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Abstract

Association rules can reveal biological relevant
relationship between genes and environments
/ categories. However, most existing associa-
tion rule mining algorithms are rendered im-
practical on gene expression data, which typi-
cally contains thousands or tens of thousands
of columns (gene expression levels), but only
tens of rows (samples). The main problem
is that these algorithms have an exponential
dependence on the number of columns. An-
other shortcoming is evident that too many
associations are generated from such kind of
data. To this end, we have developed a novel
depth-first row-wise algorithm FARMER [2]
that is specially designed to efficiently discover
and cluster association rules into interesting
rule groups (IRGs) that satisfy user-specified
minimum support, confidence and chi-square
value thresholds on biological datasets as op-
posed to finding association rules individually.
Based on FARMER, we have developed a pro-
totype system that integrates semantic mining
and visual analysis of IRGs mined from gene
expression data.

1 Introduction

Recent studies have shown that association rules can
reveal the relationship between genes and environ-
ments / categories. For example, they help identify
gene predictors for cancer diagnosis. In addition to
their simplicity and ease of interpretation, association
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rules show much promise in the analysis of gene ex-
pression data.

However, gene expression data has a large number
of columns which poses a great challenge for existing
rule mining algorithms, since their basic approaches
are the column-wise enumerations where combinations
of columns are tested incrementally to search for fre-
quent occurrences of certain combinations. Column-
wise association rule mining algorithms generally have
the following three problems on gene expression data:
Problem 1 : Extremely long running time due to the
huge column enumeration space,
Problem 2 : Too many association rules found due to
the combinatorial explosion of frequent itemsets, and
Problem 3 : No support of semantic navigation of the
huge number of association rules for biologists.

To address the first 2 problems, we propose a
novel row-wise depth-first algorithm FARMER [2] that
mines all the interesting rule groups (IRGs) satisfying
user-specified minimum measure (support, confidence,
chi square value) thresholds, instead of finding indi-
vidual association rules. For the last problem, we in-
troduce visualization technique to effectively interpret
and compare the semantics of IRGs. The graphic in-
terface enables users to conduct semantic explorations
over the IRGs and identify the most discriminating
IRGs rapidly.

In the next section, we will briefly introduce the
IRG mining process with FARMER. IRG visualiza-
tion techniques will be described in details in Section
3. We will discuss the promising applications of our
demo system in Section 4. The description of the demo
is given in Section 5. We will conclude our work in
Section 6.

2 IRG Mining

To have a rough idea of FARMER [2] and IRGs, let’s
look at a simple example. Suppose there is a two-row
discretized dataset, 1:{g1, g2, g3, g4, g5, g6, Cancer},
2: {g7, g8, g9, g10, g11, g12, ¬Cancer}, where item
gi (i = 1, 2, ..., 12) is the discretized value of the
original gene expression level. We could generate 63
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association rules in the form of “A → Cancer” from
the same row set {1}, where A is any combination of
g1, g2, ..., g6, and 63 association rules in the form of
“B → ¬Cancer” from the same row set {2}, where B
is any combination of g7, g8, ..., g12. Obviously, many
of them are redundant.

For the above example, FARMER utilizes the
following two core techniques.

• Mining Interesting Rule Groups: All the above
126 rules of the running example belong to two rule
groups. One rule group is identified with a unique
antecedent support set 1 {1}, a unique upper bound
rule g1g2g3g4g5g6 → Cancer, and 6 lower bound rules
gi → Cancer, i = 1, 2, ..., 6. The other rule group is
identified with another antecedent support set {2}, a
unique upper bound rule g7g8g9g10g11g12 → ¬Cancer,
and 6 lower bound rules gi → ¬Cancer, i = 7, 8,
..., 12. The rules between the upper bound rule and
the lower bound rules are the remaining members of
the corresponding rule group. In this way, we only
need to generate 2 upper bound rules and 12 lower
bound rules instead of all the 126 rules. As can be
seen, the rules in the same rule group share the same
antecedent support set and the same consequent, thus
the same support, confidence and chi square values.
From this point of view, the rule group is a lossless
compression of the association rules. FARMER only
outputs interesting rule groups (IRGs). For
two rule groups of the same consequent, rg1 and
rg2, if rg1.upperbound ⊂ rg2.upperbound and rg1

has a higher confidence, then FARMER only out-
puts rg1, because rg1 is defined to be more interesting.

