
Progressive Optimization in Action

Vijayshankar Raman Volker Markl David Simmen Guy Lohman Hamid Pirahesh

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120
U.S.A.

{ravijay,marklv,simmen,lohman,pirahesh}@us.ibm.com

Abstract
Progressive Optimization (POP) is a technique to
make query plans robust, and minimize need for
DBA intervention, by repeatedly re-optimizing a
query during runtime if the cardinalities
estimated during optimization prove to be
significantly incorrect. POP works by carefully
calculating validity ranges for each plan operator
under which the overall plan can be optimal.
POP then instruments the query plan with
checkpoints that validate at runtime that
cardinalities do lie within validity ranges, and re-
optimizes the query otherwise. In this
demonstration we showcase POP implemented
for a research prototype version of IBM’s DB2
DBMS, using a mix of real-world and synthetic
benchmark databases and workloads. For
selected queries of the workload we display the
query plans with validity ranges as well as the
placement of the various kinds of CHECK
operators using the DB2 graphical plan explain
tool. We also execute the queries, showing how
and where re-optimization is triggered through
the CHECK operators, the new plan generated
upon re-optimization, and the extent to which
previously computed intermediate results are
reused.

1. Introduction
Virtually every commercial query optimizer chooses the
best plan for a query using a cost model that relies heavily
on accurate cardinality estimation. Cardinality estimation
errors can occur due to the use of inaccurate statistics,
invalid assumptions about attribute in-dependence,
parameter markers, and so on. These errors can lead to
substantially sub-optimal plans.
 “Progressive query optimization” (POP) is an approach
to make query processing more robust, and substantially
reduce the need for DBA intervention to debug problem
queries. POP makes query plans robust by automatically
detecting and recovering from cardinality estimation
errors. POP validates cardinality estimates against actual
values as measured during query execution. If there is
significant disagreement between estimated and actual
values, execution might be stopped and re-optimization
might occur. Oscillation between optimization and
execution steps can occur any number of times. A re-
optimization step can exploit both the actual cardinality
and partial results, computed during a previous execution
step. Checkpoint operators (CHECK) validate the
optimizer’s cardinality estimates against actual
cardinalities. Each CHECK has a condition that indicates
the cardinality bounds within which a plan is optimal. We
compute this validity range through a sensitivity analysis
of query plan operators. If the CHECK condition is
violated, CHECK triggers re-optimization. POP places
CHECK operators judiciously in query execution plans.
POP is implemented in a research prototype version of
IBM’s DB2 DBMS, and an experimental evaluation of
POP using TPC-H queries as well as a real-world data
base and workload showed that POP can provide
speedups up to two orders of magnitude for complex
OLAP queries [1].

Figure 1 depicts the control flow of POP. Upon
compilation of a SQL query, the optimizer generates a
variety of alternative query execution plans. Whenever

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1337

one plan is pruned by another plan during optimization,
POP uses a variant of the Newton-Raphson method to
determine the cardinality at which the cost functions of
the dominating and the dominated plan intersect. This
cross-over cardinality is used to continuously refine the
validity range of the optimal plan. Once the optimal plan
has been determined, POP adds CHECK operators at
selected points in the plan. During query runtime, these
CHECKs act as safeguards to ensure that the cardinality
of tuples flowing through them is indeed within the
validity ranges determined during optimization.

In the Figure, step 1 shows the initial execution of the
plan with the check, and the computation of intermediate
results. If the validity range for any CHECK operator is
violated, re-optimization is triggered (step 2), creating a
materialized query table “MQT” for each intermediate
result computed by the previous partial execution. The
actual cardinalities of these MQTs are fed back into the
optimizer (step 3), and the query is optimized again (step
4). The optimizer also generates access plans over the
MQTs into its mix of possible plans, and thus has the
option to reuse these pre-computed results. This second
iteration (steps 5 and 6) can again employ CHECK
operators and start the re-optimization cycle again, thus
continuously improving the query plan over several
iterations.
Further details on POP can be found in [MRS+04],
available upon request for the reviewers. Further
references and a discussion of related work can also be

found in [MRS+04] and are omitted in this proposal in
order to describe the demonstration system in more detail.

2. Demonstration
We demonstrate our implementation of POP using a
research prototype version of IBM’s DB2 DBMS. We
show a case study with a workload of queries that are hard
to optimize accurately using typical optimizer statistics
such as single-column histograms. The databases we are
going to use to demonstrate POP are (1) a DMV database
storing cars and accidents, as well as (2) a TPC-H
database. The DMV database stores tables of car models,
makes, owners, accident records, and owner
demographics. The main feature of this database is
extensive correlation between various columns, both
within and between tables. Next to these correlations,
other source of error in our workloads for TPC-H and
DMV are LIKE predicates and parameter markers. These
errors in many cases cause the optimizer to choose a
suboptimal plan. POP detects this during runtime, as the
validity range for a specific part of a query plan is
violated, and triggers re-optimization. In the following we
describe the two major components of our demonstration:
(1) the validity range computation and CHECK
placement, and (2) the re-optimization of an example
query.

