
An Injection with Tree Awareness:

Adding Staircase Join to PostgreSQL

Sabine Mayer◦ Torsten Grust◦ Maurice van Keulen• Jens Teubner◦

◦University of Konstanz
Department of Computer and Information Science

P.O. Box D 188, 78457 Konstanz, Germany
{mayers,grust,teubner}@inf.uni-konstanz.de

•University of Twente
Faculty of EEMCS

P.O. Box 217, 7500 AE Enschede, The Netherlands
m.vankeulen@utwente.nl

1 Introduction

The syntactic wellformedness constraints of XML
(opening and closing tags nest properly) imply that
XML processors face the challenge to efficiently handle
data that takes the shape of ordered, unranked trees.

Although RDBMSs have originally been designed
to manage table-shaped data, we propose their use
as XML and XPath processors. In our setup, the
database system employs a relational XML document
encoding, the XPath accelerator [1], which maps in-
formation about the XML node hierarchy to a table,
thus making it possible to evaluate XPath expressions
on SQL hosts.

Conventional RDBMSs, nevertheless, remain igno-
rant of many interesting properties of the encoded tree
data, and were thus found to make no or poor use of
these properties. This is why we devised a new join
algorithm, staircase join [2], which incorporates the
tree-specific knowledge required for an efficient SQL-
based evaluation of XPath expressions.

In a sense, this demonstration delivers the promise
we have made at VLDB 2003 [2]: a notion of tree
awareness can be injected into a conventional disk-
based RDBMS kernel in terms of staircase join. The
demonstration features a side-by-side comparison of
both, an original and a staircase-join enhanced in-
stance of PostgreSQL [4]. The required changes to
PostgreSQL were local, the achieved effect, however,
is significant: the demonstration proves that this injec-
tion of tree awareness turns PostgreSQL into a high-
performance XML processor that closely adheres to
the XPath semantics.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

2 Staircase Join

2.1 XPath Accelerator and Pre/Post Plane

The XPath accelerator [1] encodes the tree structure of
an XML document using unique pairs of integer values,
the nodes’ preorder and postorder traversal ranks.

If these ranks are used to place the document nodes
in the two-dimensional pre/post plane (Figure 1), it be-
comes apparent that the encoding preserves an impor-
tant property. Any context node v divides the XML
document into four disjoint regions, whose union plus
v itself covers all nodes of the document. The four
regions correspond to the result of the XPath location
steps v/preceding, v/ancestor, v/following, and
v/descendant, respectively.1

0a9
•

1b 1

•

2c 0

•
3d2

•
4e8

•
5f5◦

6g3

•
7h4

•

8i7
•

9j6
•

(a) Skeleton tree of
XML document and
pre/postorder ranks.

•a

•
b

•
c
•
d

•
e

◦
f

•g
•h

• i
•j

post

pre

preceding

ancestor

descendant

following

〈0,0〉 +++++
5

++++
+
+
+
+
+5

+
+
+
+

(b) Resulting pre/post plane.

Figure 1: The regions associated with the four major
XPath axes in the pre/post plane. Context node is f .

The nodes of the plane are maintained in a table
doc = pre post, the document table. The document
nodes n contained in the respective plane regions may
then be defined for any arbitrary context node v ∈ doc
by simple conjunctive range queries:

n ∈ v/preceding ⇔ v.pre > n.pre ∧ v.post > n.post
n ∈ v/following ⇔ v.pre < n.pre ∧ v.post < n.post
n ∈ v/descendant ⇔ v.pre < n.pre ∧ v.post > n.post
n ∈ v/ancestor ⇔ v.pre > n.pre ∧ v.post < n.post

1These four axes constitute the focus of our demonstration.
We will refer to them as major XPath axes in the following. For
the treatment of further XPath features, e.g., node and name
tests, please refer to [1, 2].

