
StreamMiner: A Classifier Ensemble-based Engine to

Mine Concept-drifting Data Streams

Wei Fan

IBM T.J.Watson Research
19 Skyline Drive

Hawthorne, NY 10532, USA
weifan@us.ibm.com

Abstract

We demonstrate StreamMiner, a random
decision-tree ensemble based engine to mine
data streams. A fundamental challenge in
data stream mining applications (e.g., credit
card transaction authorization, security buy-
sell transaction, and phone call records, etc) is
concept-drift or the discrepancy between the
previously learned model and the true model
in the new data. The basic problem is the abil-
ity to judiciously select data and adapt the
old model to accurately match the changed
concept of the data stream. StreamMiner
uses several techniques to support mining over
data streams with possible concept-drifts. We
demonstrate the following two key functional-
ities of StreamMiner:

1. Detecting possible concept-drift on the
fly when the trained streaming model is
used to classify incoming data streams
without knowing the ground truth.

2. Systematic data selection of old data and
new data chunks to compute the optimal
model that best fits on the changing data
streams.

1 Introduction

One of the recent challenges facing traditional data
mining methods is to handle real-time production sys-
tems that produce large amount of data continuously

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

at unprecedented rate and with evolving patterns.
Traditionally, due to limitation of storage and practi-
tioner’s ability to mine huge amount of data, it is a
common practice to mine a subset of data at preset
frequency. However, these solutions have been shown
to be ineffective due to possibly over-simplified model
as a result of sub-sampling as well as dynamically
unpredictable evolving pattern of the production data.
Knowledge discovery on data streams has become a
research topic of growing interest. Much work has
been done on modeling [Babcock et al., 2002], query-
ing [Babu and Widom, 2001, Gao and Wang, 2002,
Greenwald and Khanna, 2001], classification
[Hulten et al., 2001, Street and Kim, 2001,
Wang et al., 2003, Fan et al., 2004, Fan, 2004b],
regression analysis [Chen et al., 2002] and cluster-
ing [Guha et al., 2000]. The fundamental problem is
the following: given an infinite amount of continuous
measurements, how do we model them in order to
capture possibly time-evolving trends and patterns
in the stream, compute the optimal model and make
time critical decisions?

2 The Motivation of StreamMiner

The fundamental problem in learning drifting concepts
is how to identify in a timely manner those data in
the training set that are no longer consistent with the
current concepts. These data must be discarded. A
straightforward solution, which is used in many cur-
rent approaches, discards data indiscriminately after
they become old, that is, after a fixed period of time
T has passed since their arrival. Although this solu-
tion is conceptually simple, it tends to complicate the
logic of the learning algorithm. More importantly, it
creates the following dilemma which makes it vulnera-
ble to unpredictable conceptual changes in the data: if
T is large, the training set is likely to contain outdated
concepts, which reduces classification accuracy; if T is
small, the training set may not have enough data, and
as a result, the learned model will likely carry a large

1257

variance due to overfitting.
We use a simple example to illustrate the problem.

Assume a stream of 2-dimensional data is partitioned
into sequential chunks based on their arrival time. Let
Si be the data that came in between time ti and ti+1.
Figure 1 shows the distribution of the data and the
optimum decision boundary during each time interval.

optimum boundary:
 overfitting:

 (a) S0,arrived
 during [t0,t1)

 (b) S1,arrived
 during [t1,t2)

 (c) S2,arrived
 during [t2,t3)

positive:
negative:

Figure 1: data distributions and optimum boundaries

The problem is: after the arrival of S2 at time t3,
what part of the training data should still remain in-
fluential in the current model so that the data arriving
after t3 can be most accurately classified?

On one hand, in order to reduce the influence of old
data that may represent a different concept, we shall
use nothing but the most recent data in the stream
as the training set. For instance, use the training set
consisting of S2 only (i.e., T = t3 − t2, data S1, S0

are discarded). However, as shown in Figure 1(c), the
learned model may carry a significant variance since
S2’s insufficient amount of data are very likely to be
overfitted.

optimum boundary:

 (a) S2+S1 (b) S2+S1+S0 (c) S2+S0

Figure 2: Which training dataset to use?