• Row Enumeration Combined with Efficient Pruning
Strategies: As the row enumeration space is orders
smaller than the column enumeration space in gene
expression data, FARMER performs search by a
depth-first traversal of a row enumeration tree.
Each node corresponds to a certain row enumeration,
where a transposed table is set up and a new IRG
may be identified. For the simple example, the row
enumeration tree without applying pruning strategies
is shown in Figure 1. The traversal starts from the
root node {}, goes through node {1} and node {1, 2}
in sequence, and ends at node {2}. Figure 2 lists
the corresponding three non-empty transposed tables,
where R(gi) represents the complete set of rows that
contain item gi. In this way, the upper bound rule
g1g2g3g4g5g6 → Cancer is discovered at node {1},
and the upper bound rule g7g8g9g10g11g12 → ¬Cancer
is discovered at node {2}. To avoid redundancy and
to comply with the minimum measure thresholds,
efficient pruning strategies are applied to further
speed up the mining process.

1The antecedent support set of a rule is the complete set of
rows that contain the antecedent of the rule

Figure 1: Row Enumeration Tree

gi R(gi)
g1 1
g2 1
g3 1
g4 1
g5 1
g6 1
g7 2
g8 2
g9 2
g10 2
g11 2
g12 2

(a) TT |{}

gi R(gi)
g1 1
g2 1
g3 1
g4 1
g5 1
g6 1

(b) TT |{1}

gi R(gi)
g7 2
g8 2
g9 2
g10 2
g11 2
g12 2

(c) TT |{2}

Figure 2: Transposed Tables

According to our experiments, FARMER is or-
ders of magnitude faster than CHARM [4] and Ba-
yardo’s algorithm [1], two well-known column-wise
mining algorithms on several bench mark gene expres-
sion datasets, as shown in [2].

3 IRG Visualization

Figures 3, 4, and 5 show our system interfaces. We ran
the system on the Colon Tumor 2 dataset for demon-
stration purpose here. We split the original dataset
to 47 training samples and 15 test samples randomly.
The training dataset consists of 47 rows representing
the tissue samples of patients and 2000 columns rep-
resenting the expression levels of various genes.

The IRGs are sorted based on their rank (descend-
ing) as evaluated first by confidence (descending), next
by support (descending), and last by # item (ascend-
ing). The top 5 IRGs (IRG1 ≺ IRG2 ≺ IRG3 ≺
IRG4 ≺ IRG5) are specified as the IRG subset.
Meanwhile the order of the items in the specified IRG
subset and the rows in the dataset are determined
based on their memberships in the itemsets3 and an-
tecedent support sets of the IRGs respectively. An item
i will be ranked higher than an item j if the highest
ranked IRG that contain i is above the highest ranked
IRG that contain j in the IRG ranking. Likewise, a
row r will have a higher rank than a row s if the highest
ranked IRG that is matched by r is above the highest

2http://microarray.princetion.edu/oncology/affydata/index.html
3the itemset of an IRG is the complete set of items that

appear in at least one of the antecedents of the association rules
in the IRG
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ranked IRG that is matched by s based on the IRG
ranking.

Figure 3: Semantic Visualization of the IRG Subset
Using the Barcode View and the Flower View

Figure 4: Semantic Visualization of a Single IRG Us-
ing the Barcode View and the Flower View

Figure 5: IRG Comparisons Using the Matrix View

For each IRG, we can visualize its antecedent
support set and its itemset with a “barcode” and a
“flower” separately, or with a “matrix” jointly. A
“closed lattice” graph is also proposed to summarize

the IRGs in the IRG subset based on the sub-
set/superset relationship of their antecedent support
sets.

• Antecedent Support Set Visualization: The
“barcode” (left hand of Figures 3 and 4) is the
identification number of the IRG. The “bar” consists
of several small grids, each mapping to one ordered
row of the dataset. If the mapped row is a member
of the IRG’s antecedent support set, the grid is dyed
according to the class label of the row (i.e., red for
“negative”, blue for “positive”). In this way, the
semantics of the IRG, like support and confidence, can
be obtained by a snapshot. The overall “barcode” view
(left hand of Figure 3) suggests that the antecedent
support set of IRG1 occupies only the “negative”
tissue samples (all red, no blue), while the antecedent
support set of IRG2 occupies only the “positive”
tissue samples (all blue, no red). They are the only
two IRGs of confidence 100% in the IRG subset. The
“closed lattice” (right hand of Figures 3 and 4) is
another summarization based on the superset/subset
relationships of the antecedent support sets of IRGs
in the IRG subset. Each node in the lattice except
the root node maps to the antecedent support set of
one IRG in the IRG subset. The antecedent support
set of the parent node includes that of the child node.
The root node corresponds to the set of all the 47 rows.

