
Trust-Serv: A Lightweight Trust Negotiation Service

Halvard Skogsrud1, Boualem Benatallah1, Fabio Casati2, Manh Q. Dinh1

1 University of New South Wales
Sydney NSW 2052, Australia

{halvards,boualem,mdinh}@cse.unsw.edu.au

2 Hewlett-Packard Laboratories
Palo Alto, CA, 94304 USA

fabio.casati@hp.com

1 Introduction

In Web service environments, scalable access control
methods are required, as requester populations are of-
ten large and dynamic. For this reason, requester iden-
tities are often not known in advance, and traditional
access control models that rely on identity to deter-
mine access do not fit. Other models require requesters
to submit credentials (i.e., signed assertions describing
attributes of the owner) along with service invocations.
These models often do not consider credentials to be
resources, an assumption that does not hold when cre-
dentials may contain sensitive information. Trust ne-
gotiation addresses these problems by granting access
based on the level of trust established in a negotiation
between the requester and the provider. During this
trust negotiation, credentials are exchanged to gradu-
ally build trust.

However, several issues need to be addressed be-
fore trust negotiation can become a viable technol-
ogy. The description of trust negotiation policies is
mainly characterized by the use of ad hoc methods,
such as editing XML-based policy documents. These
policies specify which resources (i.e., credentials and
service operations) that can be disclosed at a given
state of the trust negotiation, and the conditions to
disclose them. Since trust negotiation policies may
be quite complex, largely ad hoc development can be
time-consuming and error prone. Incorrectly specified
policies may cause, e.g., confidential information to
be revealed to unauthorized parties, and open avenues
for loss of data through malicious or ignorant clients
or partners.

Another interesting problem that has not been ad-
dressed before is the lifecycle management of trust ne-
gotiation policies [4]. Enterprise policies often change

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

for a variety of reasons, including emerging competi-
tors, new products, mergers and acquisitions, updated
business processes, and changes to laws and regula-
tions. For trust negotiation to become a viable security
solution for enterprises, there is a need for high-level
frameworks and tools to provide support for automat-
ing the development, enforcement, and evolution of
trust negotiation policies.

Motivated by these concerns, we have developed the
Trust-Serv platform for model-driven trust negotiation
in Web service environments [4]. One innovative fea-
ture of Trust-Serv is the state machine-based model for
the specification of trust negotiation policies, which is
translated into structures used to automatically con-
trol trust negotiations at run-time. Another innovative
features is the support for dynamic policy evolution,
that is, changes to a policy while there are ongoing
trust negotiations.

2 Trust-Serv Design Overview

In Trust-Serv, trust negotiation policies are expressed
as state machines [4]. States represent the level of
trust achieved by the requester so far in the negoti-
ation. By entering a new state, a requester is given
access to the resources mapped to that state. How-
ever, instead of associating resources directly to states,
we use the abstraction of roles [1]. Roles are semantic
abstractions that describe some function performed by
people or processes (e.g., developer and tester). Trust-
Serv maps resources to roles and roles to states. Roles
are cumulative, so a requester may be a member of
several roles.

Transitions are extended beyond traditional state
machines to capture security abstractions necessary
for trust negotiation by labeling them with authoriza-
tion abstractions. Authorization abstractions define
the conditions that must be met for transitions to be
fired. There are two types of authorization abstrac-
tions; explicit and implicit. Explicit transitions are
triggered by actions performed by the requester. One
type of explicit transition is credential disclosure. This
type of transition requires the other party to disclose
one or more credentials, and it may place constraints

1329



on acceptable values of attributes contained within the
credentials. Other explicit transitions include provi-
sions and obligations. Provisions require actions to be
taken before proceeding, while obligations require ac-
tions to be taken in the future. We represent provisions
as service operations that must be invoked before the
trust negotiation can proceed. Obligations are repre-
sented as service operations that require the requester
to digitally sign a message stating what service oper-
ation to invoke, the deadline, and any compensation
required if the obligation is not met. Implicit transi-
tions are triggered by the provider. Timed transitions
are implicit, and they are fired when timeout events
occur, usually because the requester did not perform
any action for a period of time.

Once trust negotiation policies have been specified,
Trust-Serv will take care of enforcing them on behalf
of the users, relieving developers from the need of im-
plementing such logic into the service provider’s code,
as described below.