1305

These region queries enable us to translate XPath
path expressions into SQL queries. Each location
step in a given expression is converted into a join
which links the initial context node set context or
the result of the previous location step to the docu-
ment table. The join predicates directly correspond
to the region queries. Thus, the XPath expression
Q1 = context/following/descendant will be trans-
lated into the following SQL query:

SELECT DISTINCT n2.∗
FROM context v, doc n1, doc n2

WHERE v.pre < n1.pre AND v.post < n1.post
AND n1.pre < n2.pre AND n1.post > n2.post

ORDER BY n2.pre;

The DISTINCT and ORDER BY clauses make the result
comply with the W3C XPath semantics: nodes are
returned in document order with duplicates removed.

2.2 Pruning, Partitioning, and Skipping

In a conventional RDBMS, this evaluation of an XPath
location step amounts to query plans in which the
computation of the region queries happens on a per-
context-node basis, i.e., it will typically involve several
rescans of the document table.

In contrast to that, staircase join [2] employs three
techniques (pruning, partitioning, and skipping) which
devise a significantly more efficient way to work with
tree-structured data. Most importantly, staircase join
makes sure that the evaluation of an XPath location
step requires at most one sequential scan of the docu-
ment table and that the result of each location step is
duplicate-free and sorted in document order.

Context pruning reduces the work load by removing
redundant nodes from the context set. Figures 2 (a)
and (b) show how pruning works for the descendant
axis. The removal of nodes is based on inclusion, which
means that the descendant region of context node v3

is completely contained in the descendant region of
v1. For the preceding and following axes, pruning
even reduces the context set to a single node.

Partitioning ensures that one sequential scan of the
document table is enough to evaluate an XPath axis.
Since the node distribution in the pre/post plane is
isomorphic to the XML tree structure, certain plane
regions are guaranteed to not contain any nodes (∅ in
Figure 2 (c)). Staircase join uses this observation to
avoid unnecessary rescans of the plane.

Skipping reduces the number of document nodes
that must be considered during the evaluation of a par-
tition. Figure 2 (d) shows an example of descendant
axis skipping. As soon as we come across the first
following node n of context node v1, we know, again
due to the tree isomorphism, that region Z is neces-
sarily empty and the remaining nodes in the partition
may be skipped.

•

•

•

◦v1

•

•
◦v3 •
•
•

••
••
•

•

••
◦v2

••

post

pre

(a) Pre/post plane.

•

•

•

◦v1

•

•
••
•
•

••
••
•

•

••
◦v2

••

post

pre

(b) After pruning.

•

•

•

◦v1

•

•
••
•
•

••
••
•

•

••
◦v2

••

post

pre

p1 p2

∅

(c) Partitioning.

•

•

•

◦v1

•

•
••
•
•

•n•
••
•

•

••
◦v2

••

Z = ∅

post

pre

scan skip scan

(d) Skipping.

Figure 2: The pre/post plane before (a) and after
pruning (b), partitioning (c), and skipping (d) for a
descendant location step. Context nodes v1, v2, v3.

3 Tree Awareness for PostgreSQL

Completely encapsulated inside staircase join, we in-
jected this awareness of the XML tree structure into
PostgreSQL 7.3.3 [4]. The integration mainly affected
two query processing stages [3].

3.1 Planning/Optimization

During planning/optimization, we detect the cases in
which staircase join is the optimal join method. The
decision is based on an examination of the join clauses
(region queries): (1) both operands of a staircase join
clause must be of data type tree2, (2) there must
be two such clauses (the pre and post clause), and
(3) their comparison operator combination must spec-
ify a valid XPath axis (e.g. (<,<) for the following
axis).

desc

fol

sortpre

seq_scan

context

indx_scan

doc

indx_scan

doc

Figure 3: Execution plan for query Q1 of Section 2.1.

The typical execution plan of an SQL-based XPath
query is shown in Figure 3. As staircase join () pro-
duces identical execution cost for both types of linear

2The data type was newly introduced into PostgreSQL to
indicate that a column contains tree-structured data. It is a
derivative of the SQL int type.

1306

join trees, only the left-deep variant is considered, i.e.,
the current context set will always be the left (outer)
input parameter of the join and the document table
the right (inner).

3.2 Execution

Staircase join was adapted to fit into PostgreSQL’s
execution environment. This involved a local change
to the executor, i.e., the introduction of a new execu-
tion module which implements pruning, partitioning,
and skipping and adapts these phases to the stream-
ing mechanisms of PostgreSQL. In any other respect,
the module relies on the already available PostgreSQL
internals.

