
Memory Requirements for Query Execution in Highly
Constrained Devices

Nicolas Anciaux* Luc Bouganim** Philippe Pucheral*,**

* PRISM Laboratory
78035 Versailles - France

<Firstname.Lastname>@prism.uvsq.fr

 ** INRIA Rocquencourt
France

<Firstname.Lastname >@inria.fr

Abstract

Pervasive computing introduces data management
requirements that must be tackled in a growing variety of
lightweight computing devices. Personal folders on chip,
networks of sensors and data hosted by autonomous
mobile computers are different illustrations of the need
for evaluating queries confined in hardware constrained
computing devices. RAM is the most limiting factor in
this context. This paper gives a thorough analysis of the
RAM consumption problem and makes the following
contributions. First, it proposes a query execution model
that reaches a lower bound in terms of RAM
consumption. Second, it devises a new form of
optimization, called iteration filter, that drastically
reduces the prohibitive cost incurred by the preceding
model, without hurting the RAM lower bound. Third, it
analyses how the preceding techniques can benefit from
an incremental growth of RAM. This work paves the
way for setting up co-design rules helping to calibrate
the RAM resource of a hardware platform according to
given application’s requirements as well as to adapt an
application to an existing hardware platform. To the best
of our knowledge, this work is the first attempt to devise
co-design rules for data centric embedded applications.
We illustrate the effectiveness of our techniques through
a performance evaluation.

1 Introduction
Pervasive computing is now a reality and intelligent devices
flood many aspects of our everyday life. As stated by the
Semiconductor Industry Association, the part of the
semiconductors integrated in traditional computers represents
today less than 50% of a market of $204Billion [SIA02]. As
new applications appear, the need for database techniques
embedded in various forms of lightweight computing devices
arises. For example, the vision of the future dataspace, a
physical space enhanced with digital information made
available through large scale ad-hoc sensor networks is paint

in [ImN02]. Sensor networks gathering weather, pollution or
traffic information have motivated several recent works
[MH02, BGS00]. They have brought out the need for
executing local computation on the data, like aggregation, sort
and top-n queries [CaK97], either to save communication
bandwidth in push-based systems or to participate in
distributed pull-based queries [MFH02]. Personal folders on
chip constitute another motivation to execute on-board
queries. Typically, smartcards are used in various applications
involving personal data (such as healthcare, insurance, phone
books etc.). In this context, queries can be fairly complex (i.e.,
they can involve selections, joins and aggregation) and their
execution must be confined on the chip to prevent any
disclosure of confidential data [PBV01]. Hand-held devices
are other forms of autonomous mobile hosts that can be used
to execute on-board queries on data downloaded before a
disconnection (e.g., personal databases, diary, tourist
information). Thus, saving communication costs, preserving
data confidentiality and allowing disconnected activities are
three different concerns that motivate the execution of on-
board queries on lightweight computing devices [NRC01,
Ses99].

While the computing power of lightweight devices
globally evolves according to Moore’s law, the discrepancy
between RAM capacity and the other resources, notably CPU
speed and stable storage capacity, still increases. This is
especially true for Systems on Chip (SoC) [NRC01, GDM98]
where RAM competes with other components on the same
silicium die. Thus, the more RAM, the less stable storage, and
then the less embedded data. As a consequence, SoC
manufacturers privilege stable storage to the detriment of a
RAM strictly calibrated to hold the execution stack required
by on-board programs (typically, less than 1KB of RAM is
left to the applications in smartcards even in the advance
prototypes we recently experimented). This trade-off is
recurrent each time the silicium die size needs to be reduced to
match physical constraints such as thinness, energy
consumption or tamper resistance. Another concern of
manufacturers is reducing the hardware resources to their
minimum in order to save production costs on large-scale
markets [SIA02]. Thus, RAM will remain the critical resource
in these environments and being able to calibrate it against
data management requirements turns out to be a major
challenge.

As far as we know, there is today no tool nor academic
study helping to calibrate the RAM size of a new hardware
platform to match the requirements of on-board data centric

