
PLACE: A Query Processor for Handling Real-time

Spatio-temporal Data Streams∗

Mohamed F. Mokbel Xiaopeng Xiong Walid G. Aref Susanne E. Hambrusch
Sunil Prabhakar Moustafa A. Hammad

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398
{mokbel,xxiong,aref,seh,sunil,mhammad}@cs.purdue.edu

Abstract

The emergence of location-aware services calls
for new real-time spatio-temporal query pro-
cessing algorithms that deal with large num-
bers of mobile objects and queries. In
this demo, we present PLACE (Pervasive
Location-Aware Computing Environments); a
scalable location-aware database server de-
veloped at Purdue University. The PLACE
server addresses scalability by adopting an in-
cremental evaluation mechanism for answer-
ing concurrently executing continuous spatio-
temporal queries. The PLACE server sup-
ports a wide variety of stationery and moving
continuous spatio-temporal queries through
a set of pipelined spatio-temporal operators.
The large numbers of moving objects gener-
ate real-time spatio-temporal data streams.

1 Introduction

Combining the functionalities of personal locator tech-
nologies, global positioning systems (GPSs), wireless
and cellular telephone technologies, and information
technologies enables new environments where virtu-
ally all objects of interest can determine their loca-
tions. These technologies are the foundation for per-
vasive location-aware environments and services. Such
services have the potential to improve the quality of
life by adding location-awareness to virtually all ob-

∗This work was supported in part by the National Sci-
ence Foundation under Grants IIS-0093116, EIA-9972883, IIS-
9974255, IIS-0209120, 0010044-CCR, and EIA-9983249.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

jects of interest such as humans, cars, laptops, eye-
glasses, canes, desktops, pets, wild animals, bicycles,
and buildings.

By enabling an upward link, the data sent from the
mobile objects to the servers enables an environment in
which objects are aware of the locations of surrounding
objects as well as other related information. Applica-
tions can range from locating lost or stolen objects, to
tracking little children and alerting parents when their
children step out of the backyard, and completely au-
tomating traffic and vehicle navigation systems.

In this demo, we present the PLACE server, devel-
oped at Purdue University [1]. The PLACE server em-
ploys special query processing techniques to support
scalable and incremental evaluation of a wide variety of
continuous spatio-temporal queries. In particular, the
PLACE server has the following distinguishing char-
acteristics:

1. Scalability. The PLACE server uses a shared
execution paradigm as a means for achieving scal-
ability in terms of the number of outstanding con-
tinuous spatio-temporal queries.

2. Incremental evaluation. The PLACE server
employs an incremental evaluation paradigm by
continuously updating the user with any change
to the query answer by using the notion of positive
and negative tuples.

3. New operators. The PLACE server employs a
new set of spatio-temporal incremental operators
(e.g., INSIDE and kNN operators) that support
scalable and incremental evaluation of continuous
queries through SQL.

4. Wide variety of continuous queries. By en-
capsulating the scalable and incremental algo-
rithms into physical pipelined query operators,
the PLACE server has the ability to express
and evaluate a wide variety of continuous spatio-
temporal queries.

1377



Figure 1: The PLACE Architecture.

5. Predicate-based Sliding Windows: We ex-
tend the notion of sliding windows beyond time-
based and tuple-count windows to accommodate
for predicate-based windows (e.g., an object ex-
pires from the window when it appears again in
the stream).

2 The PLACE Architecture

Figure 1 sketches a hierarchical architecture of the
PLACE server. Location detection devices (e.g., GPS
devices) provide the objects with their geographic lo-
cations. Objects connect directly to regional servers
that form the lowest level in this hierarchy. Regional
servers handle the incoming data and process time-
critical spatio-temporal queries. Regional servers com-
municate with each other, as well as with the high level
servers i.e., the repository servers. Repository servers
archive the past locations of moving objects.

The servers are interconnected by high bandwidth
links. However, the mobile links between the regional
servers and the objects have low bandwidth and a high
cost per connection. For data that is being sent from
the moving objects to the regional servers (i.e., in the
uplink direction), we regulate the amount of data col-
lected and the rate at which data is sent (the upload
frequency). For query results and other data being
sent from the location-aware regional servers to the
objects (i.e., the downlink direction), an alternative to
the point-to-point mobile links is allowed. Servers can
transmit data to a satellite that broadcasts the infor-
mation over the air to all objects. Broadcasting allows
a server to send data to a large number of listening
objects [4].

