inspired much
previous research [29, 27, 22, 2, 25, 24]. Since data
streams are basically unbounded sequences, the inabil-
ity of expressing sequence queries must be viewed as a
serious limitation of SQL for continuous queries. An-
other well-known problem area for SQL is data mining
[14, 20, 16, 26], since it is clear that SQL will be at
least as ineffective at mining data streams as it is at
mining persistent data. But in reality, the situation is
significantly worse for data streams where additional
issues arise to further impair the expressive power of
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SQL. One is that queries involving traditional aggre-
gates or constructs such as not in, not exists, all,

except cannot be allowed since they are blocking, i.e.,
they do not return their results until they have seen
the whole input [5]. Only nonblocking query opera-
tors can be allowed on data streams [5], and we will
prove that all monotonic queries, and only those, can
be expressed using nonblocking computations—a re-
sult that was first claimed in [34].

This set the stage for one more problem (the fourth
in our list) inasmuch as relational algebra (RA) and
SQL are not complete for nonblocking queries, since
they can only express some monotonic queries using
blocking operators. The final problem follows from the
fact that traditional database applications would nor-
mally be developed by embedding SQL queries in pro-
cedural languages using cursor-based interface mecha-
nisms. Therefore, expressive-power limitations of SQL
would be remedied by writing in the procedural lan-
guage the part of the application that could not be
readily expressed in the embedded SQL query. But the
cursor-based model of embedded queries is one where
the the procedural language program sees a static win-
dow onto the database and controls the movement
of the cursor via get-next statements. But as data
streams arrive furiously and continuously, the data
stream manager cannot hold the current tuple, and
all that have arrived after that, waiting for the ap-
plication to issue a get-next statement. Indeed, most
of current data stream management systems do not
support cursor-based interfaces to programming lan-
guages.

In summary, the lack of expressive power and exten-
sibility that were already serious problems for SQL (as
per the sequence queries and data mining queries) are
now made much more severe by data streams, where
blocking query operators are disallowed and the rem-
edy of embedding the SQL queries into a procedural
language is also compromised. Therefore, an in-depth
study of this problem and its possible solutions is sor-
rily needed, given that only limited studies have been
proposed in the past (see next section). We will also
show that the problem has interesting implications on
the data model to be used for data streams: for in-
stance, the presence of time stamps is required for
query completeness.

The paper is organized as follows. In the next sec-
tion, we survey several data models for sequences and
streams. In Section 3, we study nonblocking query
operators which we prove equivalent to monotonic op-
erators; in Section 4 we show the incompleteness of
relational query languages with respect to monotonic
operators. In Section 5, we introduce a native exten-
sibility mechanism for SQL which the data model is
suitable for data stream and sequence queries. Also,
this extension is Turing Complete—the result proven
in Section 6. In Section 7, we prove completeness

w.r.t. the functions computable by nonblocking com-
putations. In section 8, we recap the benefits of the
proposed extensions with sequence queries, data min-
ing functions, and memory minimization.

2 Related Work

Significant projects on data streams include those de-
scribed [5, 6, 31, 10, 12, 19, 30, 17, 11, 8, 13]. In this
section we discuss issues such as blocking operators,
data model, and query power that are most significant
for this paper.

The Tapestry project was the first to model data
streams as append-only databases supporting contin-
uous queries [31]. The problem of blocking operators
was also identified in [31] strategies were suggested for
overcoming this problem for monotonic queries. In-
deed the close relationship between monotonicity and
nonblocking queries has been understood for a long
time, however as far as we know, there has been no
previous attempt to prove or formalize this relation-
ship. For instance, two excellent survey papers [5, 13]
clearly note the relationship, but make no statement
to the fact that queries expressible by nonblocking
operators are exactly the monotonic queries—more
remarkably this property is not even mentioned as
a ‘folk theorem,’ or a formal conjecture. Even the
work presented in [32], these focuses on overcoming
the blocking operator problem has not pursued their
formal characterization. The work described in [32]
presents an interesting approach for overcoming the
problems of blocking operators using punctuated data
streams. The data stream is modelled as an infinite
sequence of finite lists of elements. Then punctua-
tion marks can be viewed as predicates on stream
elements that must evaluate to false for every ele-
ment following the punctuation. Note that a punc-
tuation is an ordered set of patterns which indicates
what should be output and stored for future uses and
when it should be output. Then a stream iterator is
proposed that accessing the input incrementally, out-
putting the results as another punctuated stream and
storing the state, based on the punctuation of the in-
put elements. To achieve this, a unary stream iterator
is defined as five components (inital state, step,

pass, prop, keep), where inital state is the iter-
ator state before any tuple arrives, step is a function
that takes new tuples and a current state and out-
put new tuples and a modified state and pass, prop,

keep are three behavior functions that take punctua-
tion marks and state as input and returns additional
outputs tuples, output punctuation, and a modified
state. Clearly, the structure of unary stream itera-
tors is similar to that User-Defined Aggregates (UDAs)
which we will show (i) can also deal with punctuation,
(ii) are defined natively using SQL, and (iii) make the
SQL’s expressive power equivalent to that of a Turing

493



machine. The use of UDAs for enhancing the power
of query languages for data streams is also been advo-
cated by the Aurora project [8], where non-SQL oper-
ators are however used to define UDAs.

While although the objective of overcoming the ex-
pressive power limitations caused by the exclusion of
blocking operators provides the clear motivation for
much previous work, at the best of our knowledge,
there has been no attempt to characterize how much
expressive power is lost without blocking query op-
erators, or how much power is gained back with ex-
tensions such the unary stream operators [32], or the
UDAs used in Aurora [8]. (In this paper, we will prove
that the power loss due to blocking operators and the
power gain due to UDAs are both very high.)