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

applications. In traditional DBMSs, query evaluation
techniques resort to swapping to overcome the RAM
limitation. Unfortunately, swapping is proscribed in highly
constrained devices because it incurs prohibitive write costs in
electronic stable memories and it competes with the area
dedicated to on-board data. In the absence of a deep
understanding of RAM consumption principles, pragmatic
solutions have been developed so far. Light versions of
popular DBMS like Sybase Adaptive Server Anywhere
[GIG01], Oracle 8i Lite [ORA02], SQLServer for Windows
CE [Seg01] or DB2 Everyplace [KLL01] have been designed
for hand-held devices. Their main concern is reducing the
DBMS footprint by simplifying and componentizing the
DBMS code [Gra98]. However, they do not address the RAM
issue. Query executions exceeding the RAM capacity are
simply precluded, thereby introducing strong restrictions on
the query complexity and on the volume of the data that can
be queried. Other studies have been conducted to scale down
database techniques in the particular context of smartcards
[ISO99, PBV01]. In [PBV01], we tackled the RAM issue by
proposing a dedicated query evaluator relying on an ad-hoc
storage and indexation model. This solution, called
PicoDBMS, has been shown convenient for complex personal
folders (e.g., healthcare folders) embedded in advanced
smartcard platforms [ABB01]. Without denying the interest of
the PicoDBMS approach, its application’s domain is reduced
by two factors. First, PicoDBMS makes an intensive use of
indices with a side effect on the update cost and on the
complexity of the transaction mechanisms enforcing update
atomicity. One may thus wonder whether the resort to indices
could be avoided, and in which situations. Second, PicoDBMS
constitutes an ad-hoc answer to a specific hardware platform.
As noticed earlier, hardware configurations are more and more
specialized to cope with specific requirements in terms of
lightness, battery life, security and production cost. Building
an ad-hoc query evaluator for each of them will rapidly
become cumbersome and, above all, will incur a prohibitive
design cost [NRC01].

In the light of the preceding discussion, there is a clear
need for defining pre-designed and portable database
components that can be integrated in Systems on Chip (SoC).
The objective is to be able to quickly differentiate or
personalize systems in order to reduce their cost and their
time-to-market [GDM98]. To this end, a framework for
designing RAM-constrained query evaluators has to be
provided. This paper precisely addresses this issue, following
the three steps approach outlined below.

Devising a RAM lower bound query execution model
This study proscribes swapping and indexing for the reasons
stated earlier. Searching for a RAM lower bound query
execution model in this context forces us to concentrate on the
algorithmic structure of each relational operator and on the
way the dataflow between these operators must be organized.
The contribution of this step is to propose operators’
algorithms that reach a RAM lower bound and to guidelines
that remain valid when a small quantity of RAM is added to
the architecture.

Devising optimization techniques that do not hurt this RAM lower
bound
Obviously, a RAM lower bound query execution model
exhibits poor performance. The absence of swapping and
indexing leads to recompute repeatedly every information that
cannot be buffered in RAM. The consequence on the query
execution algorithms is an inflation in the number of iterations
performed on the on-board data. The contribution of this step
is to propose new optimization techniques that drastically
reduce the number of irrelevant tuples processed at each
iteration.
Studying the impact of an incremental growth of RAM
Mastering the impact of RAM incremental growths has two
major practical outcomes. In a co-design perspective, it allows
to determine the minimum amount of RAM required to meet a
given application’s requirement. In the context of an existing
hardware platform, it allows to calibrate the volume of on-
board data and the maximum complexity of on-board queries
that remain compatible with the amount of available RAM. As
demonstrated by our performance evaluation, very small RAM
growths may lead to considerable performance gains. This
motivates further the study of a RAM lower bound query
execution model and of RAM incremental variations. The
contribution of this step is twofold. First, it proposes an
adaptation of the preceding execution techniques that best
exploit each RAM incremental growth and demonstrates that
they constitute an accurate alternative to the index in a wide
range of situations. Second, it proposes co-design guidelines
helping to find the best compromise between RAM capacity,
volume of on-board data, query complexity and response time.

This paper is organized as follows. Section 2 introduces
important assumptions that delimit the context of the study.
Section 3 presents our RAM lower bound query execution
model. Section 4 addresses optimization issues in this RAM
lower bound context. Section 5 describes the impact of RAM
incremental growths on the query execution model. Section 6
presents our performance evaluation. Finally, section 7
concludes the paper.

2 Context of the study
This section introduces hypothesis on the data sources, on the
queries and on the computing devices, and discusses their
relevance with respect to the target of this study.

H1 : On-board data sources are sequential files
We assume that the data sources are hosted by the device and
do not benefit from any index structure. The reason to push
indices aside from this study is threefold. First, indices have a
negative side effect on the update cost (as we will see, this
effect is magnified by hypothesis H4). Second, indices makes
update atomicity more complex to implement [PBV01] and
then have also a negative side effect on the algorithm’s
footprint. Finally, indices compete with on-board data on
stable memory, thereby reducing the net storage capacity of
the device. This does not mean that indices are definitely
useless or unsuitable. As shown in Section 6, indices remain
the sole solution to cope with strict response time constraints
in the case of complex queries over a large amount of data.
One objective - and contribution - of this study is to

