
Returning Modified Rows – SELECT Statements with Side Effects

Andreas Behm, Serge Rielau, Richard Swagerman

IBM Toronto Lab
8200 Warden Avenue

Markham, ON
Canada

{abehm, srielau, swagrman}@ca.ibm.com

Abstract
SQL in the IBM® DB2® Universal Database™
for Linux®, UNIX®, and Windows® (DB2
UDB) database management product has been
extended to support nested INSERT, UPDATE,
and DELETE operations in SELECT statements.
This allows database applications additional
processing on modified rows. Within a single
unit of work, applications can retrieve a result set
containing the modified rows from a table or
view modified by an SQL data-change operation.
This eliminates the need to select the row after
an INSERT or UPDATE, or before a DELETE
statement. As a result, fewer network round trips,
less server CPU time, fewer cursors, and less
server memory are required. In addition,
deadlocks can be avoided. The proposed
approach is integrated with the set semantics of
SQL, and does not require any procedural logic
or modifications on the underlying relational data
model. Pipelining multiple update, insert and
delete operations using the same source data
provides a very efficient way for multi-table
data-change statements typically found in ETL
(extraction, transformation, load) applications.
We demonstrate significant performance benefit
with our experiences in the TPC-C benchmark.
Experimental results show that the new SQL is
more efficient in query execution compared to
classic SQL.

1. Introduction
Commercial DBMS vendors constantly extend the SQL
query language to address emerging business demands for
increasing functionality and improving performance. One
aspect of new features is to push more processing into the
database engine. While most language extensions apply to
data retrieval, extending UPDATE, DELETE, and
INSERT statements (henceforth called data-change
statements) has found less attention.

Prominent language extensions in the context of data-
change statements are triggers, MERGE statement,
identity columns using sequences, expression-generated
columns, and default values. Modern RDBMS can use
these features to produce surrogate keys. In doing so it
becomes apparent that a way needs to be found to retrieve
data back from data-change statements, which
traditionally only provide a very limited set of
information. The information returned today is usually
limited to the number of rows changed.

Another area where performance of data-change
statements plays a key role is a data-cleansing
environment, where large quantities of data need to be
imported into the RDBMS. The data needs to be
processed efficiently in several phases, and dispatched
into the appropriate tables such as fact and dimension
tables in a star-schema scenario.

There are band-aid solutions in the industry today,
which allow the return of specific properties. Examples
include functions to return the last generated
identity_value or sequence value to retrieve generated
primary keys. Other more general solutions allow for
returning data back into the procedural context using
temporary tables or set-valued host variables.

We found that the problem of returning data from
data-change statements needs to be solved in a more
holistic and set-oriented fashion. A general, more
relational approach needs to address more complex
scenarios such as data cleansing in addition to covering
the simple cases described above.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

987

One of the challenges the authors faced was to
maintain the spirit of the relational model within the
context of standard SQL while allowing for optimal
performance through pipelining and parallelization.

In the following sections, we propose a fairly small set
of changes SQL, which result in a major extension to the
expressive power of SQL. The changes include:

• The exposure of the NEW and OLD
transition table as defined for SQL statement
triggers in the FROM clause of an SQL
SELECT statement.

• A definition of the order of execution for
nested queries.

• An extension of the column lists for data-
change statements using an include clause.

These three simple changes allow data-change
statements to fully integrate with the select statement and
hence exploit the expressive power of SQL.

The structure of this paper is as follows. Section 2
introduces our major SQL extensions. In Section 3 we
discuss how we approached the implementation of the
new statement type. We demonstrate a pipelining
mechanism for update, delete and insert operations in
Section 4, which leads to significant performance benefit
for multi-table data-change statements. In Section 5 we
discuss our experiences with the new SQL in the TPC-C
benchmark, and the performance benefit of OLTP
applications. Related approaches for returning modified
data are discussed in Section 6. Section 7 provides a
conclusion.

2. SQL Changes
In this section, we introduce the SQL extensions for data-
change statements. We show how insert, update, or
delete operations can be embedded in the from clause
of a select statement. We enhance common table
expressions to provide a way for embedding multiple
data-change operations within one SQL statement.
Finally, we introduce modifying table functions, which
allow more complex scenarios for returning modified
data. All language extensions introduced in this chapter
are available in DB2 UDB for Linux, UNIX, and
Windows Release 8.1.4. The complete new SQL can be
found in the SQL Reference [5].