Although there has been no formal investigation of
the limitations of SQL for data stream applications,
the investigations for other application domains of in-
terest are nearly too many to mention. Of particular
significance are those focusing on sequence queries, in-
cluding those presented in [29, 27, 22, 2, 25, 24]. In
particular, the sequence model called SEQ, introduced
in [28], focuses on possible extensions to the relational
data model and relational algebra. Therefore, many-
to-many relations are defined between a set of records
and a countable totally ordered domain (e.g., the in-
teger set) to give positions for each record, along with
two new classes of sequence operators, the positional
operators and record-oriented operators. The expres-
sive power entailed by these extensions, however, is
not characterized.

Similar extensions to the relational model and re-
lational algebra however have not been pursued in
later studies of sequence queries [2, 25, 24] and stream
queries and will not be considered in this paper. In
this paper, we followed the generally accepted model
of viewing data streams as bags of append-only of or-
dered tuples. In fact, we will show that (in Section 7)
that time stamps must be added to achieve the com-
pleteness for non-blocking queries. After this neces-
sary addition, our data stream can be modelled as an
unbounded appended-only bags of elements <tuple,
timestamp> as in CQL [4, 21], along the line of SQL
(although CQLs Istream, Dstream and Rstream are not
considered in this paper).

3 Nonblocking Query Operators

We can now formalize the notion of sequences as a
bridge between database relations and streams. Se-
quences consist of ordered tuples, whereas the order is
immaterial in relational tables. Streams are sequences
of unbounded length, where the tuples are ordered by,
and possibly time-stamped with, their arrival time.
An open problem in this line of research is to find
what generalizations of the relation data model, al-
gebra, and query languages are needed to deal with

sequences and streams [5]. In this section, we will
characterize:

• The blocking/nonblocking properties of operators
independent of the language in which they are ex-
pressed, and

• The abstract properties of stream functions ex-
pressible by blocking/nonblocking operators.

According to [5] ‘A blocking query operator is a
query operator that is unable to produce the first tu-
ple of the output until it has seen the entire input.’ In
an operational reading of this definition ‘until it has
seen the entire input’ will be taken to mean ‘until it
has detected the end of the input’. For instance, the
traditional aggregates in SQL never produce any tuple
until they have seen the last input tuple: thus these
are blocking operators. Since continuous queries must
return answers without waiting for tuples that will ar-
rive in the future, blocking operators are not suitable
for stream processing [5]. Nonblocking operators are
instead suitable for stream processing. We can now
define nonblocking operators, as follows (the opposite
of the statement used to define blocking operators):
‘A nonblocking query operator is one that produces all
the tuples of the output before it has detected the end
of the input.’ Here we have discussed operators that
are either blocking or nonblocking; but the case of par-
tially blocking operators is also possible, although less
frequent in practice. For instance, an online average
aggregate that returns results during the computation
but also the final result at the end is partially blocking.
To characterize the properties of stream operators we
will first formalize the notion of sequences, and com-
putation on sequences.

Definition 1 Sequence: Let t1, . . . , tn be tuples from
a relation R. Then, the list S = [t1, . . . , tn] is called
a sequence, of length n, of tuples from R. The empty
sequence is denoted by [ ]; [ ] has length 0.

Observe that the tuples t1, . . . , tn in the sequence are
not necessarily distinct. We will use the notation t ∈ S

to denote that, for some 1 ≤ i ≤ n, ti = t.

Definition 2 Presequence: Let S = [t1, . . . , tn] be a
sequence and 0 < k ≤ n. Then, t1, . . . , tk is the pre-
sequence of S of length k, denoted by Sk. [ ] is the
zero-length presequence of S.

Definition 3 Partial Order: Let S and L be two se-
quences. Then, if for some k, Lk = S we say that S is
a presequence of L and write S ⊑ L. If k < n, we say
that S is a proper presequence of L and write S < L.

Given a relation R, ⊑ is a partial order (reflexive, tran-
sitive, and antisymmetric) on sequences of tuples from
R. We can now consider operators that take sequences
(streams) as input and return sequences (streams) as
output. For instance consider an operator G that takes
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a sequence S as input and produces a sequence G(S)
as output:

S −→ G −→ G(S)

G operates as an incremental transducer, which for
each new input tuple in S, adds zero, one, or several
tuples to the output. At step j, G consumes the jth

input tuple and produces any number of tuples as out-
put. But rather than focusing on the new output pro-
duced at step j, we will concentrate on the cumulative
output produced up to and including step j. Thus, let
Gj(S) be the cumulative output produced up to step j

by our operator G presented with the input sequence
S. Gj(S) is a sequence whose content and length de-
pend on G, j and S. Consider, for instance, a sequence
of length n, i.e., S = Sn. If G is a traditional SQL ag-
gregate, such as sum or avg, then Gj(S) is the empty
sequence for j < n, while, for j = n, Gj(S) contains
a single tuple. However, if G is the continuous count
(continuous sum), defined as follows: for each new tu-
ple, G returns the count of tuples (sum of a particular
column) of the tuples seen so far—i.e., of Sj , then,
by definition, Gj(S) ⊑ Gk(S), for j ≤ k — i.e., the
output produced till step j is a presequence of that
produced till step k. A null operator N is one where
N(S) = [ ] for every S. We now have the following
definitions:

Definition 4 A non-null operator G is said to be
• blocking, when for every sequence S of length n,

Gj(S) = [ ] for every j < n, and Gn(S) = G(S)

• nonblocking, when for every sequence S of length
n, Gj(S) = G(Sj), for every j ≤ n.

Therefore, a blocking operator is one that does not
deliver any tuple in the output until the final input
tuple. Instead, a nonblocking operator is one that per-
forms the computation incrementally, i.e., the cumu-
lative output at step j < n (for an input sequence S of
length n), can be computed by simply applying G to
the presequence Sj . Partially blocking operators are
those that do not satisfy either definition, i.e., those
where, for some S and j:

[ ] < Gj(S) < G(Sj).