Optimizer

Best Plan

Plan
Execution

with CHECK

Optimizer

Best Plan
With CHECK

StatisticsSQL Compilation

“MQT”with
Actual

Cardinality

Re-optimize

If CHECK Error

Partial
Results

New Best Plan

New
Plan

Execution

1

2

34

5

6

OptimizerOptimizer

Best PlanBest Plan

Plan
Execution

with CHECK

Plan
Execution

with CHECK

OptimizerOptimizer

Best Plan
With CHECK

Best Plan
With CHECK

StatisticsStatisticsSQL Compilation

“MQT”with
Actual

Cardinality

Re-optimize

If CHECK Error

Partial
Results
Partial
Results

New Best PlanNew Best Plan

New
Plan

Execution

1

2

34

5

6

Figure 1: Overview of Progressive Optimization

1338

3.1 Validity ranges and CHECK placement

The first part of our case study is to use our graphical
explain tool to demonstrate validity ranges and checkpoint
placement. We will use our graphical explain tool to
visually navigate the query plan for each of our example
queries. The query plan is shown as a tree, and clicking on
tree nodes (plan operators) pops up a window with
various properties of these operators. One of the
properties is the validity range – the range of cardinalities
flowing out of this operator under which this plan could
be optimal. The span of these validity ranges denotes the
robustness of these plans to cardinality errors,
independent of whether we re-optimize or not. We will
pick a single query, we will force alternative query plans
by altering optimizer configurations, and show the
validity ranges, to highlight the tradeoff between plan
robustness and plan cost.

We will also use these plans to illustrate the different
flavors of CHECK operators (see [MRS+04]) and the
tradeoff between their risk and opportunity. Looking at
the plan below a CHECK helps us gauge how much of the
work below the CHECK will have to be redone upon re-
optimization, and thus how risky it is. Likewise the

distribution of CHECKs in the query plan shows the
opportunity provided by each kind of CHECK.

3.2 Re-Optimization of an example query

The second part of our case study is the complete
execution of example queries, with POP enabled. The
query is initially submitted and optimized. After showing
this initial query plan, we let the plan run until a validity
range is violated. The execution engine outputs a warning
message that cardinality estimates are highly inaccurate.
Then the system automatically goes through another
round of optimization. In the demo, again using the DB2
graphical explain tool, we show the new plan that has
been computed during re-optimization, using the
knowledge about actual cardinalities, correlations,
parameter marker values, etc. learned from the previous
partial execution. Figure 2 shows both the initial plan and
the re-optimized plan for a query listing all lineitems for
all orders placed in the 1990s against the TPC-H database:

SELECT * FROM ORDERS, LINEITEM
WHERE L_ORDERKEY = O_ORDERKEY
AND O_ORDERDATE LIKE ‘%199%’

Re-optimization
after validity range
of CHECK operator
has been violated

re-use previous result
of scanning and sorting
the ORDERS table
(indicate by the “.” in
the new plan)

Initial plan Plan after re-optimization

Re-optimization
after validity range
of CHECK operator
has been violated

Re-optimization
after validity range
of CHECK operator
has been violated

re-use previous result
of scanning and sorting
the ORDERS table
(indicate by the “.” in
the new plan)

Initial plan Plan after re-optimization

Figure 2: Comparing the Initial Plan with the Plan after Re-optimization

1339

The initial plan for that query located at the left of Figure
2 shows that POP has placed a CHECK operator as
operator number 5 into the plan to safeguard the nested-
loop join (NLJN, operator 3) by ensuring that the
cardinality of the outer leg of the nested loop join is
within bounds. Because of the LIKE predicate, the output
cardinality for the SCAN and SORT operators is highly
underestimated (most of the records in the database are
from the 1990s). This causes the CHECK operator to
trigger re-optimization, which changes the initial plan to
the plan displayed in the right part of Figure 2. Note that
this plan has changed the join method from a nested-loop
join (NLJN in the Figure) to a merge-join (MGJN in the
Figure). Also note that the new plan re-uses the
intermediate result generated by the partial execution of
the initial plan. This intermediate result (indicated by a
“dot” in the new plan in the right part of Figure 2)
contains a subset of the ORDERS table after the
application of the LIKE predicate and is already sorted by
ORDERKEY.
This query runs orders of magnitude faster with POP than
it would when continuing along the initial plan, as we also
show in our demonstration by running the query both with
and without POP enabled.
For the demonstration of POP on the DMV database,
most estimation errors are not due to like predicates, but
due to correlations within and between tables, parameter
markers, and user-defined functions. All of these sources
of errors can trigger re-optimization because of a violation
of the validity ranges. Our demonstration also includes
showing the robustness POP adds to query optimization
for these sources of errors.

3. Conclusions
Progressive Optimization (POP) is a major step towards
making query optimization a dynamic process, where the
DBMS continually adjusts the plan based on a closed
feedback loop between the runtime and the optimizer. Our
demonstration shows the effectiveness and efficiency of
POP.

We illustrate where CHECK operators are placed in
query plans in a research prototype version of IBM’s DB2
DBMS. We also show the conditions under which re-
optimization takes place, using both a real-world DMV
database and the TPC-H database. POP makes query
plans more robust to estimation errors; and speeds-up
query execution by orders of magnitude for some realistic
queries.

4. References

MRS+04 V. Markl, V. Raman, D. Simmen, G. Lohman, H.
Pirahesh. Progressive Optimization for Robustness
in Query Processing. SIGMOD 2004.

 This full paper has detailed references to other

related work.

1340