demonstrate that alternatives to indices exist and are
convenient in a wide range of situations.
H2 : Queries are unnested SQL queries
We consider relational data for the sake of generality and
simplicity. Note that the relational model has become a
standard even in highly constrained environments
[ISO99,PBV01]. The queries of interest are unnested SQL
queries including Group by, Having and Order by statements.
Even if more complex queries could be considered, unnested
SQL queries are expressive enough to cover the need of the
target on-board data centric applications (sensors, personal
folders, ambient intelligence).
H3 : Computing devices are autonomous
Autonomy means that the execution of on-board queries relies
only on local computing resources. Obviously, if we assume
that external resources can be exploited, the RAM problem
vanishes. As stated in the introduction, saving communication
costs, preserving data confidentiality and allowing
disconnected activities are three common motivations to
execute on-board queries in autonomy.
H4 : Stable storage is made of electronic memory
This assumption simply expresses the reality since lightweight
computers use commonly EE-PROM, Flash or power-supplied
RAM technologies for their stable storage [NCR01]. These
technologies exhibit good properties in terms of lightness,
robustness, energy consumption, security and production costs
compared with magnetic disks. In addition, fine grain data can
be read-accessed from stable storage at a very low cost (the
gap between EE-PROM, Flash and RAM in terms of direct
read-access time is less than an order of magnitude). On the
other hand, writes in EE-PROM and Flash are extremely
expensive (up to 10 ms per word in EE-PROM) and the
memory cell lifetime is limited to about 105 write cycles.

The conjunction of H3 and H4 precludes a query evaluator
resorting to memory swap. Indeed, swapping incurs
prohibitive write costs and may hurt the memory lifetime
depending on the stable storage technology used. But above
all, the swapping area must be local and there is no way to
bound it accurately. Again, the swapping area competes with
the on-board data in stable storage.

3 RAM lower bound query execution model
This section concentrates on the definition of a query
execution model that reaches a lower bound in terms of RAM
consumption, whatever be the complexity of the query to be
computed and the volume of the data it involves. The RAM
consumption of a Query Execution Plan (QEP) corresponds to
the cumulative size of the data structures used internally by all
relational operators active at the same time in the QEP plus
the size of the intermediate results moving along the QEP. We
first present two design rules that help us to derive the
principles of a RLB (RAM Lower Bound) query evaluator.
Then, we propose data structures and algorithms
implementing this query evaluator.

3.1 Design rules and consistency constraints

Two design rules guide the quest for a RLB query evaluator.

R1 (Invariability): Proscribe variable size data structures
R2 (Minimality): Never store information that could be
recomputed
Rule R1 states that a data structure whose size varies with the
cardinality of the queried data is incompatible with the reach
of a RAM lower bound. As a consequence of R1, if an
operator OP1 consumes the output of an operator OP2, OP1’s
consumption rate must be higher than or equal to OP2’s
production rate to avoid storing an unbounded flow of tuples.
Rule R2 trades performance for space saving. As a
consequence of R2, intermediate results are never stored since
they can be recomputed from the data sources at any time.
Roughly speaking, R1 rules the synchronization between the
operators in the QEP while R2 minimizes the internal storage
required by each of them. The conjunction of R1 and R2
draws the outline of a strict pipelined query execution model
that enforces the presence of at most one materialized tuple at
any time in the whole QEP, this tuple being the next one to be
delivered by the query evaluator.

Let us give the intuition of such a query evaluator on an
example. Let assume a Join operator combining two input sets
of tuples called ILeft and IRight. ILeft and IRight result
themselves from the evaluation of two sub-queries QLeft and
QRight in the query tree. To comply to R1, each ILeft tuple will
be compared to IRight tuples, one after the other, at the rate of
their production by QRight, and the result will be itself produced
one tuple at a time. To comply with R2, QRight will be
evaluated ||ILeft|| times in order to save the storage cost
associated to IRight. Following this principle for all operators
and combining them in a pipelined fashion is the intuition to
reach a RAM lower bound for a complete QEP. However, care
must be taken on the way the dataflow is controlled to
guarantee the consistency of the final result. To this end, we
introduce two consistency constraints that impact the iteration
process and the stopping condition of each algorithm
presented in the next section

Unicity: the value of a given instance of the Cartesian product of
the involved relations must be reflected at most once in the result.
Completeness: the values of each instance of the Cartesian
product of the involved relations that satisfies the qualification of
the query must be reflected in the result.

3.2 Execution model and notations

Before going into the details of each operator’s algorithm, we
discuss the way operators interact in a QEP. We consider the
Iterator model [Gra93] where each operator externalizes three
interfaces: Open to initialize its internal data structures, Close
to free them and Next to produce the next tuple of its output.
The QEP takes the form of a tree of operators, where nodes
correspond to the operators involved in the query, leaves
correspond to the Scan operator iterating on the involved
relations and edges materialize the dataflow between the
operators. Figure 1 pictures a simple QEP and introduces
notations that will be used in the algorithm’s description.
Rules R1 and R2 guarantee the minimality of the dataflow by
reducing its cardinality to a single tuple. A shared data
structure called DFlow materializes this dataflow. Each
operator uses in its turn this data structure to consume its input
and produce its output, one tuple at a time. More precisely,

DFlow contains: (i) one cursor maintaining the current
position reached in each relation involved in the QEP; these
cursors materialize the current instance of the Cartesian
product of these relations; and (ii) a storage area for each
attribute computed by an aggregate function. Thus, DFlow
contains the minimum of information required to produce a
result tuple at the root of the QEP and is the unique way by
which the operators communicate. As pictured in Figure 1,
cursors and attributes in DFlow are organized into lists to
increase the readability of the algorithms (e.g., GrpLst denotes
the list of cursors referencing the relations participating in the
grouping condition).