We would like now to elevate our abstraction level
from that of operators and programs to that of math-
ematical functions. We ask the following question:
what are the functions on streams that can be ex-
pressed by nonblocking operators? There is a surpris-
ingly simple answer to this question:

Proposition 1 A function F (S) on a sequence S can
be computed using a nonblocking operator, iff F is
monotonic with respect to the partial ordering ⊑.

Proof: Say that Sj ⊑ Sk, i.e., Sj is a presequence
of Sk, and j ≤ k. Let G be a nonblocking computa-
tion on S. Then G(Sj) = Gj(Sj) = Gj(Sk), where

Gj(Sk) ⊑ Gk(Sk) = G(Sk). Thus ‘nonblocking’ im-
plies‘monotonic’. Vice versa, say that we have a mono-
tonic function F (S) that can be computed by an oper-
ator G(S). If G is nonblocking, the proof is complete.
Otherwise, consider the operator H(S) defined as fol-
lows: Hj(Sn) = Gj(Sj). We have that H(S) = G(S)
and H is nonblocking. QED.

Streams are infinite sequences; thus only non-
blocking operators can be used to answer queries on
streams. We have now discovered that a query Q on a
stream S can be implemented by a nonblocking query
operator iff Q(S) is monotonic with respect to ⊑.
The traditional aggregate operators (max, avg, etc.)
always return a sequence of length one and they are
all nonmonotonic, and therefore blocking. Continuous
count and sum are monotonic and nonblocking, and
thus suitable for continuous queries.

Order! In this section we have considered physically
ordered relations, i.e., those where only the relative
positions of tuples in sequence are of significance. In
the next section, we will consider unordered relations,
i.e., the traditional database relations, that we will
call Codd’s relations. Later, we will study logically
ordered relations, i.e., sequences where the tuples are
ordered by their timestamps or other logical keys. All
three types of relations are important, since each type
is needed in different applications and they have com-
plementary properties.

For instance, the OLAP functions of SQL:1999 can
compute the average of the last 100 tuples in the se-
quence (physical window). Besides OLAP functions,
aggregates, such as continuous sum, and online aver-
age [15], are dependent on the physical order of rela-
tions. The physical order model is conducive to great
expressive power, but cannot support binary operators
as naturally as it does for unary ones. For instance,
in SQL the union of two tables T1 and T2 is normally
implemented by first returning all the tuples in T1 and
then all the tuples in T2. The resulting operator, is
not suitable for continuous queries, since it is partially
blocking (and nonmonotonic) with respect to its first
argument T1 (since tuples from T2 cannot be returned
until we have seen the last tuple from T1). These is-
sues can either be resolved by using Codd’s relations
(next section) or logically ordered relations, discussed
in Section 7.

4 Unordered Relations, RA & SQL

Codd’s relational model views relations as sets of tu-
ples where the order is immaterial (commutativity
property). In these relations duplicates are disallowed
via candidate keys (or, duplicates can be simply dis-
regarded as via the idempotence property). Thus re-
lations are sets ordered by set containment, ⊆. For
Codd’s relations the notions ⊆ and ⊑ coincide. (In-
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deed ⊑ always implies ⊆; moreover, if R1 ⊆ R2, then
R2 can be arranged as a presequence identical to R1

followed by the remaining tuples in R2 − R1, if any.)
Therefore we have the following theorem:

Proposition 2 A unary query operator on Codd’s re-
lations is nonblocking iff it is monotonic w.r.t. ⊆.

Since we are only interested in deterministic queries,
the only operators that are legal on Codd’s relations
are those that deliver the same results for any order
in which the tuples are arranged in the table—also
independent of duplicates if these are present. (Of
course, ‘same results’ here means results that are equal
in terms of set equality.) For instance, the select and
project operators of relational algebra, traditional ag-
gregates and continuous count are legal operators on
Codd’s relations, since their results do not depend on
the order of tuples. However, continuous sum, or con-
tinuous averages, is not a valid operator on a Codd’s
relation since it produces results that depend on the
order in which the tuples are arranged (if they are not
identical).

Union and Cartesian product are monotonic with
respect to set containment and amenable to nonblock-
ing implementations. Set difference R − S is instead
antimonotonic and blocking with respect to its second
argument. In fact no result can be returned for R− S

until the last tuple of S is known. Therefore, query op-
erators such as R− S should be avoided in expressing
continuous queries on a data streams S. We explore
the crippling effects of this limitation in the next sec-
tion.

4.1 Relational Algebra

A complete set of operators for relational algebra con-
sists of the following operators: RA = {∪, ⊲⊳, σ,Π,−}.
The monotonic (i.e., nonblocking ) operators of rela-
tional algebra will be denoted NB-RA, where NB-RA
= {∪, ⊲⊳, σ,Π}.

The class of queries expressible by RA (and many
equivalent query languages) is called FO queries [3].
Let NB-FO denote the monotonic queries in FO.
But some monotonic functions in FO are expressed
using set difference, an operator not in NB-RA.
For instance, the intersection of two relations R1

and R2, a monotonic operation, can be expressed
as: R1 ∩ R2 = R1 − (R1 − R2). On the other
hand intersection is in NB-RA, since it can also be
expressed as the natural join of its operands. But the
conclusion is different for the coalesce and until

queries discussed next.

Coalesce and Until We have a temporal domain,
closed to the left and open to the right, which we
will represent using nonnegative integers, originating
at zero. (While examples are simpler with integers,

any totally ordered temporal domain will do as well.)
We use predicate p(I, J) , with I < J, to denote that
the property p holds from point I, included, till point
J, excluded. Thus, we use intervals closed to the left
and open to the right. Our database consists of an
arbitrary number of p facts, and of some q facts that
use a similar interval-based representation. Then, the
temporal-logic query p Until q is true when there exists
a q(I, J) where p holds for every point before I. This
query can be expressed in several ways [7, 9, 23]. Ex-
ample 1 expresses it using non-recursive Datalog rules,
that first coalesce the p intervals and then check if
there is any interval that spans from 0 to the begin-
ning of some q (second rule).

