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Abstract 
Progressive Optimization (POP) is a technique to 
make query plans robust, and minimize need for 
DBA intervention, by repeatedly re-optimizing a 
query during runtime if the cardinalities 
estimated during optimization prove to be 
significantly incorrect. POP works by carefully 
calculating validity ranges for each plan operator 
under which the overall plan can be optimal. 
POP then instruments the query plan with 
checkpoints that validate at runtime that 
cardinalities do lie within validity ranges, and re-
optimizes the query otherwise. In this 
demonstration we showcase POP implemented 
for a research prototype version of IBM’s DB2 
DBMS, using a mix of real-world and synthetic 
benchmark databases and workloads. For 
selected queries of the workload we display the 
query plans with validity ranges as well as the 
placement of the various kinds of CHECK 
operators using the DB2 graphical plan explain 
tool. We also execute the queries, showing how 
and where re-optimization is triggered through 
the CHECK operators, the new plan generated 
upon re-optimization, and the extent to which 
previously computed intermediate results are 
reused. 
 
 
 
 
 

 

1. Introduction 
Virtually every commercial query optimizer chooses the 
best plan for a query using a cost model that relies heavily 
on accurate cardinality estimation. Cardinality estimation 
errors can occur due to the use of inaccurate statistics, 
invalid assumptions about attribute in-dependence, 
parameter markers, and so on. These errors can lead to 
substantially sub-optimal plans. 
 “Progressive query optimization” (POP) is an approach 
to make query processing more robust, and substantially 
reduce the need for DBA intervention to debug problem 
queries. POP makes query plans robust by automatically 
detecting and recovering from cardinality estimation 
errors. POP validates cardinality estimates against actual 
values as measured during query execution. If there is 
significant disagreement between estimated and actual 
values, execution might be stopped and re-optimization 
might occur. Oscillation between optimization and 
execution steps can occur any number of times. A re-
optimization step can exploit both the actual cardinality 
and partial results, computed during a previous execution 
step. Checkpoint operators (CHECK) validate the 
optimizer’s cardinality estimates against actual 
cardinalities. Each CHECK has a condition that indicates 
the cardinality bounds within which a plan is optimal. We 
compute this validity range through a sensitivity analysis 
of query plan operators. If the CHECK condition is 
violated, CHECK triggers re-optimization. POP places 
CHECK operators judiciously in query execution plans.  
POP is implemented in a research prototype version of 
IBM’s DB2 DBMS, and an experimental evaluation of 
POP using TPC-H queries as well as a real-world data 
base and workload showed that POP can provide 
speedups up to two orders of magnitude for complex 
OLAP queries [1].  

Figure 1 depicts the control flow of POP. Upon 
compilation of a SQL query, the optimizer generates a 
variety of alternative query execution plans. Whenever 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the VLDB copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Very Large Data Base Endowment.  To copy 
otherwise, or to republish, requires a fee and/or special permission from 
the Endowment 
Proceedings of the 30th VLDB Conference, 
Toronto, Canada, 2004 

1337



one plan is pruned by another plan during optimization, 
POP uses a variant of the Newton-Raphson method to 
determine the cardinality at which the cost functions of 
the dominating and the dominated plan intersect. This 
cross-over cardinality is used to continuously refine the 
validity range of the optimal plan. Once the optimal plan 
has been determined, POP adds CHECK operators at 
selected points in the plan. During query runtime, these 
CHECKs act as safeguards to ensure that the cardinality 
of tuples flowing through them is indeed within the 
validity ranges determined during optimization.  

In the Figure, step 1 shows the initial execution of the 
plan with the check, and the computation of intermediate 
results. If the validity range for any CHECK operator is 
violated, re-optimization is triggered (step 2), creating a 
materialized query table “MQT” for each intermediate 
result computed by the previous partial execution. The 
actual cardinalities of these MQTs are fed back into the 
optimizer (step 3), and the query is optimized again (step 
4). The optimizer also generates access plans over the 
MQTs into its mix of possible plans, and thus has the 
option to reuse these pre-computed results. This second 
iteration (steps 5 and 6) can again employ CHECK 
operators and start the re-optimization cycle again, thus 
continuously improving the query plan over several 
iterations.  
Further details on POP can be found in [MRS+04], 
available upon request for the reviewers. Further 
references and a discussion of related work can also be 

found in [MRS+04] and are omitted in this proposal in 
order to describe the demonstration system in more detail. 