Additional notations are used all along the paper. ILeft and
IRight denote respectively the left and right inputs of a binary
operator; ||input|| denotes the tuple cardinality of an operator’s
input; k denotes the number of distinct values in an input with
respect to a grouping or a sorting condition.

Figure 1: Query Example and notations

3.3 Operator’s algorithms

Following the precept of rule R2, we present below a RLB
form of each relational operator’s algorithm. For each
algorithm, we show its compliance with the Unicity and
Completeness consistency constraints and give its RAM
consumption.

Scan, Select, Project and Join algorithms
The algorithms implementing these operators are pictured in
Figure 2, except for the Project that is rather straightforward.
Project simply builds a result tuple by dereferencing the
cursors present in DFlow and by copying the values belonging
to DflowèAggLst. The Scan and Select algorithms are self-
explanatory. Join implements a Cartesian product between its
left and right inputs. Let us verify Unicity and Completeness
for each algorithm. Regarding the Scan, the same tuple cannot
be considered twice between an Open and a Close and all
tuples are considered since Open initializes the cursor to the
beginning of the relation and the stopping condition of Next is
to reach EOF. Select and Project are unary operators that
consume their input sequentially and then inherit Unicity and
Completeness from their child operator in the QEP. The Join
algorithm performs a nested loop on its operands so that each
instance of the Cartesian product of its left and right inputs is
examined exactly once. Again, Unicity and Completeness are
inherited from its left and right child operators in the QEP.

The minimality of these four algorithms in terms of RAM
consumption is not questionable since their consumption
equals zero. Indeed, they do not use other data structure than
DFlow.

Figure 2: RLB Algorithms

3.4 GroupBy algorithm

The GroupBy operator aggregates in a single result tuple all
input tuples sharing the same grouping value. By rule R2,
DFlow contains a single tuple and then grouping values have
to be processed one after the other. By rule R1, keeping track

Scan.Open Dflow.Ri←0 // Initialize Ri scan

Scan.Next Dflow.Ri ++ // reference next Ri tuple
 if Dflow.Ri > Ri.Cardinality then Dflow.Ri←EOF // check EOF

Select.Open ChildOp.Open()

Select.Next repeat // Get Next child tuple and
 ChildOp.Next() // check the selection predicate
 until DFlow.Child = EOF or match(SelectionPredicate)

Join.Open LeftOp.Open();RightOp.Open() // Open L and R input
 if DFlow.LeftChild=EOF or DFlow.RightChild=EOF then
 DFlow.Child←EOF // One input is empty
 else LeftOp.Next() // get the first L tuple

Join.Next if DFlow.Child ≠ EOF then // check both L&R EOF
 Repeat // Get a R tuple until EOF or match
 RightOp.Next()
 if DFlow.RightChild = EOF then
 LeftOp.Next() // if end of R, get a next L tuple
 if DFlow.LeftChild ≠ EOF then
 RightOp.Open() // and reopens R
 RightOp.Next()
 until DFlow.Child = EOF or match(JoinPredicate)

GBY.Open ChildOp.Open() // Scan the whole input in
 Split.Value←+∞ // order to find the smallest
 repeat // grouping value (GV) in Split
 ChildOp.Next()
 if DflowèGrpLst < Split.Value then
 Split←DFlow.GrpLst // Split converges to the

 until DFlow.Child = EOF // smallest GV at EOF

GBY.Next if Split.Value ≠ +∞ then // there is a next GV to compute
 Current←Split // Initialize the computation
 DFlow.AggLst←0 // of the current GV
 Split.Value←+∞ // Initialize Split for computing
 ChildOp.Open() // the next GV
 repeat // scan the whole input
 ChildOp.Next()
 if DflowèGrpLst = Current.Value then // the current tuple
 compute DFlowèAggLst // shares the GV

 elseif DFlowèGrpLst∈] Current.Value,Split.Value [then
 Split←DFlow.GrpLst // Split converges
 until DFlow.Child = EOF
 DFlow.GrpLst←Current // Output an aggregate

Sort.Open ChildOp.Open() // Identical to GBY.Open
 Split.Value←+∞
 repeat
 ChildOp.Next()
 if DFlowèSortLst<Split.Value then
 Split←DFlow.SortLst
 until DFlow.Child = EOF
 Current←Split