Enterprise policies often change to adhere to chang-
ing business strategies. Lifecycle management of poli-
cies is therefore an important issue to be considered
in trust negotiation systems. Since trust negotiations
may be long-lived, it may be necessary to change a pol-
icy while there are ongoing trust negotiations based on
this policy. It may not always be possible to let these
ongoing negotiations finish according to the old policy,
especially if it was found to be in breach of laws and
regulations, or if it did not properly protect business
assets. In these situations, it is necessary to appro-
priately migrate the trust negotiation instances to the
new policy.

Trust-Serv supports several migration strategies to
handle migration of trust negotiation instances from
an old policy to a new policy, details of which may be
found in [4]. The use of these strategies is controlled
by a strategy selection policy, which is a meta-policy
specified separately from the trust negotiation poli-
cies. This meta-policy is a collection of rules, such
as “Requesters who have visited state B are migrated
to the new policy”. When a trust negotiation pol-
icy is updated, a strategy selection policy is defined.
Ongoing trust negotiations are then evaluated against
this meta-policy, and the outcome of this evaluation
determines which strategy to apply to each trust ne-
gotiation instance and how to migrate it to follow an
appropriate policy.

3 Implementation

The Trust-Serv platform provides environments where
(i) service developers may create and manage trust
negotiation policies for their Web services, and (ii)
both providers and requesters may observe the nego-
tiations, and participate by negotiating manually, if
desired. Trust-Serv is implemented as an extension to
the Self-Serv platform [3]. Self-Serv supports Web ser-

vice development based on established standards such
as SOAP, WSDL (Web Service Description Language),
and UDDI (Universal Description, Discovery, and Inte-
gration) [2]. An overview of this architecture is shown
in Figure 1. Trust-Serv is implemented in C# using
Microsoft Visual Studio .NET 2003, and implementa-
tions of security standards are provided by the Web
Service Enhancements (WSE) for Microsoft .NET.

Negotiation
Controller

Negotiation
Modeler

Container

Negotiation
Policies

Provider
Service

Provider
Credentials

Negotiation
Controller

Negotiation
Modeler

Container

Negotiation
Policies

Requester
Service

Requester
Credentials

Credential
Validator

Credential
Validator

Figure 1: Architecture of Trust-Serv.

The Trust-Serv architecture introduces the notion
of Web service containers. A container acts as a mid-
dleware layer that takes on the chore of enforcing trust
negotiation policies, avoiding the need to code this
logic into the Web service itself. This means that tasks
such as controlling negotiations and verifying creden-
tials are delegated to the container, thereby consider-
able simplifying service development. The three main
components of the Trust-Serv container are the con-
troller, the modeler, and the validator.

The Trust-Serv container features a trust negotia-
tion controller, which is implemented as a Web ser-
vice that provides the capabilities to participate in
trust negotiations. The controller is responsible for re-
ceiving messages such as service operation invocations
and credential disclosures, determining if new trust ne-
gotiation instances should be created, and triggering
transitions if their conditions are met. Messages are
sent between trust negotiation instances and service
instances as SOAP request and response messages.

The trust negotiation modeler facilitates the speci-
fication and management of trust negotiation policies.
Trust negotiation policies are edited through a visual
interface, as shown in Figure 2. The modeler is also
used to automatically generate control rules, which are
used by the controller to determine actions to be taken
in response to events. The control rules are generated
from the state machine-based specification of the trust
negotiation policy using algorithms presented in [4],
and they are represented as XML documents.

The credential validator performs the task of val-
idating credentials. Validation includes checking the

1330



Figure 2: Defining and managing policies in Trust-Serv.

expiry date, verifying the issuer’s signature, and en-
suring that the credential has not been revoked.
Rather than implementing this functionality in the
container, we use Security Token Services (STS) as
defined in the WS-Trust specification (www-106.ibm.
com/developerworks/library/ws-trust). The STS is a
trust service that can be used to outsource the com-
plexity of public key infrastructure. The credential
validator communicates credentials to the STS, which
performs the validation and returns the result.

4 Demo Scenario

A bookshop scenario has been developed using the
Trust-Serv platform. The scenario involves an online
bookshop and a requester, Alice. The scenario works
as follows: Alice invokes an operation of the bookshop
service to buy a book. The trust negotiation controller
of the bookshop service intercepts the request and ini-
tiates a trust negotiation with Alice’s trust negotiation
controller. Later, the provider deploys a new policy,
and the trust negotiation with Alice is migrated to this
new policy. We will demonstrate (i) how to define a
trust negotiation policy for the bookshop service, (ii)
how to perform trust negotiations both automatically
and manually, and (iii) how to migrate ongoing trust
negotiations to new policies using strategies.