Select From Data-Change Statement

In the simplest form, an SQL data-change statement is
characterized as a select statement having an insert,
update or delete operation embedded in the from
clause. The columns of the target object of the specified
SQL data-change statement are considered the columns of
this intermediate result table and can be referenced by
name in the select list of the query.

create table orders (
 purchase_date date,
 sales_person varchar(16),
 region varchar(10),
 quantity varchar,
 order_num integer not null
 generated always as identity
 (start with 100, increment by 1))

select * from new table
 (insert into orders
 (pdate, salesp, region, quantity)
 values
 (current date,’Judith’,’Beijing’,6),
 (current date,’Marieke’,’Medway’,5),
 (current date,’Hanneke’,’Halifax’,5))

PDATE SALESP REGION QUANT ONUM
----------- -------- --------- ------ ----
12/22/2003 Judith Beijing 6 100
12/22/2003 Marieke Medway 5 101
12/22/2003 Hanneke Halifax 5 102

Note that the syntax of the insert statement is not
changed by this approach. The insert operation is
wrapped in a from clause to indicate that the
intermediate result table represented by the inserted rows
should be returned. A data-change-table-reference can be
specified as the only table-reference in the from clause
of the outer fullselect that is used in a select-statement, a
select into statement, a common-table expression,
or as the only fullselect in an assignment statement. To
execute select from data-change statements, the user must
have the proper SQL authorization. For example, to
perform a select from insert statement on a table
ORDERS, the user would have to hold both, select and
insert privileges on the ORDERS table.

The contents of the intermediate result table
dependend on the qualifier specified in the from clause.
If old table is specified, the rows in the intermediate
result table will contain values of the target table rows at
the point immediately preceding the execution of before
triggers and the SQL data-change operation. For the new
table qualifier, the rows in the intermediate result table
will contain values of the target table rows at the point
immediately after the SQL data-change statement has
been executed, but before referential integrity evaluation
and the firing of any after triggers. The old table
qualifier applies to update and delete operations, the
new table qualifier applies to update and insert
operations.

Include Columns

We introduce the concept of include columns, which
allows you to specify additional columns that do not exist
in the target table of a select from data-change statement.
These additional columns are available for use in the
select list or order by clause of the query

988

containing the SQL data-change statement in the from
clause, but have no effect on the SQL data-change of the
target table. One typical example for using include
columns is to provide a way for update statements to
return both, the new and the old value of a column. The
following select from update statement defines an include
column old_salary, and assigns the salary value to
old_salary in the set clause of the update
operation. Additional examples can be found in chapter 4
and the IBM TPC-C disclosure report [9].

create table employee (
 ssn char(10), salary integer);
insert into employee values
 (‘1234567890’, 90000);

select * from new table
 (update employee
 include (old_salary integer)
 set old_salary = salary,
 salary = salary * 1.2);

ssn salary old_salary
---------- -------- ----------
1234567890 108000 90000

Views

Special care needs to be taken when the target of a
select from data-change statement is a view containing a
where clause. A view containing a where clause in its
definition is by default non-symmetric. That is, a row
modified by an insert or update operation does not
need to remain in the view. In contrast, a symmetric view
is defined by specifying the with cascaded check
option clause during the creation of the view, which
indicates that an inserted or updated row has to remain in
the view after the modification [4].

Non-symmetric views pose a security issue for select
from data-change statements if, for example, a before
trigger of an insert or update operation modifies a
value of the row which should not be seen by the user. We
concluded that non-symmetric views as the target of a
select from data-change statement must satisfy the
restrictions of symmetric views, if the qualifier new
table is used. The following example shows a view
containing employees having a salary less than 100.000,
and a before trigger modifying the salary if the employee
is promoted. The given select from update statement is
rejected because the modified row with the updated salary
(i.e., 108000) does not remain in the view. No row is
updated or returned.

create table employee (
 ssn char(10),
 salary integer,
 ranking integer);

insert into employee values
 (‘1234567890’, 90000, 3);

create trigger promote
before update on employee
referencing old as o new as n for each row
when (n.rank > o.rank)
 set n.salary = n.salary * 1.2;

create view lowemps as
select * from employee
where salary < 100000;

select * from new table (
 update lowemps set rank = rank+1);

Common Table Expressions

In addition to simple select from data-change
statements, we want to support a way to perform multiple
data-change operations within one SQL statement. This is
in particular useful for complex data-change scenarios,
where the result of one data-change operation is used as
input for another one. It allows us to construct better
performing plans, since we can see multiple operations
together when we rewrite and optimize a statement.
Furthermore, it is not necessary to return the result of a
select from data-change statement to the client in order to
use the data as input for another statement.