Sort.Next ChildOp.Next()
 while DFlowèSortLst ≠ Current.Value and
 (DFlow.Child ≠ EOF or Split.Value ≠ +∞)
 if DFlow.Child = EOF then // The input ends but there is
 ChildOp.Open() // a sorting value (SV) in Split
 Current←Split
 Split.Value←+∞ // Reinit. Split to find next SV
 elseif DFlowèSortLst ∈]Current.Value, Split.Value[then
 Split←DFlowèSortLst // Converges to the next SV
 ChildOp.Next()
 // While loop ends when a tuple with Current SortLst is found

 GrpLst = {R, S} AggLst = {Sum} SortLst = ∅

 Join2.LeftChild = {R, S} Join2.RightChild ={T}

 Join2.LeftChildOp=Join1

 DflowèGrpLst = Value (R.a,S.b) referenced by DFlow

DFlow structure

S cursor R cursor T cursor Sum

scan scan

scan

R S

T

Group by R.a, S.b

of the list of all grouping values already processed by the
algorithm is precluded. Thus R1 and R2 lead to process the
grouping values in a predefined order, so that recording a
single value sums up the history of the whole processing. The
consequence is that the RAM consumption of the GroupBy
algorithm amounts to two variables: Current referencing the
grouping value being processed at each iteration and Split
recording the frontier between the grouping values already
processed and the ones remaining to be processed. This
constitutes a RAM lower bound in the absence of assumption
on the initial ordering of the input (hypothesis H1). Different
RLB forms of the GroupBy algorithm can be devised
depending on the way the Split variable is managed.

The first variation of the GroupBy algorithm, called
CompMin, uses Split to reference the next grouping value to
be computed. At the first iteration (implemented by
Group.Open), the algorithm scans its input and searches into
Split the smallest grouping value present in the input. At each
next iteration, Current takes the value of Split, then the
algorithm scans again its input and aggregates the tuples
sharing the grouping value referenced by Current. At the same
time, the algorithm searches into Split the grouping value to be
processed at the next iteration, that is the value immediately
greater than the one referenced by Current. This algorithm
then performs (k+1) iterations on its input. Unicity and
Completeness are guaranteed by the fact that the grouping
values are processed in ascending order. Therefore, the same
value cannot be considered in different iterations and all
grouping values are considered. Indeed, Group.Open initiates
the processing by finding the smallest grouping value and the
stopping condition in Group.Next is that there is no grouping
value greater than the last processed. In addition, each
iteration scans the input sequentially, so that a tuple sharing
the grouping value being processed is considered exactly
once, assuming the child operator enforces Unicity and
Completeness.

The second variation of the GroupBy algorithm, called
CompMax, uses Split to reference the last grouping value that
has been processed. During the first iteration, Current is used
to converge to the smallest grouping value and to compute the
resulting aggregate at the same time. To illustrate this, let
assume the first grouping value encountered in the input be v1,
so that Current references v1. While iterating on the input,
tuples having a value higher than v1 are not considered and
tuples sharing the value v1 participate in the aggregation. If a
tuple having a value v2 < v1 is encountered, Current evolves
to v2 and the aggregation calculus is reinitialized. At the end
of the first iteration, Current has converged to the smallest
grouping value and the resulting aggregation has been
computed. At each next iteration, Split takes the value of
Current and Current is used to converge to the next grouping
value (i.e., the value immediately greater than the one
referenced by Split) and to compute the resulting group at the
same time. While k iterations suffice to compute all
aggregations, a (k+1)th iteration is required to guarantee the
Completeness of the algorithm, that is to check that there exist
no greater grouping value than the last processed. The
remaining of the proof of Unicity and Completeness is
equivalent to the CompMin algorithm.

Intuitively, and as its name indicates, CompMax does more
job than CompMin since several aggregation calculus are
partially performed before being discarded. However,
combining the first iteration of CompMax with the next
iterations of CompMin leads to a third algorithm, called
IterMin, that implements the GroupBy in only k iterations.
Indeed, the first iteration of CompMax does not use the Split
variable. This variable could thus be exploited to determine
the second grouping value to be processed, so that the (k-1)
next iterations could be computed in the same way as
CompMin. Figure 3 summarizes the behavior of each algorithm
on an input containing a sequence G1<G2 …<Gk of grouping
values. For each algorithm, we represent a snapshot of its
internal state (i.e., Current, Split and Agg variables) at givens
iterations. The gray arrow represents the current tuple being
processed at a given iteration (e.g., if the tuple being considered
at iteration 2 of CompMin is (G5,8), then the values of
Current, Split and Agg are respectively G2, G3 and 0).

Figure 3: Snapshot of the three GroupBy algorithms

Sort algorithm
The Sort algorithm shares the same structure, RAM lower
bound, number of iterations and proof of Unicity and
Completeness as the CompMin variation of the GroupBy
algorithm. The sole difference is that each iteration delivers
the tuples sharing the sorting value referenced by Current
instead of aggregating them. This algorithm is thus not
discussed further in this section. Note that a CompMax-like
variation of the Sort algorithm could be devised but it would
lead to ||input|| iterations (instead of k+1) to sort an input flow.