The bottom rule in Example 1 defines cep(K) to
hold for the ‘covered end points’ of intervals: i.e.,
when K is the endpoint of some interval that is con-
tained in some other interval p(I, J). The next rule
from the bottom defines broken intervals as follows:
broken(I1, J2) holds true if (i) I1 is the start-point
of some interval, (ii) J2 is the endpoint of an interval
to its right, and (iii) there is a break point between
the two in the form of the endpoint K that is not cov-
ered, i.e., ¬cep(K). This break excludes (I1, J2) from
the coalesced intervals. Indeed, the third rule from the
bottom defines coalesced intervals as those that satisfy
conditions (i) and (ii), but are not broken.

Example 1 Until (pUq) & Coalesce (coalscp)

pUq(yes) ← q(0, J).
pUq(yes) ← coalscp(0, I), q(J, ), I ≥ J.

coalscp(I1, J2) ← p(I1, J1), p(I2, J2), J1 < J2,

¬broken(I1, J2).
broken(I1, J2) ← p(I1, J1), p(I2, J2), p( , K),

J1 ≤ K, K < I2,¬cep(K).
cep(K) ← p( , K), p(I, J), I ≤ K, K < J.

The safe non-recursive Datalog program of Exam-
ple 1 can be translated into an RA expression on the
two relations P and Q, representing, respectively, the
p facts and the q facts. The resulting RA expression
uses set difference to implement negation. This pro-
gram and its RA equivalent defines the two queries pUq
and coalscp, the first on P and Q and the second on P
only. We will refer to them as the coalesce query and
the until query, and observe that they are monotonic.
Indeed, as we add new intervals to P, we obtain all the
old intervals in coalscp and possibly some new ones.
For pUq, as we add new intervals to P and/or Q, the
answer could change from an empty set to a singleton
set containing ‘yes‘ but never the other way around.

However, while the coalesce query and the until
queries are in NB-FO, they cannot be expressed in
NB-RA:

Proposition 3 The coalesce and until queries cannot
be expressed in NB-RA.
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Proof Sketch: Let P be the table containing the inter-
vals to be coalesced. By selection and projection on
the Cartesian product of P with itself n − 1 times, we
can express the coalescing of up to n intervals from P.
But P can contain an arbitrary number of intervals. ¤

Meanwhile, we observe that this problem can be
solved using NB-RA with recursion. Here is a solu-
tion:

pUq(yes) ← q(0, J).
pUq(yes) ← coalscp(0, I), q(J, ), I ≥ J.

coalscp(I, J) ← p(I, J).
coalscp(I1, J2) ← coalscp(I1, J1), coalscp(I2, J2),

J1 ≥ I2.

SQL-NB We next consider NB-SQL, i.e., the non-
blocking subset of SQL-2 that can be used for writing
queries on data streams. We need to exclude nonmono-
tonic constructs, such as except, not exist, not

in and all. Moreover all the standard SQL-2 aggre-
gates, must be left out because they are blocking. The
surprising conclusion is that expressive power of NB-
SQL is the same as NB-RA, although SQL can express
more monotonic queries than RA. In fact, some queries
expressed using aggregates are monotonic. For in-
stance, Example 2, below, computes from empl(EmpNo,

Sal, DeptNo) all the departments where the sum of em-
ployee salaries exceeds a given constant C.

Example 2 Departments where the sum of employee
salaries exceeds C. Assume Sal > 0.

SELECT DeptNo
FROM empl
GROUP BY DeptNo

HAVING SUM(empl.Sal) > C

This is obviously a monotonic query, insofar as the
introduction of a new empl can only expand the set
of departments that satisfy this query; however this
sum query cannot be expressed without the use of ag-
gregates. The problem of the blocking SQL queries
has long been recognized by data stream researchers,
who have proposed the use of devices such as punctu-
ation [32] and windows [21] to address this problem.
While these approaches deal effectively with important
aspects of the problem, they do not solve the expressiv-
ity problems discussed so far. For instance, punctua-
tion and windows cannot be used to implement queries
of Example 1 or Example 2 unless some external con-
straints can be used to turn these blocking queries into
nonblocking queries (such as, bounds on the maximum
number of employees in a department).

One approach to remedy these problems consists in
allowing the programmer to use nonmonotonic con-
structs but exclusively to write monotonic queries.
Then, the queries of Example 1 or Example 2 will be
allowed and the loss of expressive power is avoided.
Unfortunately, this approach is practically attractive

only if the compiler/optimizer is capable of recognizing
monotonic queries, and thus warning the user when a
certain query is blocking and thus cannot be used as a
continuous query. Unfortunately, deciding whether a
query is monotonic can be computationally intractable
and can also depend on information, such as empl.Sal

>0, which is obvious to the user but not the optimizer.
A better approach is to introduce new monotonic

operators to extend the NB-power of the query lan-
guage. For instance, a natural extensions could be to
add least fixpoint (LFP) operators to relational alge-
bra, or equivalently, recursion constructs could be used
in SQL [3]. LFP operators and recursive constructs are
monotonic and they extend the power of RA or SQL
to enable the expression of all DB-PTime queries [3].
However, it is not clear whether NB-RA+LFP, or NB-
SQL with recursion, are NB-DB-PTime complete—
i.e. capable of expressing all monotonic queries in
DB-PTime. Although the coalesce and until query
can be easily expressed in NB-RA+LFP, we do not
have a general answer for this interesting theoretical
question. We will leave this question for later investi-
gations, since it is not of urgent practical importance,
given that, in the past, recursive SQL queries have
not proven very useful for sequence queries and min-
ing queries. In this paper, we instead champion a very
practical approach based of monotonic user-defined ag-
gregates that deliver much higher levels of expressive
power, not only in theory, but also in practice, as
demonstrated in applications such as punctuated data
streams, sequence queries, and mining queries.