We use common table expressions for this purpose,
and allow select from data-change statements in the
definition of temporary views in a common table
expression. The main advantage of using common table
expressions for embedding multiple data-change
statements is that the syntax specifies an order for
temporary views, which determines the semantics of
executing a common table expression. All temporary
views are executed in the order they occur in the common
table expression.

In the following example, we illustrate common table
expressions using two tables Employee (EmpNr,
Name) and Project (ProjNr, Name, Lead).
The common table expression replaces an employee ‘Old
Emp’ with a new employee ‘New Emp’, assigns all
projects lead by ‘Old Emp’ to ‘New Emp’, and
returns the names of the updated projects.

989

with
 NewEmp AS (select EmpNr from new table
 (insert into Employee(name)
 values (‘New Emp’))),
 OldEmp AS (select EmpNr from Employee
 where Name = ‘Old Emp’),
 UpProj AS (select Name from new table
 (update Project
 set Lead = (select EmpNr
 from NewEmp))),
 DelEmp AS (select EmpNr from new table
 (delete from Employee
 where EmpNr = (select EmpNr
 from OldEmp)))
select Name from UpProj

Modifying Table Functions

We introduce modifying table functions as another
concept for embedding multiple data-change operations in
a single statement. In contrast to common table
expressions, two additional tasks can be accomplished.
First, the body of a modifying table function can be
defined as a compound statement containing a sequence
of SQL-procedure-statements [5] including data-change
statements. Second, it allows applying a data-change
operation multiple times for a collection of input data, as
shown in the example below. Both features have been
widely used in the implementation of our TPC-C
benchmark [9].

A select statement can contain one modifying table in
the from clause. To guarantee order of execution in case
the from clause contains more than one table reference,
the modifying table function has to be the last table
reference in the from clause, correlated to all other table
references.

The following table function upsal() updates the
salary of an employee, records the salary change in an
audit table, and returns the salary increase. The
subsequent select statement updates the salary using the
upsal() function for three employees.

create function upsal(upeid int,
 factor float)
returns table (increase int)
modifies sql data
return
with i1 as (
select eid, old_salary, salary
 from new table
 (update emp
 include (old_salary int)
 set salary = salary * factor,
 old_salary = salary
 where emp.eid=upeid))
select new_salary-old_salary
from new table (
 insert into audit select
 eid,old_salary,salary from i1);

select sum (increase)
from table (values (1, 1.1),
 (2, 1.2),
 (3, 1.05))
 as upemp(eid,factor),
 table (upsal(upemp.eid,upemp.factor))
 as upsal;

The update effect on the emp and audit table is
equivalent to the following sequence of insert and
update statements:

insert into audit
with i1(eid,factor) as
 (values (1, 1.1),
 (2, 1.2),
 (3, 1.05))
select emp.eid, emp.salary,
 emp.salary * factor
from emp, i1
where emp.eid = i1.eid;

update emp set salary = salary * 1.1
 where eid=1;
update emp set salary = salary * 1.2
 where eid=2;
update emp set salary = salary * 1.05
 where eid=3;

3. Implementation
In this section, we provide a high-level summary of some
of the key design issues we faced during implementation
of the new SQL features. The proposed approach mostly
takes advantage of existing “tooling” within and around
the relational database engine. In the query compiler, we
mostly applied “plug-and-play” of existing infrastructure,
that is, combining constructs used for representing
select statements as well as insert, update and
delete statements. The optimizer is already capable
handling data-change operations in a complex statement
to ensure, for example, that predicates are not pushed
down through data-change operations. We did not need to
implement any changes for the client infrastructure.

The first interesting problem when executing a select
from data-change statement is to get hold on the new and
old values of the rows modified by an insert, update
or delete operation. Fortunately, this functionality has
already been implemented for after statement triggers [3].
An after statement trigger for data-change statements can
access the new and old transition table containing all
modified rows. The following example shows an after
update statement trigger for the emp table. The trigger
inserts the content of both, old and new transition table
into the audit table.