3.5 Concluding remarks

The RAM consumption of a whole QEP incurred by our
execution model can be computed as follows. According to
the queries of interest (see hypothesis H2), the sole operators
that may be involved several times in the same QEP are Scan,
Select and Join and their RAM consumption is zero.
Therefore, the RAM consumption ascribed to the QEP’s
operators is the RAM consumed by the GroupBy and Sort
operators, namely 2*||GrpLst|| + 2*||SortLst||, which
corresponds to the size of their respective Current and Split
variables . The size of the dataflow corresponds to the size of
the DFlow structure plus the size of the current tuple being
delivered in the final result, that is: ||FromLst|| + ||AggLst|| +
Σisize(a i), for each ai ∈ p, p being the Project condition.

It° 0 It° 1 It° 2 It° k It° k+1

Split
Current

Agg

G3
17

G1
G3
17

Gk-1
Gk
29

Gk
+∞
0

CompMax

Current
Split
Agg

G3
G4
17

G2
G3
0

Gk
+∞
29

IterMin

Current
Split
Agg

G3
G1
G3
0

G2
G3
0

Gk
+∞
29

CompMin
Gk
G3
G7
G3
Gk
G5
G6
G5
G1
G4

20
5
7

12
9
8
6
8

40
10

GroupBy
input flow

It° 0 It° 1 It° 2 It° k It° k+1

It° 0 It° 1 It° 2 It° k It° k+1

Current
tuple

Consequently, the RAM lower bound to execute a query
without index can be expressed by:
RLB=Σi size(ai) + 2 × ||GrpLst|| +2 × | SortLst|| + ||FromLst|| + ||AggLst||
This result demonstrates the feasibility to design a query
evaluator consuming a tiny bounded RAM, independent of the
cardinality of the queried data and of the query complexity.
One may doubt about the practical interest of RLB expecting
that lightweight platforms will be equipped with a much larger
RAM. Note however that current smartcard platforms
provides not much than a few hundred bytes of RAM to the
on-board applications, the rest of the RAM being preempted
by the operating system, and the JavaCard VM. Regarding
future platforms, smartcard manufacturers put more emphasis
on the increase of CPU speed, communication bandwidth and
storage capacity than on RAM. In addition, the objective of
co-design is to lower the hardware resources (among them the
RAM) to their minimum in order to save production costs on
large-scale markets.

But beyond this formula, the significance of this study is
on providing guidelines and algorithm’s structures that remain
valid when a small quantity of RAM is added to the
architecture.

4 Optimizations in RAM lower bound
Not surprisingly, a RAM lower bound query execution model
exhibits poor performance since every information that cannot
be buffered in RAM needs to be recomputed. The dramatic
consequence on the number of iterations performed on the
queried data is illustrated in Figure 4. Assuming that k is the
number of (R.a,S.b) distinct values present in the GroupBy
input, the scan of T turns to be executed k*||R joinS || times.

Different and complementary solutions can be investigated
to decrease this iteration cost without hurting the RAM lower
bound. First, global optimization techniques can be used to
rearrange the query tree in order to minimize the total number
of iterations required to evaluate it. This can be done notably
by pushing selections down to the QEP and by finding an
optimal join ordering. In a RAM lower bound context, Left-
deep trees outperform Right-deep and Bushy trees except for
extreme values of the join selectivity’s. In conducting our
experiments, we observed that the Left-deep tree heuristic
remains valid when a small quantity of RAM is added to the
model. This confirms the intuition that right subtrees have to
be minimized to decrease the cost of recomputing them for
each tuple of the left subtree. The ordering of joins in the Left-
deep tree depends on their selectivity and on the cardinality of
the relations involved, as usual. The query execution in a
RAM lower bound exhibits other interesting properties such
as: (i) RAM consumption is independent of the number of Join
and Select operators, (ii) Join and Select algorithms are order
preserving and (iii) intermediate results are never materialized
in the QEP. These properties allowed us to devise original
optimization techniques detailed in [ABP03]. However, these
techniques are not developed further in this paper because
they have to be reconsidered when a small quantity of RAM is
added to the model.

Second, local optimization techniques can be devised to
decrease the number of tuples considered inside each iteration.
Note that local optimization has here a different meaning than

in the usual case since it applies to one iteration rather than to
one operator. Having a deeper look on the algorithms
presented in section 3 allows to split, at each iteration, the
input flow of each operator into three distinct sets of tuples.
As illustrated in Figure 4, Relevant tuples are tuples
participating in the operator’s result for the current iteration
(e.g., tuples sharing the current grouping value being
computed by a GroupBy). Obviously, this set of tuples cannot
be reduced. Required tuples are tuples modifying the internal
state of the algorithm without participating in the iteration’s
result (e.g., tuples modifying the Split variable of the GroupBy
algorithm). These tuples are required to enforce the Unicity
and/or Completeness of the algorithm and their number
depends on the algorithm itself. Thus, the respective merit of
different algorithms implementing the same operator can be
compared with respect to the number of Required tuples they
consider. Selecting the one minimizing this number is a good
heuristic. Finally, Irrelevant tuples are all the tuples present in
the input that are not Relevant nor Required. Eager pruning
should take place to avoid producing Irrelevant tuples and
carrying them in the QEP up to the operator. The
optimizations related to Required and Irrelevant tuples are
developed in the following sections.