The most important native PostgreSQL data struc-
ture for the execution of staircase join is a variant of
the B-tree index, the inner-join index. As the name
implies, it was especially designed to serve as inner re-
lation in a join. Assume a join clause context.pre <
doc.pre, where context is the outer and doc the inner
relation and doc has an index on column pre. In this
case, a preorder rank p of a node in context can be
used as index search key to trigger an index scan of doc
which is guaranteed to start directly at the first tuple
with doc.pre > p. Since we scan context in ascending
pre-order (Figure 3) and due to partitioning as well
as pruning, this leads to a progressive forward scan
of doc. This also blends perfectly with PostgreSQL’s
page caching behavior (Section 4).

For staircase join, we assume that such an index
exists on (at least) the pre column of the document
table. This feature is also crucial for the efficient im-
plementation of skipping.

The original staircase join algorithms [2] materialize
the join result. However, since PostgreSQL strives to
avoid materialization, the algorithms had to be modi-
fied such that each operator in the execution plan only
requests the next input tuple from its subplan if im-
mediately required for processing.

The clearly distinguished execution steps predefined
by pipelining and the three staircase join-specific tech-
niques (pruning, partitioning, and skipping) suggested
the use of a finite state automaton to implement the
staircase join execution module. Each of the four ma-
jor axes was assigned its own automaton.

INIT STORE

IXSCANNEXT_CONTEXT

NEXT_NODE

JOIN

TEST_POST

TEST_PARTITION

skip

prune

partition

Figure 4: The descendant axis state automaton.

The state automaton of the descendant axis is out-
lined in Figure 4. After the first context tuple v1

has been retrieved from the outer subplan in the INIT
state, it is stored as lower boundary of the first parti-
tion. To identify the upper boundary of the partition
(cf. v2 in Figure 2), the NEXT_CONTEXT state continues
to request context nodes from the outer subplan, until
the next one with a higher post value than v1 is found
(pruning). As soon as the first partition is set, the join
starts to retrieve the document nodes within the par-
tition. To do so, a scan of the document table index
is initiated. It makes sure that all returned document
nodes n have a higher pre value than context node v1

(IXSCAN and NEXT_NODE). The TEST_PARTITION state
verifies that the pre value of n does not exceed the up-
per partition boundary (v2.pre). If the post clause is
also satisfied for v1 and n, the JOIN state can build and
return the next result node. If the TEST_PARTITION
state encounters the first document node outside the
current partition, the executor switches to the next
partition (STORE).

The real benefit of the document table index be-
comes apparent in connection with skipping. In case of
the descendant axis, this technique was incorporated
into the TEST_POST state. If the post clause evaluates
to false, we have found the first following node of v1

(cf. node n in Figure 2 (d)) and may skip the remain-
ing inner tuples in the current partition. The index
directly guides us to the first node of the subsequent
partition.

The automaton reaches a final state, if either the
outer or the inner subplan runs out of tuples.

4 Performance Benefits

To assess the benefits of tree awareness, tests were ex-
ecuted on a 2.2 GHz Dual-Pentium 4 machine with
2 GB RAM. Experiments were run on both, an orig-
inal and a tree-aware instance of PostgreSQL 7.3.3.
The tests examine the buffer-related behavior and
the execution times of the example XPath expres-
sion Q2 = //descendant::t1/ancestor::t2 in depen-
dence on the size of the input XML document (XMark
instances of size 110 KB up to 1.1 GB). More experi-
ments were conducted in [3].

The original database chooses two index nested-
loop joins to answer Q2 and evaluates all region query
clauses in the index. The execution plan chosen by the
tree-aware database is similar to the plan of Figure 3.
It evaluates the pre and post clause during staircase
join, the index is exclusively responsible for skipping.

4.1 Execution Times

Figure 5 compares the execution times obtained in
both database instances. It shows that staircase join
leads to a performance boost of up to several orders
of magnitude. While the execution times of the origi-
nal DBMS grow quadratically for this two-step XPath

1307

query, those of the enhanced DBMS grow linearly with
the document size as expected.