5 User-Defined Aggregates

User Defined Aggregates (UDAs) are important for
decision support, stream queries and other advanced
database applications [8, 18, 12]. ATLAS [33] and
ESL [18] adopt from SQL-3 the idea of specifying a
new UDA by an INITIALIZE, an ITERATE, and a TER-

MINATE computation; however, ATLAS and ESL let
users express these three computations by a single pro-
cedure written in SQL—rather than by three proce-
dures coded in procedural languages as prescribed by
SQL-31. Example 3 defines an aggregate equivalent to
the standard avg aggregate in SQL. The second line
in Example 3 declares a local table, state, where the
sum and count of the values processed so far are kept.
Furthermore, while in this particular example, state

contains only one tuple, it is in fact a table that can
be queried and updated using SQL statements and can
contain any number of tuples. These SQL statements
are grouped into the three blocks labeled, respectively,
INITIALIZE, ITERATE, and TERMINATE. Thus, INITIAL-

IZE inserts the value taken from the input stream and

1Although UDAs have been left out of SQL:1999 specifica-
tions, they were part of early SQL-3 proposals, and supported
by some commercial DBMS.
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sets the count to 1. The ITERATE statement updates
the tuple in state by adding the new input value to the
sum and 1 to the count. The TERMINATE statement
returns the ratio between the sum and the count as the
final result of the computation by the INSERT INTO RE-

TURN statement2. Thus, the TERMINATE statements
are processed just after all the input tuples have been
exhausted.

Example 3 Defining the standard AVG

AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}
TERMINATE : {

INSERT INTO RETURN
SELECT tsum/cnt FROM state;

}
}

Observe that the SQL statements in the INITIALIZE,
ITERATE, and TERMINATE blocks play the same role as
the external functions in SQL-3 aggregates. But here,
we have assembled the three functions under one pro-
cedure, thus supporting the declaration of their shared
tables (the state table in this example). This table is
allocated just before the INITIALIZE statement is exe-
cuted and deallocated just after the TERMINATE state-
ment is completed. This approach to aggregate defini-
tion is very general. For instance, say that we want to
support tumbling windows of 200 tuples [8]. Then we
can write the UDA of Example 4, where the RETURN

statements appear in ITERATE instead of TERMINATE.
The UDA tumble avg, so obtained, takes a stream of
values as input and returns a stream of values as out-
put (one every 200 tuples). While each execution of
the RETURN statement produces here only one tuple,
in general, the UDA can return several tuples. Also
observe that UDAs are allowed to declare local tables
and apply arbitrary select and update actions on these
tables, including the use of built-in and user-defined
aggregates (possibly in a recursive fashion) [1, 18].

Thus UDAs operate as general stream transform-
ers. Observe that the UDA in Example 3 is blocking,
while that of Example 4 is nonblocking. Thus, non-
blocking UDAs are easily and clearly identified by the
fact that their TERMINATE clauses are either empty or
absent. The typical default implementation for SQL
aggregates is that the data are first sorted according
to the GROUP-BY attributes: thus the very first op-
eration in the computation is a blocking operation.

2To conform to SQL syntax, RETURN is treated as a virtual
table; however, it is not a stored table and cannot be used in
any other role.

Instead, ESL uses a (nonblocking) hash-based imple-
mentation for the GROUP-BY (or PARTITION-BY) calls
of the UDAs [18]. The semantics of UDAs therefore
is based on sequential execution whereby the input se-
quence or stream is pipelined through the operations
specified in the INITIALIZE and ITERATE clauses: the
only blocking operations (if any) are those specified in
TERMINATE, and these only take place at the end of
the computation.

Example 4 AVG on a Tumble of 200 Tuples

AGGREGATE tumble avg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1)}

ITERATE: {
UPDATE state

SET tsum=tsum+Next, cnt=cnt+1;
INSERT INTO RETURN

SELECT tsum/cnt FROM state
WHERE cnt % 200 = 0;

UPDATE state SET tsum=0, cnt=0
WHERE cnt % 200 = 0

}
TERMINATE : { }

}
UDAs can be called and used in the same way as

any other built-in aggregate. For instance, say that we
are given a stored sequence (or an incoming stream)
of purchase actions:

webevents(CustomerID, Event, Amount, Time)

Since UDAs process tuples one-at-a-time (as the
cursor mechanism used by programming languages to
interface with SQL) they dovetail with the physically-
ordered sequence model, and can also express well the
search for pattern in sequences. Say for instance that
we want to find the situation where users, immediately
after placing an order, ask for a rebate and then can-
cel the order. Finding this pattern in SQL requires
two selfjoins to be computed on the incoming stream
of webevents. In general recognizing the pattern of n

events would require n − 1 joins and queries involv-
ing the joins of many streams can be complex to ex-
press in SQL, and also inefficient to execute. Also the
notion that a tuple must immediately follow another
tuple is complex to formulate in SQL. UDAs can be
used to solve these problems. For instance, say that
we want to detect the pattern of an order, followed
a rebate, and then, immediately after that a cancel-
lation. Then the following nonblocking UDA can be
used to return the string ’pattern123’ with the Cus-
tomerID whose events have just matched the pattern
(the aggregate will be called with the group-by clause
on CustomerID). This UDA models a finite state ma-
chine, where 0 denotes the failure state, which is set
whenever the right combination of current-state and
input is not observed. Otherwise, the state is first set
to 1 and then advanced till 3, where ’pattern123’ is
returned, and the computation continues.
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Example 5 First the order, then the rebate and fi-
nally the cancellation

AGGREGATE pattern(Next Char) : Char
{ TABLE state(sno Int);