The inclusion of more historical data in training,
on the other hand, may also reduce classification ac-
curacy. In Figure 2(a), where S2∪S1 (i.e., T = t3− t1)
is used as the training set, we can see that the dis-
crepancy between the underlying concepts of S1 and
S2 becomes the cause of the problem. Using a train-
ing set consisting of S2 ∪ S1 ∪ S0 (i.e., T = t3 − t0)
will not solve the problem either. Thus, there may not
exists an optimum T to avoid problems arising from
overfitting and conflicting concepts.

We should not discard data that may still pro-

vide useful information to classify the current test ex-
amples. Figure 2(c) shows that the combination of
S2 and S0 creates a classifier with less overfitting or
conflicting-concept concerns. The reason is that S2

and S0 have similar class distribution. Thus, instead of
discarding data using the criteria based solely on their
arrival time, we shall make decisions based on their
class distribution. Historical data whose class distri-
butions are similar to that of current data can reduce
the variance of the current model and increase classi-
fication accuracy. However, it is a non-trivial task to
select training examples based on their class distribu-
tion.

3 The StreamMiner Solution

There are a large number of possibilities that can hap-
pen when mining data streams. Before we go into the
details of the main mining engine, we enumerate all
situations that we can think of and discuss the best
choice in each case and how to find the optimal model.
The two main themes of our comparison is on possible
data insufficiency and concept drift. We start from
simple cases.

• New data is sufficient by itself and there

is no concept drift. The optimal model should
be the one trained from the new data itself since
new data is sufficient. The older model may also
be an optimal model if it is trained from sufficient
data. However, the tricky issue is that we do not
know and will usually never know if the data is
indeed sufficient and the concept indeed remains
the same. However, it doesn’t hurt to train a new
model from the new data, a new model from com-
bined new data and old data, and compare with
the original older model to choose the more accu-
rate one if the learning cost is affordable.

• New data is sufficient by itself and there

is concept drift. The optimal model should be
the one trained from the new data itself. Simi-
lar to the previous situation, we do not know and
will never know if the data is indeed sufficient and
the concept indeed remains the same. Ideally, we
should compare a few sensible choices if the train-
ing cost is affordable.

• New data is insufficient by itself and there

is no concept drift.. If the previous data is suf-
ficient, the optimal model should be the existing
model. Otherwise, we should train a new model
from new data plus existing data and choose the
one with higher accuracy.

• New data is insufficient by itself and there

is concept drift. Obviously, training a new
model from new data only doesn’t return the op-
timal model. However, choosing old data unse-

1258

lectively, as shown previously, will only be mis-
leading. The correct approach is to choose only
those examples from previous data chunks that
have consistent concept with the new data chunk
and combine those examples with the new data

3.1 Computing optimal models

We notice that the optimal model is completely differ-
ent under different situations. The choice for optimal
model completely depends on if the data is indeed suf-
ficient and if there is indeed concept drift. The ideal
solution would be to compare a few plausible optimal
models statistically, and choose the one with the high-
est accuracy. To clarify some notation conventions,
FN(x) denotes a new model trained from recent data.
FO(x) denotes an optimal model finally chosen after
some statistical significance tests. i is the sequence
number of each sequentially received data chunk.

1. Train a model FNi(x) from the new data chunk
Si only.

2. Assume that Di−1 is the dataset that trained the
most recent “optimal” model FOi−1(x). It is im-
portant to point out that Di−1 may not be the
most recent data chunk Si−1. Di−1 is collected
iteratively throughout the streaming data min-
ing process. The exact way how Di−1 is collected
will be clear next. We select these examples from
Di−1 that both the trained new model FNi(x)
and the recent optimal model FOi−1(x) make the
correct prediction. We denote these chosen ex-
amples as si−1. In other words, si−1 = {∀(x, y) ∈
Di−1, such that, (FNi(x) = y)∧(FOi−1(x) = y)}.

3. Train a model FN+

i
(x) from the new data plus

the selected data in the last step or Si ∪ si−1.