2. Demonstration 
We demonstrate our implementation of POP using a 
research prototype version of IBM’s DB2 DBMS. We 
show a case study with a workload of queries that are hard 
to optimize accurately using typical optimizer statistics 
such as single-column histograms. The databases we are 
going to use to demonstrate POP are (1) a DMV database 
storing cars and accidents, as well as (2) a TPC-H 
database. The DMV database stores tables of car models, 
makes, owners, accident records, and owner 
demographics. The main feature of this database is 
extensive correlation between various columns, both 
within and between tables. Next to these correlations, 
other source of error in our workloads for TPC-H and 
DMV are LIKE predicates and parameter markers. These 
errors in many cases cause the optimizer to choose a 
suboptimal plan. POP detects this during runtime, as the 
validity range for a specific part of a query plan is 
violated, and triggers re-optimization. In the following we 
describe the two major components of our demonstration: 
(1) the validity range computation and CHECK 
placement, and (2) the re-optimization of an example 
query. 
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Figure 1: Overview of Progressive Optimization 
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3.1 Validity ranges and CHECK placement 

The first part of our case study is to use our graphical 
explain tool to demonstrate validity ranges and checkpoint 
placement. We will use our graphical explain tool to 
visually navigate the query plan for each of our example 
queries. The query plan is shown as a tree, and clicking on 
tree nodes (plan operators) pops up a window with 
various properties of these operators. One of the 
properties is the validity range – the range of cardinalities 
flowing out of this operator under which this plan could 
be optimal. The span of these validity ranges denotes the 
robustness of these plans to cardinality errors, 
independent of whether we re-optimize or not. We will 
pick a single query, we will force alternative query plans 
by altering optimizer configurations, and show the 
validity ranges, to highlight the tradeoff between plan 
robustness and plan cost.  

We will also use these plans to illustrate the different 
flavors of CHECK operators (see [MRS+04]) and the 
tradeoff between their risk and opportunity. Looking at 
the plan below a CHECK helps us gauge how much of the 
work below the CHECK will have to be redone upon re-
optimization, and thus how risky it is. Likewise the 

distribution of CHECKs in the query plan shows the 
opportunity provided by each kind of CHECK. 

3.2 Re-Optimization of an example query 

The second part of our case study is the complete 
execution of example queries, with POP enabled. The 
query is initially submitted and optimized. After showing 
this initial query plan, we let the plan run until a validity 
range is violated. The execution engine outputs a warning 
message that cardinality estimates are highly inaccurate. 
Then the system automatically goes through another 
round of optimization. In the demo, again using the DB2 
graphical explain tool, we show the new plan that has 
been computed during re-optimization, using the 
knowledge about actual cardinalities, correlations, 
parameter marker values, etc. learned from the previous 
partial execution. Figure 2 shows both the initial plan and 
the re-optimized plan for a query listing all lineitems for 
all orders placed in the 1990s against the TPC-H database:  
 
SELECT * FROM ORDERS, LINEITEM 
WHERE L_ORDERKEY = O_ORDERKEY 
AND  O_ORDERDATE LIKE ‘%199%’ 
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Figure 2: Comparing the Initial Plan with the Plan after Re-optimization 
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The initial plan for that query located at the left of Figure 
2 shows that POP has placed a CHECK operator as 
operator number 5 into the plan to safeguard the nested-
loop join (NLJN, operator 3) by ensuring that the 
cardinality of the outer leg of the nested loop join is 
within bounds. Because of the LIKE predicate, the output 
cardinality for the SCAN and SORT operators is highly 
underestimated (most of the records in the database are 
from the 1990s). This causes the CHECK operator to 
trigger re-optimization, which changes the initial plan to 
the plan displayed in the right part of Figure 2. Note that 
this plan has changed the join method from a nested-loop 
join (NLJN in the Figure) to a merge-join (MGJN in the 
Figure). Also note that the new plan re-uses the 
intermediate result generated by the partial execution of 
the initial plan. This intermediate result (indicated by a 
“dot” in the new plan in the right part of Figure 2) 
contains a subset of the ORDERS table after the 
application of the LIKE predicate and is already sorted by 
ORDERKEY.  
This query runs orders of magnitude faster with POP than 
it would when continuing along the initial plan, as we also 
show in our demonstration by running the query both with 
and without POP enabled. 
For the demonstration of POP on the DMV database, 
most estimation errors are not due to like predicates, but 
due to correlations within and between tables, parameter 
markers, and user-defined functions. All of these sources 
of errors can trigger re-optimization because of a violation 
of the validity ranges. Our demonstration also includes 
showing the robustness POP adds to query optimization 
for these sources of errors.  

 

3. Conclusions 
Progressive Optimization (POP) is a major step towards 
making query optimization a dynamic process, where the 
DBMS continually adjusts the plan based on a closed 
feedback loop between the runtime and the optimizer. Our 
demonstration shows the effectiveness and efficiency of 
POP. 

We illustrate where CHECK operators are placed in 
query plans in a research prototype version of IBM’s DB2 
DBMS. We also show the conditions under which re-
optimization takes place, using both a real-world DMV 
database and the TPC-H database. POP makes query 
plans more robust to estimation errors; and speeds-up 
query execution by orders of magnitude for some realistic 
queries. 
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