Figure 4: Iterations performed by a RLB query evaluator

4.1 Minimizing Required tuples

As stated earlier, the number of Required tuples considered by
each algorithm depends on the way Unicity and Completeness
are enforced. Regarding the Scan algorithm, one can notice
that all tuples present in its input are Relevant. The inputs of
the Select, Project and Join algorithms cannot contain
Required tuples since they do not maintain an internal state.
This comes from the fact that Unicity and Completeness are
inherited from their child operator in the QEP. Therefore,
these four algorithms are optimal in terms of Required tuples
since this number is equal to zero.

The GroupBy algorithm is him directly impacted by the
management of Required tuples. Let us first consider the
CompMin variation of this algorithm. At a given iteration, all
input tuples t such that t.GrpLst∈]Current, Split[are Required,
where Current and Split denote the current state of the
corresponding variables during this iteration. Indeed, each
time an input tuple falls into this interval, it updates the Split
variable thereby decreasing the upper bound of the interval.
This is the way by which CompMin converges to the next
grouping value to be computed and guarantees Unicity and
Completeness. Thus, along the same iteration, the number of
Relevant tuples (i.e., tuples sharing the grouping value

Gk
G3
G7
G3
Gk
G5
G6
G5
G1
G4

20
5
7

12
9
8
6
8

40
10

scan

R S

T

Group by R.a, S.b

k × ||R S||
iterations

k × ||R||
iterations

k iterations

scan

GroupBy
Input Flow

Current = G5
Split = G9
9

Required

Required
Relevant

Relevant

scan

referenced by Current) remains constant while the number of
Required tuples decreases and the number of Irrelevant tuples
increases from the same amount, according to this converging
process. In the CompMax variation of the GroupBy algorithm,
the Required tuples at a given iteration are all the input tuples t
such that t.GrpLst∈]Split, Current]. Each input tuple falling
into this interval either lower the value of Current (if
t.GrpLst<Current) or participate in the aggregation of the
grouping value (if t.GrpLst=Current). This is the way by
which CompMax converges to the grouping value to be
computed at this iteration, computes it and guarantees Unicity
and Completeness. Note that once convergence is achieved, all
input tuples sharing the Current value are Relevant rather than
Required. Let us now compare both algorithms with respect to
the number of Required tuples they consider. Along iteration i
(with i>1), CompMin.Current references the same value as
CompMax.Split and, at the end of the iteration, CompMin.Split
references the same value as CompMax.Current. However, the
upper bound of the interval is open in CompMin while it is
closed in CompMax. This strongly accelerates the
convergence of this upper bound and makes CompMin much
more efficient than CompMax in terms of Required tuples.
Indeed, CompMin considers at each iteration at most one
Required tuple per distinct grouping value remaining to be
processed while CompMax considers at most all the tuples
sharing these values.

Comparing CompMin to IterMin requires a deeper look at
the first iterations. The first iteration of IterMin produces the
same result as the first two iterations of CompMin, that is,
detecting and processing the smallest grouping value. Again,
converging to this value is faster in CompMin because at most
one Required tuple has to be considered per grouping value.
An algorithm considering less Required tuples cannot be
envisioned without putting assumptions on the input ordering
(hypothesis H1).
Thus, CompMin is preferred to IterMin and CompMax in the
Ram Lower Bound context for it minimizes the number of
Required tuples.

As the Sort algorithm shares the same structure as
CompMin, it exhibits the same number of Required tuples.
Thus, under hypothesis H1, the algorithms presented in Figure
2 are all optimal with respect to the number of Required tuples
that need to be considered.

The number of Required tuples has an impact on the local
cost of each algorithm. For example, all Required tuples
participate in the computation of grouping values that turn to
be discarded both in CompMax and in the first iteration of
IterMin. But beside this local overhead, Required tuples have
a much more negative impact on the global cost of the whole
QEP. Indeed, they generate computations from the leaves of
the QEP up to the operator that requires them, without
participating in the iteration’s result. Minimizing the number
of Required tuples during an iteration amounts to maximize
the number of Irrelevant tuples that could be pruned early in
the QEP. The next section develops this point.