3 Shared Execution of Continuous
Spatio-temporal Queries

The PLACE server [8, 9, 10, 12] exploits a shared
execution paradigm as a means for achieving scala-

Q1 Q2

R1
R2

Q2Q1
Select ID Where

location inside R1

Select ID Where

location inside R2

File Scan File Scan File Scan File Scan

Spatial
Join

Moving Objects Moving Objects Moving Objects Moving Queries

(a) Local query plan for two range queries (b) A global shared plan for two range queries

Figure 2: Shared execution of continuous queries.

bility when concurrently executing continuous spatio-
temporal queries. The main idea is to group similar
queries in a query table. Then, the evaluation of a
set of continuous spatio-temporal queries is abstracted
as a spatial join between the moving objects and the
moving queries. Similar ideas of shared execution have
been exploited in the NiagaraCQ [3] for web queries,
PSoup [2], and [6] for streaming queries.

Figure 2a gives the execution plans of two simple
continuous spatio-temporal queries, Q1: ”Find the ob-
jects inside region R1”, and Q2: ”Find the objects in-
side region R2”. Each query performs a file scan on
the moving object table followed by a selection filter.
With shared execution, we have the execution plan of
Figure 2b. The table for moving queries contains the
regions of the range queries. Then, a spatial join is
performed between the table of objects (points) and
the table of queries (regions). The output of the spa-
tial join is split and is sent to the individual queries.

Shared execution for a collection of spatio-temporal
range queries can be expressed in the PLACE server
by issuing the following continuous query:

SELECT Q.ID, O.ID
FROM QueryTable Q, ObjectTable O
WHERE O.location inside Q.region

The query processor recognizes that both the object
and query tables are being updated continuously by
the newly incoming objects and queries. Thus, the
query is executed continuously.

4 Incremental Execution

The PLACE server employs an incremental execution
paradigm [8, 10], where only the updates of the pre-
viously reported answer are sent to the user. We dis-
tinguish between two types of updates, namely pos-
itive and negative updates. Positive/Negative up-
dates indicate that a certain object needs to be added
to/removed from the previously reported answer, re-
spectively. By employing incremental evaluation, the
PLACE server achieves the following goals: (1) Fast
query evaluation, since we compute only the update
(change) of the answer not the whole answer. (2) In
a typical location-aware server query results are sent

1378



to the users via satellite servers [4]. Thus, limiting the
amount of transmitted data to the positive and neg-
ative updates only rather than the whole query an-
swer saves in network bandwidth. (3) When encapsu-
lating incremental algorithms into physical pipelined
query operators, limiting the tuples that go through
the whole query pipeline to only the positive and neg-
ative updates reduces the flow in the pipeline. Thus,
efficient query processing is achieved.

In the demo, we will show how the users and query
operators interpret the positive and negative updates
to continuously maintain the query results.

5 Spatio-temporal Pipelined Opera-
tors

The PLACE server encapsulates scalable and incre-
mental algorithms into pipelined query operators. Ex-
amples of such operators are the INSIDE operator
for range queries and the kNN operator for k-nearest-
neighbor queries. Such operators can represent both
stationary and moving queries. In addition spatio-
temporal queries may have a time window that allows
querying recent history. A typical continuous query
for the PLACE server may have the following form:

SELECT select clause
FROM from clause
WHERE where clause
INSIDE inside clause
kNN knn clause
WINDOW window clause

The inside clause can represent stationary rectan-
gular range or circular queries by specifying the two
corners or the center and radius of the query region,
respectively. If the first parameter to the inside clause
is M , then the query is moving and the second param-
eter represents the ID of the focal object of the query.
Similarly, the knn clause can represent stationary as
well as moving k-nearest-neighbor queries. The win-
dow clause allows having sliding window queries [5].

Incremental pipelined query operators may output
positive or negative tuples. Thus, we furnish the rest
of the query operators (e.g., aggregate, distinct, and
joins) with special mechanisms to interpret the nega-
tive tuples.