4. Update the most recent model FOi−1 with Si and
call this model FO+

i−1
(x). To update a model, we

keep the “structure” of the model and update its
internal statistics. Using decision tree as an exam-
ple, every example in Si is “classified” or sorted
to each leaf node. The statistics, i.e., the number
of examples belonging to each class label, are up-
dated. Obviously, the training set for FO+

i−1
(x)

is Di ∪ Si.

5. Compare the accuracy of all four models (FNi(x),
FOi−1(x), FN+

i
(x)), and FO+

i−1
(x)) using

“cross-validation” and choose the one that is the
most accurate and we name it FOi(x).

6. Di is the training set that computes FOi(x). It
is one of Si, Di−1, Si ∪ si−1, and Si ∪ Di−1.

3.2 Main Engine

The main engine of StreamMiner trains a number of
random and uncorrelated decision trees. Details of

the main engine can be found in [Fan et al., 2003,
Fan, 2004a, Fan, 2004b]. Each decision tree is con-
structed by randomly selecting available features. The
structure of the tree is uncorrelated. Their only cor-
relation is on the training data itself. To classify an
example, raw posterior probability is required. If there
are nc examples out of n in the leaf node with class
label c, the probability that x is an example of class
label c is P (c|x) = nc

n
. Each tree computes a pos-

terior probability for an example and the probability
outputs from multiple trees are averaged as the final
posterior probability of the ensemble. To make a deci-
sion, application specific loss function is required. For
a binary problem under 0-1 loss, if P (y|x) > 0.5, the
best prediction is y.

Cross-validation is implemented by using the model
itself. Assuming that n is the size of the training set,
n-fold cross validation leaves one example x out and
uses the remaining n−1 examples to train a model and
classify on the left-out example x. When we compute
the probability for the excluded x under n-fold cross
validation using the original decision tree ensemble,
we need to compensate this difference. Assuming that
we have two class labels, either fraud or non-fraud,
to compute the probability of the excluded x being
fraudulent is simply
{

nfraud−1

nfraud−1+nnormal
if x is indeed a fraud

nfraud

nfraud+nnormal−1
if x is a normal transaction

4 About this Demo

Streaming Data Generator

We create synthetic data with drifting concepts based
on a moving hyperplane that is commonly used to
simulate concept-drifting data streams. A hyper-
plane in d-dimensional space is denoted by equa-

tion:
∑d

i=1
aixi = a0. We label examples satisfying

∑

d

i=1
aixi ≥ a0 as positive, and examples satisfying

∑

d

i=1
aixi < a0 as negative. Hyperplanes have been

used to simulate time-changing concepts because the
orientation and the position of the hyperplane can be
changed in a smooth manner by changing the magni-
tude of the weights [Hulten et al., 2001]. We generate
random examples uniformly distributed in multi di-
mensional space [0, 1]d. Weights ai (1 ≤ i ≤ d) are
initialized randomly in the range of [0, 1]. We choose
the value of a0 so that the hyperplane cuts the multi-
dimensional space in two parts of the same volume,

that is, a0 = 1

2

∑d

i=1
ai. Thus, roughly half of the ex-

amples are positive, and the other half negative. Noise
is introduced by randomly switching the labels of p%
of the examples. In our experiments, the noise level
p% is set to 5%.

We provide a few parameters that the attendees of
our demo can choose to simulate different degrees of
concept-drift. Parameter k specifies the total number

1259

of dimensions whose weights are changing. Parameter
t ∈ R specifies the magnitude of the change (every
N examples) for weights a1, · · · , ak, and si ∈ {−1, 1}
specifies the direction of change for each weight ai,
1 ≤ i ≤ k. Weights change continuously, i.e., ai is
adjusted by si · t/N after each example is generated.
Furthermore, there is a possibility of 10% that the
change would reverse direction after every N exam-
ples are generated, that is, si is replaced by −si with
probability 10%. Also, each time the weights are up-

dated, we recompute a0 = 1

2

∑d

i=1
ai so that the class

distribution is not disturbed.