INITIALIZE : {
INSERT INTO state VALUES(0);
UPDATE state SET sno = 1

WHEN Next=’order’;}
ITERATE: {

UPDATE state SET sno = 0
WHERE NOT(sno = 1 AND

Next = ’rebate’)
AND NOT(sno = 2 AND Next = ’cancel’)
AND Next <> ’order’

UPDATE state SET sno = 1
WHERE Next=’order’;

UPDATE state SET sno = sno+1
WHERE (sno = 1 AND Next = ’rebate’)

OR(sno = 2 AND Next = ’cancel’)
INSERT INTO RETURN

SELECT ’pattern123’ FROM state
WHERE sno = 3;

}
}

Very often, the input order of sequence elements is
the same as their production order — this fits the de-
sign of UDAs naturally. In [28], Seshadri et al. showed
an example of query that asks for the 3-day average of
the close of IBM stock values when the value of DEC
is greater than that of HP. In the following example,
the UDA only needs to store the last three-day values
for IBM and compares the values of DEC and HP to
see whether the average should be output. Note that
it is easy to generalize the expression using UDA to
compute n-day average using state to store last n-day
values of IBM.

Example 6 3-day average for IBM when DEC>HP

AGGREGATE 3DayAve(ibm Real,dec Real,hp Real):Real
{ TABLE state(st Int, nd Int, rd Int,tcnt Int);

INITIALIZE : {
INSERT INTO state VALUES (0, 0, ibm, 1)}
INSERT INTO RETURN

SELECT third/tcnt FROM state
WHERE dec>hp;}

ITERATE: {
UPDATE state

SET st=nd, nd=rd, rd=ibm;
UPDATE state

SET tcnt=tcnt+1
WHERE tcnt<3;

INSERT INTO RETURN
SELECT (st+nd+rd)/tcnt FROM state
WHERE dec>hp;

}
TERMINATE : { }

}

UDAs are also suitable for punctuated data streams
[32]. When an input arrives, the UDA needs to com-
pute the results, store the state and output based on
punctuation. In Example 7, we want to output the av-
erage stock value of each company when we receive its

closing value tuple which is a punctuation indicating
that no more tuple of this company will arrive. We use
the table state to store the summary (sum and count)
of each company which is the minimal amount of in-
formation that we should store for further computa-
tions. Upon detection of a punctuation mark indicat-
ing the arrival of the closing-value tuple (with condi-
tion close=1), we return the average for this company.

Example 7 Output average price for each company
when closing price tuple enters

AGGREGATE CoSum(cid Int,price Real,close Int):Real
{ TABLE state(tcid Int, tsum Int,tcnt Int);

INITIALIZE : {
INSERT INTO state VALUES (cid, price, 1);}

ITERATE: {
UPDATE state

SET tsum=tsum+price, tcnt=tcnt+1;
WHERE tcid=cid;

INSERT INTO state
SELECT cid, price, 1 FROM state
WHERE cid NOT IN (

SELECT tcid FROM state);
INSERT INTO RETURN

SELECT tsum/tcnt FROM state
WHERE tcid=cid AND close=1;

}
TERMINATE : { }

}

Therefore UDAs, unlike traditional SQL, are well-
suited to supporting state-based reasoning and queries,
as needed in sequence and data stream applications.
The use of UDAs to support the mining of data
streams is discussed in [18]. In the next section, we
show that UDAs are able to express the ultimate state
machine: a Turing machine. Readers who are primar-
ily interested in the applications of this theoretical re-
sult to data streams can proceed directly to Section 7,
where we discuss the NB-completeness of monotonic
UDAs and their benefits in data stream applications.

6 Completeness on DB Relations

Turing completeness is hard to achieve for database
languages [3]. In particular, SQL is not Turing com-
plete, and thus not capable of expressing all data-
intensive applications. The power of a query language
is defined as the class of functions it can express on
(an input tape encoding) the database [3]. We will
next show that UDAs can compute an arbitrary query
function encoded as a Turing machine.

A Turing Machine is defined by a tuple M =
(Q,Σ,Υ, δ, q0, !, F ), where Q is a finite set of states,
Σ ⊆ Υ is a finite set of input symbols, Υ is a finite set
of tape symbols with Q ∩ Υ = φ, ! ⊆ Υ − Σ is a re-
served symbol representing the blank symbol, q0 ⊆ Q

is an initial state, F ⊆ Q is a set of accepting or final
states, δ : Q × Υ → Q × Υ × {1, 0,−1} is a transition
mapping where 1,0,-1 denote motion directions.

499



In our implementation, a user may define a Tur-
ing Machine by giving four elements: a transition
map(E1), accepting states(E2), a tape containing the
input(E3) and an initial state(E4). With UDA, we
put E1 into a table called transition. E2 is put into
table accept. E3 is put into table tape, which uses
an attribute called pos to memorize the position of
each symbol in the tape. Also, there is a table called
current, which stores the current state, the current
symbol and its position on the tape during each iter-
ation. At the first iteration, the initial state (E4) and
the leftmost symbol on the tape (pos=0) are put into
current.

For each iteration, a tuple of current is passed to
a UDA called turing. If the transition function is de-
fined for the (state, symbol) pair, we obtain the next
state, the new symbol and the motion direction for the
tape head. Then, the symbol pointed by the tape head
is replaced by the new symbol. We move the head to
the next position, which is given by pos + move. If
it is a non-existing position on the tape, a new blank
symbol is inserted at that position. Then, the updated
tuple is inserted into current which is then passed to
the UDA turing for the next iteration. The above
procedures are repeated until the transition function
δ is not defined for some (state, symbol) pair. In this
case, the machine halts and checks whether the cur-
rent state is an accepting state or not, based on the
list of accepting states in table accept.