6 Spatio-temporal Queries

By having the basic spatio-temporal operators, the
PLACE server has the ability to evaluate a wide vari-
ety of continuous spatio-temporal queries. The follow-
ing are some examples that are typical in the PLACE
server:

Example I: Spatio-temporal aggregates. Con-
tinuously, report the number of distinct cars that are
inside a certain area

SELECT COUNT (DISTINCT (M.ID)

FROM MovingVehicles M
WHERE M.type = “Car”
INSIDE 20,20,30,30

Example II: Catching speedy moving ob-

jects. Continuously, report any car that passes
through area R2 then area R1 in less than five min-
utes. Such query can catch speedy cars that go very
fast from area R2 to area R1.

SELECT DISTINCT M1.ID

FROM (SELECT ID
. FROM MovingObjects
. INSIDE R1) M1,
. (SELECT ID
. FROM MovingObjects
. INSIDE R2

. WINDOW 5) M2
WHERE M1.ID = M2.ID

7 Demo Description

The PLACE server is implemented on top of the
NILE query processor [7]; an extended version of the
PREDATOR database management system [11] to
handle stream data. Figures 3 and 4 give snapshots
of the client and server graphical user interface (GUI)
of PLACE1 .

The PLACE server GUI (Figure 3) is for the pur-
pose of administration at the server side. The main
idea is to keep track of the concurrently executing
continuous queries from each type. All the processed
queries along with their parameters are displayed in
the bottom of the screen. In addition, the server GUI
contains a regional map showing the movement of ob-
jects, and the parameters of the selected queries.

Client GUI (Figure 4) simulates a client end device
used by the users. Users can choose the type of query
from a list of available query types. The spatial re-
gion of the query can be determined using the map of
the area of interest (the bold plotted rectangle on the
map). Once the query is submitted to the server, the
result appears to the query as a drop-down list at the
bottom of Figure 4. A client can send multiple queries
of different types to the PLACE server.

References
[1] W. G. Aref, S. E. Hambrusch, and S. Prabhakar. Per-

vasive Location Aware Computing Environments (PLACE).
http://www.cs.purdue.edu/place/, 2003.

[2] S. Chandrasekaran and M. J. Franklin. Streaming Queries over
Streaming Data. In VLDB, 2002.

[3] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases. In
SIGMOD, 2000.

1The map in Figures 3 and 4 is for the Greater Lafayette
area, IN, USA.

1379



Figure 3: Snapshot of the PLACE server.

[4] S. E. Hambrusch, C.-M. Liu, W. G. Aref, and S. Prabhakar.
Query Processing in Broadcasted Spatial Index Trees. In
SSTD, 2001.

[5] M. A. Hammad, W. G. Aref, M. J. Franklin, M. F. Mokbel,
and A. K. Elmagarmid. Efficient execution of sliding-window
queries over data streams. Technical Report TR CSD-03-035,
Purdue University Department of Computer Sciences, Dec.
2003.

[6] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K. Elma-
garmid. Scheduling for shared window joins over data streams.
In VLDB, 2003.

[7] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C.
Catlin, A. K. Elmagarmid, M. Eltabakh, M. G. Elfeky, T. M.
Ghanem, R. Gwadera, I. F. Ilyas, M. Marzouk, and X. Xiong.
Nile: A Query Processing Engine for Data Streams. In ICDE,
2004.

[8] M. F. Mokbel. Continuous Query Processing in Spatio-
temporal Databases. In Proceedings of the ICDE/EDBT PhD
Workshop, 2004.

[9] M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and S. Prabhakar.
Towards Scalable Location-aware Services: Requirements and
Research Issues. In GIS, 2003.

[10] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable In-
cremental Processing of Continuous Queries in Spatio-temporal
Databases. In SIGMOD, 2004.

[11] P. Seshadri. Predator: A resource for database research. SIG-
MOD Record, 27(1):16–20, 1998.

[12] X. Xiong, M. F. Mokbel, W. G. Aref, S. Hambrusch, and
S. Prabhakar. Scalable Spatio-temporal Continuous Query Pro-
cessing for Location-aware Services. In SSDBM, June 2004.

Figure 4: Snapshot of a client of the PLACE server.

1380