990

create table emp
(eid int, name varchar(10), salary int);
insert into emp values (1, ’Peter’,50000),
 (2, ’Paul’,60000),
 (3, ’Mary’,70000);
create table audit(eid int, salary int);

create trigger audtrig
after update on emp
referencing old_table as old
 new_table as new
for each statement
insert into audit
 select eid,salary from old union all
 select eid,salary from new);

update emp set salary=salary*1.1
where eid<3;

select * from audit;

EID SALARY
----------- -----------
 1 55000
 2 66000
 1 50000
 2 60000

The data flow for select from data-change statements
has to be constructed in a way that either the new or old
transition table is returned to the client instead of flowing
into a trigger.

A table that has been modified by a data-change
operation within a complex statement can be accessed in
the same statement through a subquery or another data-
change operation. Consequently, all read and write
operations on the same data within one statement need to
be synchronized. The infrastructure for handling
read/write conflicts is already required for standard SQL.
For example, a before trigger or an after trigger can
contain a subquery over the target table. The same
concepts have been extended to ensure correct semantics
for select from data-change statements. In the following,
some examples for read/write conflicts are shown.

select c1, (select sum(salary) from emp)
from new table (insert into emp(eid,salary)
 values (1,50000));

with v1 as (select * from new table
 (update emp
 set salary=salary+1000)),
 v2 as (select * from new table
 (update emp
 set salary=salary*1.1))
select * from emp

In the first example, the subquery select
sum(salary) from emp includes the salary 50.000
inserted in the nested insert operation. In the second
example, the table emp is updated twice. First, the salary
is increased by 1000 for each row, the intermediate result
is then multiplied by 1.1. The fullselect select *
from emp returns the final result in the salary
column after executing both update operations.

The most fundamental change in the infrastructure we
made was the execution of select from data-change
statements at runtime. In general, a select statement
returning more than one row is performed using a cursor.
The typical execution of a cursor consists of three
consecutive tasks: declare, open, and fetch. The statement
is compiled when the cursor is declared. In theory,
opening the cursor completes the operation and positions
the cursor on to the first row of the result set. Each row of
the result set can be accessed through the fetch command,
which moves the cursor towards the end of the result set.
However, in practice we are trying to avoid executing a
statement completely at one time, as it requires temporary
storing the result.

Instead, we execute the statement as we fetch the
rows, such that no temporary storage for the result set
needs to be used, unless, for example, the statement
contains an order by clause and the statement needs to
be completely executed in order to determine the first
row.

For select from data-change statements, this strategy
does not work. Any insert, update or delete
operation is an atomic operation which needs to be driven
to completion at one time. Data-change operations cannot
be executed on a row-by-row basis. Instead, they are
processed as follows: first, the before triggers for all
modified rows are performed. Second, all insert, update,
and delete operations are applied. Third, constraints for all
modified rows are checked. Finally, all after statement
triggers are executed.

We have chosen to completely execute select from
data-change statements at cursor open time. This allows
applications to keep X locks for a minimum amount of
time when using cursors specified as with hold, and
committing the transaction right after opening the cursor.
The following example shows typical use of cursors for
select from data-change statements:

declare emp_cur cursor with hold for
 select id from new table
 (insert into emp(name)
 values ‘Peter’, ‘Paul’, ‘Mary’);

open emp_cur;
commit;

fetch emp_cur;
...

991

All X locks are acquired at cursor open time, and
immediately released at commit. The application can then
fetch the result set without blocking other transactions.

We call the execution at cursor open time do-at-open
semantics. In order to achieve do-at-open semantics, we
need to teach the optimizer to include an additional
operator at the top of the generated plan, which is called a
zero-key sort operator. A zero-key sort is a specialized
sort operator where the set of keys is empty. This concept
has several advantages. First, it is an elegant way to drive
execution of a statement to completion using an existing,
slightly modified operator. Second, we are using existing
infrastructure in terms of the sort buffer to efficiently
store the result set. Note that a zero-key sort does not
actually sort any data, it only indicates that runtime has to
drive the execution of the statement to completion.

In the following, we illustrate the do-at-open
semantics using two interleaving transactions T1 and T2
in isolation level uncommitted read. T1 declares a cursor
for a select from insert statement modifying a table emp,
T2 reads the content of table emp. T2 can see all the rows
inserted by T1 as soon as the cursor is opened.

T1 T2
declare emp_cur
cursor for
select id from new table
 (insert into emp(name)
 values ‘Peter’,
 ‘Paul’,
 ‘Mary’);

 select id from emp;
0 rows selected

open emp_cur;
 select * from emp;

1
2
3
3 rows selected

fetch emp_cur;
1
fetch emp_cur;
2
...