100

101

102

103

104

105

106

0.11 1.1 11 55 110 1100

ti
m

e
[m

s]

document size [MB]

Tree-aware
Original

Figure 5: Execution times of Q2 in the tree-aware and
the original PostgreSQL instance.

4.2 Buffer and Cache Behavior

Figure 6 shows the buffer statistics of the document
index in both databases. The growth in index page re-
quests almost exactly reflects the tendencies observed
in Figure 5. We find a quadratic growth in the original
and a linear growth in the tree-aware DBMS. This is
due to the fact that staircase join requires exactly one
scan of the document table, while the nested-loop join
requires |context | scans.

100

101

102

103

104

105

106

107

0.11 1.1 11 55 110 1100

#
 p

ag
e

re
qu

es
ts

/#
bu

ffe
r

hi
ts

document size [MB]

Page requests (tree-aware)
Buffer hits (tree-aware)
Page requests (original)
Buffer hits (original)

Figure 6: Total number of requested index pages of
Q2 in the tree-aware and the original DBMS ◦/� and
buffer hits •/� occurred.

The high number of buffer hits in the tree-aware
DBMS is caused by partitioning and the intercon-
nected manner in which the location steps of Q2 are
executed. When the ancestor automaton switches to
the next partition, the tuples that make up its bound-
aries are already in the buffer, because their pages were
loaded immediately beforehand by the descendant au-
tomaton. Thus, when the work on the nodes within
the subsequent partition begins, it is very likely that
these nodes reside on a disk page already in the buffer.

5 Demonstration Setup

The demonstration features a side-by-side comparison
of both, an original and a tree-aware instance of Post-
greSQL 7.3.3. Both database systems act as back-ends
to a common XPath front-end. This front-end allows
for a more complete set of XPath features than has
been outlined here (in particular the supported XPath
dialect includes all major XPath axes as well as node
and name tests).

The front-end compiles an XPath expression into an
equivalent SQL query that operates on the doc table.
This SQL text is then presented to the user as well as
shipped to both back-ends for execution.

Since the efficient management of XML documents
of very large size is one of the core contributions
of database technology in XML processing, both
databases are supplied with XMark instances whose
size ranges between 110 KB and 1.1 GB (or 5,000 to
50 million nodes).

The demonstration makes use of diagnostic features
of PostgreSQL to make the preparation as well as the
progess of query execution visible for the user. Hooks
are installed in both back-ends to generate a graphical
presentation of the chosen query plans (much like in
Figure 3). Due to its enhanced query planner, the
tree-aware instance relies on operators to evaluate
XPath location steps, while the original instance will
fall back to sort and index nested-loop join.

During execution, both back-ends record timings,
page request and cache statistics to provide a detailed
graphical post-query feedback (cf. Figures 5 and 6).

Finally, an XML serialization routine hooked into
PostgreSQL displays the nodes/subtrees selected by
the input XPath expression.

To provide a further point of reference and to ex-
emplify the promising potential of database-supported
XML processing, the demonstration additionally eval-
uates the input XPath expression via a “conventional”
main-memory based XPath processor. In anticipation
of the live demonstration, the latter class of proces-
sors are no match for an RDBMS that has received an
injection of tree awareness.

References

[1] Torsten Grust. Accelerating XPath Location Steps. In
Proc. of the 21st ACM SIGMOD Int’l Conference on
Management of Data (SIGMOD), pages 109–120. ACM
Press, Madison, Wisconsin, USA, June 2002.

[2] Torsten Grust, Maurice van Keulen, and Jens Teubner.
Staircase Join: Teach a Relational DBMS to Watch its
Axis Steps. In Proc. of the 29th Int’l Conference on
Very Large Databases (VLDB), pages 524–535. Berlin,
Germany, September 2003.

[3] Sabine Mayer. Enhancing the Tree Awareness of a Re-
lational DBMS: Adding Staircase Join to PostgreSQL.
Master’s thesis, Universität Konstanz, February 2004.

[4] PostgreSQL 7.3.3. http://www.postgresql.com/.

1308