The following is the implementation of a Turing Ma-
chine using UDAs.
TABLE current(stat Char(1), symbol Char(1), pos Int);
TABLE tape(symbol Char(1), pos Int);
TABLE transition(curstate Char(1), cursymbol Char(1),

move int, nextstate Char(1), nextsymbol Char(1));
TABLE accept(accept Char(1));
AGGREGATE turing(stat Char(1), symbol Char(1),

curpos Int) : Int
{ INITIALIZE: ITERATE: {

/*If TM halts, return 1/0(accept/reject)*/
INSERT INTO RETURN

SELECT R.C
FROM (SELECT count(accept) C

FROM accept A
WHERE A.accept = stat) R

WHERE NOT EXISTS (
SELECT * FROM transition T
WHERE stat = T.curstate

AND symbol = T.cursymbol);
/* write tape */
DELETE FROM tape

WHERE pos = curpos;
INSERT INTO tape

SELECT T.nextsymbol, curpos
FROM transition T
WHERE T.curstate = stat

AND T.cursymbol = symbol;
/* add blank symbol if necessary */
INSERT INTO tape

SELECT ’ !’, curpos + T.move
FROM transition T
WHERE T.curstate = stat

AND T.cursymbol = symbol
AND NOT EXISTS (

SELECT * FROM tape
WHERE pos = curpos + T.move);

/* move head to the next position */
INSERT INTO current

SELECT T.nextstate, A.symbol, A.pos
FROM tape A, transition T
WHERE T.curstate = stat

AND T.cursymbol = symbol)
AND A.pos=curpos+T.move;}}

INSERT INTO current
SELECT ’p’, A.symbol, 0
FROM tape A WHERE A.pos = 0;

SELECT turing(stat, symbol, pos) FROM current;

In the following, we implement a Turing Machine
to find the maximum among the input numbers. The
maximum will be stored back into the tape.

Example 8 Turing Machine for finding the maxi-
mum

Let M = (Q, {0, 1}, {0, 1, 2, 3, !}, δ, p, !, {}) be a Turing
Machine for finding the maximum where δ is given by
Table 1. For simplicity, we assume that each number
is an integer. Then we represent them in unary, i.e.
i ≥ 0 is represented by the string 0i. These integers are
placed on the input tape separated by 1’s. The idea of
this machine is to repeatedly compare the two left most
integers in the input tape and to store the largest one
back into the input tape. When the machine halts, we
eliminate all symbols but 0’s to extract the integer(in
unary) in the input tape as the output of the query,
which is the maximum number.

0 1 2 3 !

p q, 2, 1 u, !, 1 p, !, 1

q q, 0, 1 r, 1, 1 q, !, 1

r s, 3,−1 t, 1,−1 r, 3, 1 t, !,−1

s s, 0,−1 s, 1,−1 p, 2, 1 s, 3,−1 s, !,−1

t w, 0,−1 t, !,−1 t, 0,−1 t, !,−1 t, !, 1

u u, 0, 1 v, 1,−1 u, 0, 1

v v, 0,−1 p, !, 1

w w, 0,−1 w, o,−1 p, !, 1

Table 1: Transition mapping δ for finding the maxi-
mum.

In the previous section, we have shown that UDA
can express any function encoded in arbitrary input
tape. A simple UDA can be used to encode a given
table and then, on its terminate state call the UDA
that performs the actual computations. For several ta-
bles we can let the various UDAs write into the same
input tape, with the last UDA calling the actual com-
putation. But such an encoding of one or more tables
into an input tape is a blocking computation. For con-
tinuous queries we seek nonblocking computations on
one or more data streams. These are discussed next.
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7 Completeness on Data Streams

According to [13], ‘queries over streams run continu-
ously over a period of time and incrementally return
new results as new data arrive.’ In the following, we
will show how to compute a query over streams. We
will focus on monotonic functions as they are the only
continuous queries supported on data streams.

Every monotonic function F on an input data
stream can be computed by a UDA that uses three
local tables, called IN , TAPE, and OUT , and per-
forms the following operations for each new arriving
tuple:

1. Append the encoded new tuple to IN ,

2. Copy IN to TAPE, and compute F (IN)−OUT

as described in Section 5,

3. Return the result obtained in 2 and append it to
OUT .

Since these operations are executed on each arriving
new tuple, they are performed in the iterate state
of the UDA, which is therefore nonblocking. Thus,
every monotonic function on a single data stream can
be computed by a nonblocking UDA.

However, the situation is more complex for multi-
ple data streams, since these need to be merged into
a single stream before UDAs can be applied. For in-
stance, the operator used in SQL:1999 for computing
the union, R1 ∪R2 of the ordered relations R1 and R2

while preserving duplicates cannot be used. In fact,
this operator will list all the tuples in R1 before the
tuples in R2. Thus this operator is blocking with re-
spect to its first argument. We instead need operators
that merge the two streams by assuring not only fair-
ness, but also minimizing the delay across streams. To
achieve this timestamps are needed and then the union
operator can be defined that union-merges these mul-
tiple streams into one by their timestamps.

Therefore we now consider explicitly timestamped
data streams and time-series sequences, where tuples
are explicitly ordered by increasing values of their
timestamps. 3 We begin with notion of τ -presequence
defined as the sequence of tuples up to a given times-
tamp τ :

Definition 5 Presequence: Let S and R be two se-
quences ordered by their timestamp. Rτ is defined
as the set of tuples of R with timestamp less than
or equal to τ > 0. If S = Rτ for some τ , then
S is said to be a presequence of R, denoted S ⊑t

R. In general, let S1, ..., Sn and R1, ..., Rn be times-
tamped sequences. (S1, ..., Sn) ⊑t (R1, ..., Rn) when
(S1, ..., Sn) = (Rτ

1
, ..., Rτ

n) for some τ .

3Similar considerations can be made to arbitrary logically or-
dered sequences, where tuples are arranged and visited sequen-
tially according to an ordering key consisting of one or more
attributes.