Concept Change Illustration

Conceptual change is best illustrated through the
change of error rate of models. For every historically
trained model, we show its changing error rate on the
evolving data stream. Based on the attendee’s param-
eter selection, the trend we will show is that models
trained from recent data and systematically selected
old data will have a generally lower error rate than
the older models.

5 Demonstration Scenario

In our demo, the attendees have the freedom to choose
different parameters to simulate a data stream with
changing concept and the amount of new data col-
lected until a new model need to be learned. Af-
ter the attendee chooses these parameters, the stream
data generator will produce incoming data streams.
StreamMiner collects the data continuously and starts
to compute or update an existing model when the
number of new examples are above a threshold the
attendee chooses. This process can either run contin-
uously continuously or in batch mode, as chosen by
the demo attendee.

Acknowledgement

The original synthetic data generator was written by
my colleague, Dr. Haixun Wang, as described in a pre-
vious paper [Wang et al., 2003]. The original source
was modified to generate continuous data streams with
drifting concepts.

References

[Babcock et al., 2002] Babcock, B., Babu, S., Datar,
M., Motawani, R., and Widom, J. (2002). Models
and issues in data stream systems. In ACM Sympo-
sium on Principles of Database Systems (PODS).

[Babu and Widom, 2001] Babu, S. and Widom, J.
(2001). Continuous queries over data streams. SIG-
MOD Record, 30:109–120.

[Chen et al., 2002] Chen, Y., Dong, G., Han, J., Wah,
B. W., and Wang, J. (2002). Multi-dimensional

regression analysis of time-series data streams. In
Proc. of Very Large Database (VLDB), Hongkong,
China.

[Fan, 2004b] Fan, W. (August 2004b). System-
atic data selection to mine concept-drifting data
streams. In Proceedings of 2004 ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining (KDD’2004), Seattle, Washing-
ton, USA.

[Fan, 2004a] Fan, W. (July 2004a). On the optimal-
ity of probabililty estimation by random decision
trees. In Proceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI’2004),
San Jose, California, USA.

[Fan et al., 2004] Fan, W., an Huang, Y., Wang, H.,
and Yu, P. S. (April 2004). Active mining of data
streams. In Proceedings of 2004 SIAM International
Conference on Data Mining, pages 457–461.

[Fan et al., 2003] Fan, W., Wang, H., Yu, P. S., and
Ma, S. (2003). Is random model better? on its
accuracy and efficiency. In Proceedings of Third
IEEE International Conference on Data Mining
(ICDM’2003).

[Gao and Wang, 2002] Gao, L. and Wang, X. (2002).
Continually evaluating similarity-based pattern
queries on a streaming time series. In Int’l Conf.
Management of Data (SIGMOD), Madison, Wis-
consin.

[Greenwald and Khanna, 2001] Greenwald, M. and
Khanna, S. (2001). Space-efficient online compu-
tation of quantile summaries. In Int’l Conf. Man-
agement of Data (SIGMOD), pages 58–66, Santa
Barbara, CA.

[Guha et al., 2000] Guha, S., Milshra, N., Motwani,
R., and O’Callaghan, L. (2000). Clustering data
streams. In IEEE Symposium on Foundations of
Computer Science (FOCS), pages 359–366.

[Hulten et al., 2001] Hulten, G., Spencer, L., and
Domingos, P. (2001). Mining time-changing data
streams. In Int’l Conf. on Knowledge Discovery and
Data Mining (SIGKDD), pages 97–106, San Fran-
cisco, CA. ACM Press.

[Street and Kim, 2001] Street, W. N. and Kim, Y.
(2001). A streaming ensemble algorithm (SEA) for
large-scale classification. In Int’l Conf. on Knowl-
edge Discovery and Data Mining (SIGKDD).

[Wang et al., 2003] Wang, H., Fan, W., Yu, P., and
Han, J. (2003). Mining concept-drifting data
streams with ensemble classifiers. In Proceedings of
ACM SIGKDD International Conference on knowl-
edge discovery and data mining (SIGKDD2003),
pages 226–235.

1260