• Itemset Visualization: We visualize the itemset
of the IRG in the user-specified IRG subset as a
“flower” (left hand of Figures 3 and 4). Each “flower”
corresponds to the same set of ordered items that
appear in the IRG subset and each item is represented
by a “petal” of the “flower”. The “petal” is dyed if
the corresponding item appears in the current IRG,
otherwise it is left blank.

• Joined Visualization: The x-dimension of the
“matrix” represents the set of rows in the dataset
while the y-dimension of the “matrix” represents the
set of items in the IRG subset. The items and rows
along each dimension are ordered. Given a “matrix”
representing a rule group IRGi, a cell valued (x, y)
in the “matrix” will be colored red if item y is in the
antecedent of the upper bound rule for IRGi and row
x matches the upper bound rule of IRGi. Due to the
ordering of the items and rows, the red cells in the
“matrix” of the highest ranked IRG (i.e. IRG1) will
always be clustered at the bottom left corner of the
“matrix” as can be seen from Figure 5.

To compare IRGi against other higher ranked
IRGs, a cell in the “matrix” for IRGi will be colored
dark grey if it has been colored red in any “matrix” of
higher ranked IRGs. For example, the dark grey patch
in the “matrix” of IRG2 indicates that these cells have
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been colored red in the “matrix” of IRG1. In the case
in which the cell also has to be painted red to represent
IRGi, the color of dark red will be used to paint the
cell. Finally, the top most cells in each “matrix” are
used to represent the class labels of the corresponding
rows. By looking at the highest cells in the “matrix”
of IRG1, we can see that IRG1 has a 100% confi-
dence prediction for a certain class. Overall, we can
see that IRG1 and IRG2 are the most discriminating
IRGs with the largest number of non-overlapped red
cells.

4 IRG Application

With the effective visualization techniques in Section
3, we can identify the most discriminating IRGs, which
can be of great value in understanding the mechanics
of disease and identifying new pathways by describing
what genes are expressed as a result of certain cellular
environments.

One promising application of IRG is disease diag-
nosis. As an example, 14 out of the 15 colon tumor
test samples have been classified correctly using only
the upper bound rules of IRG1 and IRG2. In [2], we
made a first try to build a simple classifier by aggregat-
ing the discriminating powers of the upper bound rules
of IRGs on five benchmark gene expression datasets.
The simple classifier is competitive with SVM as well
as being efficient.

5 Description of the Demo

minimum thresholds
specified consequent

IRGs in rank
select the top k

domain knowledge

IRG mining

IRG subset

Add/Delete IRGs

user exploration

IRG application

IRG Subset View
single IRG view

lattice

matrix

barcode&flowerbarcode

flower

gene expression data

discretized

Figure 6: System Framework

In this demo, we will demonstrate an interactive
prototype system that specifically involves the follow-
ing three components (Figure 6).

• IRG Mining : For each user-specified consequent,
mine IRGs that satisfy user-specified minimum
measure (support, confidence and chi square value)
thresholds.

• IRG Exploration: Users select/adjust the IRG
subset of interest, analyze and compare the IRGs in
the IRG subset interactively.

• IRG Application: Output the most discriminating
IRGs for disease diagnosis and so on.

We will showcase (1) how a user can interact
with the system with the specified minimum measure
thresholds and how the system can find IRGs effi-
ciently with FARMER; (2) how the IRG summarizes
the set of association rules effectively; (3) how the se-
mantics and the discriminating powers of the discov-
ered IRGs can be interpreted and compared using our
visualization techniques effectively and efficiently; and
(4) how the discovered IRGs can be used to build an
accurate rule-based classifier.

6 Conclusion

In this paper, we used the concept of IRG so that nu-
merous rules discovered from gene expression data are
clustered into limited number of IRGs that encapsu-
late the complete information about the set of globally
significant rules and that we avoid generating billions
of redundant rules. From another point of view, IRGs
could be considered as clusters of emerging patterns
[3], an important concept for discovering significant
rules from bio-medical data.

Our prototype system not only finds the discrimi-
nating associations completely and efficiently, but also
provides an interactive graphic interface to identify the
associations of the highest biological meanings. Fur-
thermore, it shows great promise in the clinical appli-
cation, i.e., disease diagnosis.
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