Since our approach for returning modified rows makes

use of select statements as the data carrier, no change was
needed for the client infrastructure. Regardless of which
client is used to perform select from data-change
statements, the statement is always considered a select
statement, and the APIs can be used respectively.
Typically, a cursor containing a select from data-change
statement can be declared, and after opening the cursor
the modified rows are available in the result set for fetch.

4. Pipelining
The fact that multiple data-change operations can be
embedded in a single SQL statement gives the compiler a
chance to optimize the data flow between operations. In
this section, we describe how performance of multi-table
data-change statements can be significantly increased
when constructing a plan as a pipeline of insert, update,
and delete operations.

In the following example, we introduce two tables
emp and mgr used as target for insert operations, and a
table src containing some source data for both,
employees and managers.

create table emp (
 eid int not null primary key,
 salary int);

create table mgr (
 eid int not null primary key,
 bonus int);

create table src (
 eid int not null primary key,
 salary int,
 bonus int,
 ismgr char(1));

We are now looking for an SQL statement which
transfers data from the source table to the two target
tables. The first example shows a classic SQL solution
with two insert statements, embedded in an atomic
compound statement. The plan shows that the two
insert statements are executed in sequential order,
reading the data from the source table twice.

begin atomic
insert into emp select eid,salary from src;
insert into mgr select eid,bonus from src
 where ismgr='Y';
end;

 RETURN
 |
 FILTER
 |
 +-------------+---+------------+
TBSCAN INSERT INSERT
 | | |
 | /---+---\ /---+---\
TABFNC: TBSCAN TABLE: TBSCAN TABLE:
GENROW | MGR | EMP
 | |
 TABLE: TABLE:
 SRC SRC

With a common table expression and two nested select

from insert operations, the query can be expressed in a
way that the result of the first insert operation is used as

992

source for the second one. In the generated plan, the two
insert operations are stacked upon each other, which
allows pipelining the data flow through both operations.

with i1 as (
 select eid,bonus,ismgr
 from new table (
 insert into emp
 include (bonus int, ismgr char(1))
 select eid,salary,bonus,ismgr
 from src))
select count(*) from new table (
 insert into mgr
 select eid,bonus from i1 where ismgr='Y');

 RETURN
 |
 TBSCAN
 |
 SORT
 |
 GRPBY
 |
 INSERT
 |
 /---+---\
 FILTER TABLE: MGR
 |
 INSERT
 |
 /---+---\
 TBSCAN TABLE: EMP
 |
 TABLE: SRC

With the above approach, the total cost of the query is
reduced by 20% and the CPU cost is reduced by 40%,
independent of the number of rows in the source table.

The example above has the property that all rows
inserted into the mgr table must be inserted into the emp
table as well. An insert operator is not able to pass rows
not participating in the insert operation to the following
operator. Consider a revised example, where the source
data is partitioned into employees and manager tables.
Rows in the src table are inserted into either emp or
mgr table, but not into both.

create table emp (
 eid int not null primary key,
 salary int);

create table mgr (
 eid int not null primary key,
 salary int,
 bonus int);

In order to solve this problem, we propose an
extension of our approach to support the merge
statement in the from clause of a select statement.
The merge statement is a combination of insert,
update, and delete statements, and allows

conditional insert, update, and delete operations
on a table. We need to extend the merge statement with a
set clause, so that rows not participating in any data-
change operation can be returned.

The following SQL statement contains nested select
from merge and select from insert operations. The merge
operation inserts source rows into the emp table where
ismgr=’N’, and includes source rows where
ismgr=’Y’ in the result of the inline view i1. The
subsequent insert operation inserts the rows from i1
where ismgr=’Y’ into the mgr table.

with i1 as (
 select eid,salary,bonus from new table (
 merge into emp
 include (bonus int, ismgr char(1))
 using src on (1=0)
 when not matched and ismgr=’N’ then
 insert (eid,salary)
 values (src.eid,src.salary)
 when not matched and ismgr=’Y’ then
 set eid = src.eid,
 salary = src.salary,
 bonus = src.bonus,
 ismgr = src.ismgr)
select count(*) from new table (
 insert into mgr
 select eid,salary,bonus
 from i1 where ismgr=’Y’)

SQL queries such as above are very common in the
area of ETL (Extraction, Transformation, Load), for
transforming, cleansing and integrating data from
operational databases to a data warehouse. With the full
support the merge statement in the from clause of a
select statement, we are able to provide efficient plans for
multi-table insert, update, and delete statements.