Defining a trust negotiation policy. Firstly, we
will demonstrate how to create a trust negotiation pol-
icy using the modeler. We will define a policy for
the provider service, as shown in Figure 2. However,
before the roles may be mapped to the states, the
roles must first be created. We will show how this is
achieved in the trust negotiation modeler. We will also
show how credentials are mapped to roles. By default,
the credentials are stored in plain XML files, so there
is no need to deploy a DBMS purely for the purpose
of supporting trust negotiation. However, support for
a DBMS may be configured if desired.

Defining transition conditions based on our autho-
rization abstractions are achieved in separate windows,
as shown in the lower right-hand corner of Figure 2.
Once the definition of the policy is complete, we will
show how it is converted into control rules and how the
control rules are deployed to the provider’s container.

Performing trust negotiations. Once the
provider’s container is ready, we will deploy a requester
service called Alice. Alice has her own Web service
with its own trust negotiation policy and container,
and her service will attempt to invoke operations of
the provider service.

For the purpose of the demonstration, we have de-
veloped trust negotiation monitors. These monitors

1331



Figure 3: Alice invokes the Purchase operation twice, first according to policy P.I, then according to P.F. The
window on the left shows Alice’s trust negotiation monitor, while the window on the right is the provider’s
monitor. Since Alice’s trust negotiation was migrated to state B in the new provider policy P.F after the first
invocation of the Purchase operation, she has to disclose her Credit Card for the second invocation.

may be deployed by the requesters and the providers,
and they show the progress of the negotiation, includ-
ing all the messages sent between the controllers of the
requester and the provider. In addition to monitoring
the trust negotiations, the monitors also permit both
the requester and the provider to negotiate manually,
by invoking trust negotiation operations on each oth-
ers’ controllers. Figure 3 shows both the requester’s
monitor and the provider’s monitor.

Alice starts by invoking the Purchase operation of
the provider service. When she sends the invocation,
her container deploys a trust negotiation controller in-
stance to handle this trust negotiation. Alice’s invoca-
tion is intercepted by the provider’s container, which
similarly spawns a controller instance to deal with Al-
ice. The controller instances send requests and re-
sponses back and forth according to the policies of
both the requester service and the provider service. In
the provider’s monitor, we can see when the requester
service (Alice) enters a new state. Finally, Alice has
negotiated sufficient trust, and her invocation of the
Purchase operation is forwarded to the provider ser-
vice, which sends its reply (Figure 3).

Migrating trust negotiations. At this point, the
provider decides to change its policy from the one
shown in the upper window of Figure 2 to the one in
the lower window. For Alice, this requires a different
credential to be disclosed to invoke the Purchase op-
eration, a credential Alice has not yet disclosed. The
provider also defines a strategy selection policy to ap-
propriately migrate all existing trust negotiations. As

a result of the policy update, Alice’s trust negotiation
instance is migrated from state D in the old policy to
state B in the new policy, and her membership in the
Buyer role is deactivated (Figure 2).

Alice then attempts to invoke the Purchase opera-
tion again. However, due to the migration of her trust
negotiation instance at the provider, she no longer has
access to this operation. Her trust negotiation then
resumes, and the provider requests that she discloses
her Credit Card to continue. Upon disclosing this
credential, Alice is again able to invoke the Purchase
operation (Figure 3).

In a more complex scenario we will deploy multiple
requesters and show how a different migration strategy
may be applied for each trust negotiation instance.

References

[1] D. Ferraiolo et al. Proposed NIST Standard for
Role-Based Access Control. ACM Trans. Informa-
tion and System Security, 4(3), Aug. 2001.

[2] M. P. Papazoglou and D. Georgakopoulos. Service-
Oriented Computing. Comm. ACM, 46(10), 2003.

[3] Q. Z. Sheng et al. SELF-SERV: A Platform for
Rapid Composition of Web Services in a Peer-to-
Peer Environment. In Proc. VLDB, Aug. 2002.

[4] H. Skogsrud, B. Benatallah, and F. Casati. Trust-
Serv: Model-Driven Lifecycle Management of
Trust Negotiation Policies for Web Services. In
Proc. 13th World Wide Web Conf., May 2004.

1332