Then the notion of monotonicity can also be de-
fined naturally. A unary operator G is monotonic if
L1 ⊑t S1 implies G(L1) ⊑t G(S1). A binary opera-
tor H is monotonic when (L1, L2) ⊑

t (S1, S2) implies
H(L1, L2) ⊑t H(S1, S2).

In operational terms, S ⊑t R can be viewed as a
statement that R was obtained from S = Rτ by ap-
pending some additional tuples with timestamps larger
than those in S: for instance, S might be the stream
received up to time τ , and R the stream received after
waiting a little longer i.e., up to time τ ′ > τ .

For τ = 0, Sτ = ∅ is an empty sequence. Let Ω(S)
denote the largest timestamp in S (0 if S is empty).
A query operator is said to be null when it returns the
empty sequence for every possible value of its argu-
ment(s).

Then, the notion of nonblocking operators on logical
sequences can be defined as follows:

Definition 6 Nonblocking.

• A nonnull unary operator G is said to be non-
blocking, when Gτ (S) = G(Sτ ), for every τ .

• A nonnull binary operator G is said to be non-
blocking, when, Gτ (L, S) = G(Lτ , Sτ ), for every
τ .

We can then show that functions on logically ordered
sequences can be implemented by nonblocking opera-
tors iff they are monotonic w.r.t. ⊑t. It also follows
that only blocking implementations are possible for an
operator that computes the difference of two streams,
since difference is antimonotonic on its second argu-
ment.

The previous notions lead to natural generaliza-
tions for selection, projection and union; suitable
generalizations of Cartesian product and join are also
available [5] but they are outside the scope of this
paper (since they are not needed for the completeness
of our language). For union we have:

Union. Let ∪τ denote the stream transducer im-
plementing union. ∪τ returns, at any given time τ ,
the union of the τ -presequences of its inputs:

L ∪τ S = Lτ ∪ Sτ

In the following example, we demonstrate how to
express a query using Union and UDA. Consider two
streams of phone-call records:

StartCall(callID, time);
Endcall(callID, time);

The stream StartCall is used to record a starting
time of each call with its ID, while the stream EndCall

is used to record a finishing time of each call with its
ID. Given the above two streams, we are interested in
finding the length of each call. Instead of joining two
streams, we first union them together: CallRecord,
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which is sorted by the arrival timestamp. Moreover,
we use a tag to indicate which stream does each tuple
come from. Tuples are grouped by different callID
group.

Example 9 Compute the length of each call.

SELECT callID, length(time, tag) AS CallLength,
FROM

( SELECT callID, time, ’start’
FROM StartCall
UNION ALL
SELECT callID, time, ’end’
FROM EndCall) AS

CallRecord (callID, time, tag)
GROUP BY callID;

The UDA length is used to compute the difference
between the starting time and finishing time. We de-
sign this UDA to handle all the arrival ordering. This
UDA is shown below:

AGGREGATE length(time, tag) : (CallLength)
{ TABLE state(ttime);

INITIALIZE: ITERATE :{
INSERT INTO state VALUES(time);
INSERT INTO RETURN

SELECT time-ttime FROM state
WHERE tag=’end’;

INSERT INTO RETURN
SELECT ttime-time FROM state
WHERE tag=’start’;}}

We can now show the completeness of languages
supporting union operators and nonblocking UDAs
on data streams, in the sense that they can express
every monotonic function on their input.

NB UDAs: NB-UDAs are those where the termi-

nate state is empty or missing.

Proposition 4 NB-Completeness. Every com-
putable monotonic function on timestamped data
streams can be expressed using NB-UDAs and union.

From a formal viewpoint, these results can be ex-
tended to physically ordered data streams by simply
viewing sequence numbers as time stamps (then, ⊑ be-
comes a special case of ⊑t). The problem is that tuples
from two streams that have the same sequence number
could have arrived at very different times. Therefore
most systems and users prefer the solution of merging
the tuples of two streams according to the order in
which they are actually processed. This is equivalent
to viewing them as logically ordered streams where the
time stamp is the current time at the point in which
the tuples are processed for union.

8 Conclusions

Data streams require significant changes in traditional
DB technology. This paper is the first to propose
a formal analysis of how query languages and also
data models are impacted by these changes, to pro-
pose practical solutions for the resulting problems. We
studied how traditional models, where data is viewed
as unordered sets of tuples, can be enriched with (phys-
ical and logical) ordering, and the notion of set con-
tainment can be generalized to the new framework.
While data streams bring enrichments to data models,
they bring restrictions to the query languages since
they require nonblocking queries.

We characterized nonblocking queries as monotonic
queries, and introduce the notion of NB-completeness
that characterize the expressive power hierarchies for
continuous query languages on data streams. We thus
proved that RA and SQL are no longer complete for
nonblocking queries (exacerbating limitations which
had already surfaced with data mining and sequence
queries). To solve this problem, we proposed the
use of UDAs, a native extensibility mechanism that
makes SQL Turing-complete on stored data. For data
streams, we introduced the notion of NB-completeness
for query languages capable of expressing all func-
tions computable via nonblocking procedures; then we
showed that any query language supporting UDAs and
nonblocking union is NB-complete. Of course, this
is not to suggest that practical continuous query lan-
guages, such as the ESL language we are implementing
[18], only need these two constructs. Practical data-
streams languages should support SQL, and additional
constructs needed for data streams, such as logical and
physical windows [4]. (For instance, ESL also sup-
ports windows on UDAs [18]). But there are situations
where the additional power of UDAs becomes critical:
these situations include data mining functions [33], se-
quence queries [25], and special situations where more
control is needed to minimize the use of memory [18].
The fact that the notion of UDAs is fully compatible
with the syntax and semantics of existing prototypes,
and they already part of some systems [8, 18], enhances
the practical import of the theoretical findings summa-
rized in this extended abstract.
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