5. TPC-C Benchmark
In this section, we describe the impact of the new SQL
statement type on the result of the TPC-C benchmark. The
TPC-C benchmark [10] represents a typical workload for
online transaction processing, based on an order-entry
application for a wholesale supplier. The logical database
design is composed of 9 relations: Warehouse, District,
Customer, Stock, Item, Order, New_Order, Order_Line,
and History. A more detailed description of the schema
can be found in [7][10].

The application defines five types of short, moderately
complex transactions: entering and delivering orders,
recording payments, checking the status of orders, and
monitoring stock level. Three of these transactions modify
data: entering and delivering orders, and recording
payments.

In the following sections, we introduce how the three
modifying transactions are implemented using classic

993

SQL statements. We illustrate how we rewrite the
statements using the new select from data-change
statement type. For better readability, we will use
simplified examples out of the three transactions to
illustrate the benefit of the new SQL. The complete SQL
statements we used for the transactions can be found in
the disclosure report [9].

Generally, several assumptions are made for
improving performance of OLTP applications. First, the
codepath in the database engine for executing transactions
should be reduced. Second, network traffic can be
reduced through decreasing the number of I/O operations
between client and database. Finally, lock contention
should be minimized and deadlocks avoided.

New Order Transaction

The New Order transaction places an order for an average
10 items from a warehouse. The following database
operations (in a simplified pseudocode) are required: first,
the new order ID is retrieved from the District table; for
each item, the stock level will be updated; the order is
stored in two tables Order and New_Order (containing
pending orders), and each item is stored in the table
Order_Line. The Stock table is updated 10 times, so in
total 17 statements are executed in classic SQL.

1. Select from District
2. Update District
3. Select from Item
4. for each item: Update Stock
5. Insert into Order_Line
6. Insert into Orders
7. Insert into New_Order
8. Select from Warehouse, Customer
Our New Order transaction contains only three SQL

statements. The first statement implements the first two
operations, select and update the District table. This table
contains an ID and an order number, which represents the
next order number to be used for a new order in this
district. The new order transaction needs to read and
increment the next order ID from the DISTRICT table.
With classic SQL, two separate statements are required
for this task:

select d_next_o_id into :new_id
from district
where d_id = :district_id;

update district
set d_next_o_id = d_next_o_id+1
where d_id = :district_id;

The approach above has two problems. First, we
observe two I/O operations, one for each statement, such
that the row in the district table is fetched twice. Second,

the fact that we first read the district row and
subsequently update the same row, is causing lock
conversion. This is a typical scenario for a deadlock,
where two transactions concurrently read the same row,
and later on attempt to write it, requesting to upgrade a
read lock to a write lock [1].

With the new SQL, the scenario can be implemented
in one single SQL statement containing a nested update
operation. The plan of the statement shows only one table
scan for the District table.

select d_next_o_id from old table
 (update district
 set d_next_o_id = d_next_o_id+1
 where d_id = :district_id))

 RETURN
 |
 UPDATE
 |
 /---+--\
 TBSCAN TABLE:
 | DISTRICT
 TABLE:
 DISTRICT

The second statement implements the operations 3 to
5. A table function is provided which retrieves the price of
the item, updates the stock level and inserts a row into the
Order_Line table. The following example shows a
(simplified) table function, and a select statement
referencing the order items and the table function in the
from clause.

create function new_ol
(i_id int, i_qty int, o_id int, ol_nr int)
returns table (i_price int)
modifies sql data
begin atomic
 declare i_price int;
 set i_price =
 (select i_price from item
 where item.i_id = new_ol.i_id);
 update stock set qty = qty - i_qty
 where s_i_id = new_ol.i_id;
 insert into order_line
 values (o_id, ol_nr, i_id, i_qty,
 (i_price * i_qty));
 return values (i_price * i_qty);
end

In the select statement calling the table function, we
define a table ol containing the new order line items.
Then, we join this table with the function new_ol, such
that every row in ol is used as input for new_ol.
Finally, we return the sum of the total price for each order
line.

994

select sum(i_price) into :total_price
from table (values (1, 15, 200),
 (2, 31, 150),
 (3, 47, 250))
 as ol(ol_nr, i_id, i_qty),
 table(new_ol(i_id, i_qty, 17, ol_nr))
 as new_ol(i_price);

As shown below, the plan of the new SQL statement
contains only one update and one insert operation. The
subtree below the UNION box represents the table
function.

 RETURN
 |
 GRPBY
 |
 NLJOIN
 |
 /----------+--------\
TBSCAN NLJOIN
 | /---------+---------\
TABFNC: NLJOIN TBSCAN
GENROW | |
 | |
 /----------+-----------\ TABFNC:
TBSCAN UNION GENROW
 | |
 | +-----------+---+--------------+
TABFNC: TBSCAN UPDATE INSERT
GENROW | | |
 | /---+---\ /---+--\
 TABLE: TBSCAN TABLE: TBSCAN TABLE:
 ITEM | STOCK | ORDER_LINE
 | |
 TABLE: TABFNC:
 STOCK GENROW

The third statement implements operations 6 to 8 in
another table function.

Payment Transaction

The Payment transaction processes a payment for a
customer and updates the Warehouse, District and
Customer tables. A History table contains the history of
payment transactions. Seven statements are executed for
the payment transaction in classic SQL.
1. Select from Customer
2. Update Customer
3. Select from District
4. Update District
5. Select from Warehouse
6. Update Warehouse
7. Insert into History

We managed to collapse all 7 operations into one new
SQL statement, providing one table function containing a
sequence of 4 select from update and insert statements.
The benefit is similar to the New Order transaction,
avoiding separate select and update statements.

Delivery Transaction

The Delivery transaction processes one order per district.
The next order to be processed is identified by the oldest
order number in the New_Order table.
1. Select min(order_id) from New_Order
2. Delete from New_Order
3. Update Order
4. Select sum(ol_amount) from Order_Line
5. Update Order_Line
6. Update Customer

The table function we used for the delivery transaction
contains one select from delete and three select from
update statements. The deletion of a new order shows a
select from delete statement with other SQL features like
order by and fetch first in subqueries, and fullselect as
target of delete statements. In order to deliver a new
order, the oldest order of a given district (i.e., the smallest
order id), needs to be deleted and returned. All this can be
contained in one SQL statement, which we call a
destructive read. The plan shows that the New_Order
table needs to be scanned only once in order to find and
delete the oldest order.

select no_o_id, … into :no_o_id, …
from old table (
 delete from (select * from new_order
 order by no_o_id
 fetch first row only));

 RETURN
 |
 DELETE
 |
 /---+---\
 FETCH TABLE:
 | NEW_ORDERS
 /---+---\
 TBSCAN TABLE:
 | NEW_ORDERS
 SORT
 |
 TBSCAN
 |
 TABLE:
 NEW_ORDERS

Summary

In our implementation of the TPC-C transactions, all
insert, update, and delete operations are embedded in the
from clause of a select statement, or in a modifying table
function. As a consequence, we have been able to
significantly reduce the total number of SQL statements
executed for each transaction. In addition, less data has to
be bound into and out of the database server. We
summarized the result for the three modifying transactions

995

in Fig. 1 and Fig. 2. The first row shows a remote New
Order transaction for a remote good customer, the second
row shows a Payment transaction for a good customer
identified by ID, and the third row shows a Delivery
transaction. For the new order transaction we assume 10
order lines associated.

Fig. 1 shows the number of SQL statements that are
executed in one transaction for the classic case and for
using the new SQL statement type. The last column
shows the total codepath reduction of the transaction on
the server achieved by having less runtime overhead for
executing SQL statements.

 Stmts

classic
Stmts
new

Codepath
reduction

New Order (remote good) 17 3 11%

Payment (by CID) 7 1 16%

Delivery 61 11 3%

Figure 1

Fig. 2 shows the number of rows passed between
application and database server. The first two columns
denote how many times we bind in rows from client to
server for the classic case and for using the new SQL
statement type. The last two columns show the same
information for rows returned from server to client.

 Bindin

classic
Bindin
new

Bindout
classic

Bindout
new

New Order (remote good) 28 4 24 14

Payment (by CID) 8 1 4 1

Delivery 61 11 21 11

Figure 2

6. Related Work
The idea of returning modified rows has already been
adopted by the JDBCTM specification and other database
vendors. The JDBC 3.0 Specification [6] introduces in
chapter 13.6 an interface for retrieving auto-generated
columns of insert statements. A method
Statement.getGeneratedKeys() is provided,
which produces a result set containing the generated key
values for all inserted rows. The following example
inserts a row into an ORDERS table, and returns the
generated ORDER_ID value:

Statement stmt = conn.createStatement();
int rows = stmt.executeUpdate
 (“INSERT INTO ORDERS “ +
 “(ISBN, CUSTOMERID) “ +
 “VALUES (966431502, ‘SAMP’)”,
 “ORDER_ID”);
ResultSet rs = stmt.getGeneratedKeys();
boolean b = rs.next();
if (b == true) {
 // retrieve the new key value
 ...
}

Oracle has introduced a returning clause for
insert, update and delete statements [8]. The
returning clause specifies which columns are
returned, followed by an into clause and a set of host
variables in which the values are stored. The approach
allows returning more than one row, in which case the
host variables need to be declared as arrays. Applications
require PL/SQL extensions to access the returned data;
they are not returned as a result set to the client. Oracle is
using the returning clause for update and delete
statements in the Delivery and Payment transactions of
the TPC-C benchmark. In contrast to the DB2 approach,
an insert or update statement always returns all
modified rows, even if the target is a view with a where
clause, and a before trigger modifies a value so that it
violates the view predicate. The following is an example
of an insert with returning clause (the bind
variables must first be declared).

INSERT INTO employees
 (employee_id, last_name, email,
 hire_date, job_id, salary)
 VALUES
 (employees_seq.nextval, ‘Doe’,
 ‘john.doe@oracle.com’,
 SYSDATE, ‘SH_CLERK’, 2400)
 RETURNING salary*12, job_id
 INTO :bnd1, :bnd2;

7. Conclusions
We have proposed and implemented a clean SQL
extension to provide applications a way to return values
that have been modified by insert, update, or
delete operations. The main contributions of our
implementation are as follows.

• We provide a way for applications to find out the
value of an automatically generated column when
a new value is inserted into a column. Similarly,
default values or values changed by a before
insert or update trigger can be returned to the
application.

• We support insert, update and delete
operations embedded in the from clause of a
select statement. For more complex scenarios

996

of data-change operations, modifying table
functions can be used.

• The approach is fully embedded in SQL and
solves the problem in a set-oriented fashion, using
select statements as carrier for returned values,
using respective client APIs.

• Common table expressions containing multiple
data-change operations provide an efficient way
for multi-table insert, update and delete
operations using the same source data. The
generated plans create a single data flow through
all data-change operations, such that source data
needs to be read only once.

• Our experiences in the TPC-C benchmark have
proven the performance of select from data-
change statements. The main reasons are
significantly reduced number of SQL statements,
generation of better performing plans, less data to
be transferred between client and server, and
deadlock avoidance.

The idea of returning modified data can be applied to
other query languages besides SQL. In particular, the new
XQuery language [2] will address update capabilities for
XML documents in the future. We expect that update
composability and the ability to return updated data will
be addressed when designing the language.

References
[1] P. Bernstein and E. Newcomer. Principles of

Transaction Processing. Morgan Kaufmann, 1997.

[2] Scott Boag, Don Chamberlin, Mary F. Fernandez,
Daniela Florescu, Jonathan Robie, Jerome Simeon,
and Mugur Stefanescu. XQuery 1.0: An XML
Query Language. World Wide Web Consortium,
Working Draft WD-xquery-2003.

[3] D. Chamberlin. Using the New DB2. Morgan
Kaufmann, 1996.

[4] R. Cochrane, H. Pirahesh, and N. Mattos.
Integrating triggers and declarative constraints in
SQL database systems. In Proc. Inl. Conf. on Very
Large Databases, 1996.

[5] IBM. DB2 Universal Database(TM) Version 8.1.4.
2003

[6] John Ellis, Linda Ho, and Maydene Fisher. JDBCTM
3.0 Specification, 2001.

[7] Scott T. Leutenegger and Daniel Dias. A Modeling
Study of the TPC-C Benchmark. In Proc. ACM
SIGMOD Int. Conf. On Management of Data,
1993.

[8] OracleTM Database. SQL Reference 10g Release 1.

[9] TPC Benchmark C Full Disclosure Report. IBM
eServer™ pSeries® 690 Model 7040-681 Using
AIX® 5L V5.2 and DB2 Universal Database 8.1,
2004.

[10] Transaction Processing Council. TPC Benchmark
C, Standard Specification, Rev. 5.2, Dec. 2003.

Trademarks

AIX, DB2, DB2 Universal Database, eServer,
IBM, and pSeries are trademarks or registered
trademarks of International Business Machines
Corporation in the United States, other countries,
or both.

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the
United States, other countries, or both.

Windows is a registered trademark of Microsoft
Corporation in the United States, other countries,
or both.

UNIX is a registered trademark of The Open
Group in the United States and other countries.

Other company, product, and service names may
be trademarks or service marks of others.

997