4.2 Eager pruning of Irrelevant tuples

The distinction between Relevant, Required and Irrelevant
tuples depends on each operator. Once this distinction has
been made, eager pruning of Irrelevant tuples can be

implemented as follows. Each operator willing to eliminate
the Irrelevant tuples from its input expresses a predicate,
called iteration filter, that selects only the Relevant and
Required tuples for a given iteration. This predicate will then
be checked by the operators participating in the QEP subtree
producing this input. Conceptually, an iteration filter is similar
to a regular selection pre dicate that is pushed down to the QEP
to eliminate the Irrelevant tuples as early as possible.
However, iteration filters may involve several attributes issued
from different base relations. So, they are more complex than
regular selection predicates and care must be taken on the way
they are checked to avoid redundant computations. In the
following, we first describe how iteration filters are expressed,
then we concentrate on the way they are checked.

4.3 Expressing iteration filters

The following discussion is conducted on an operator basis.
The Scan and Project operators are not concerned by the
expression of iteration filters since all tuples they consider are
Relevant. Regarding the Select operator, expressing an
iteration filter to eliminate the Irrelevant tuples present in its
input turns to delegate the selection process to another
operator belonging to the QEP subtree producing the Select
input. This is nothing but pushing selections down to the QEP,
as usual. The Join algorithm considers many Irrelevant tuples
since, at each iteration i, the Relevant tuples from the right
input are only whose matching with the current tuple ti from
the left input. Thus, a Join iteration filter is the instantiation of
the join predicate with ti. In a Left-deep QEP, a Join filter is
unfortunately inoperative. Indeed, checking it in the right
subtree leads to evaluate the join predicate twice per tuple.
Note that Join iteration filters may keep a strong interest in a
more general context.

GroupBy filters: in the CompMin variation of the GroupBy
algorithm, a tuple t is Relevant if t.GrpLst= Current, while it is
Required if t.GrpLst∈]Current, Split[, where Current and Split
denote the state of the corresponding variables at the time the
tuple t is processed. The GroupBy iteration filter, or GroupBy
filter for short, is therefore a predicate of the form (t.GrpLst ≥
Current and t.GrpLst < Split). Note that the Split variable
evolves during a same iteration. It takes the value +∞ at the
beginning of the iteration and then converges to the value
immediately greater than Current. This introduces a particular
form of predicate that can be termed dynamic since its
selectivity increases along a same iteration.

Sort filters: As already stated, the RAM lower bound
version of the Sort and GroupBy algorithms share the same
structure. Thus, the discussion on GroupBy filters applies as
well to Sort filters and need not be repeated.

Checking iteration filters
The objective is to push the evaluation of iteration filters down
to the QEP in order to prune Irrelevant tuples as early as
possible. The place where an iteration filter can be checked
depends on the relations it involves. Mono-relation iteration
filters are simply checked by the corresponding Scan operator,
at the leaf of the QEP. Multi-relation filters have to be
decomposed into several predicates that are checked at
different levels of the QEP. Let assume an iteration filter
involving the relations R1, R2,… Rn appearing in this order in

the Left-Deep tree (that is, R1 is the very left leaf of the QEP).
This iteration filter is split into n independent predicates as
follows. The first predicate applies to R1 and is checked by the
corresponding Scan. The ith predicate applies to the result of
the join between R1, R2,… Ri and is checked by the
corresponding join operator, and so on up to the join with Rn.
Figure 5 shows the instantiation of this mechanism for a multi-
attribute GroupBy.

Figure 5: Group Filters

Let us have a closer look on this figure and consider a
Required tuple t(x,y) produced by JoinRS. Before delivering
it, JoinRS checks whether this tuple satisfies the GroupBy
filter, namely t.GrpLst∈]Current, Split[(assuming the use of
CompMin). Once delivered and considered by JoinRST, t can
match with several tuples from T thereby producing a
sequence of tuples of the form {tt1, tt2, … ttn}, from which
only the first one is Required. Thus, tt1 will update the Split
bound in such a way that {tt2, … ttn} become Irrelevant. The
tuples {tt2, … ttn} have been produced vainly. To avoid such
situation, the join algorithm has to be slightly modified in
order to abort the processing of tuple t as soon as possible.
This can be done by checking at each Next call from its parent
that the current left tuple is still valid with respect to the
iteration filter (i.e., t.GrpLst < Split).

While eager pruning of Irrelevant tuples is simplified by
the Left-deep shape of the QEP, it can be extended to Right-
deep and Bushy trees in a straightforward fashion.

5 The impact of RAM incremental growths
This section revisits the query evaluation and optimization
techniques devised in a RAM lower bound context when a
small quantity of RAM is added to the model.

5.1 Impact on the operator’s algorithms

Let us first consider the impact of a RAM incremental growth
on the design rules introduced in section 3.1. Rule R1 remains
unchanged because variability plays against any memory
bound. While RAM growth is considered, the RAM remains
bounded by a small value. By incremental growth, we are
expressing a slow deviation from the RLB bound, up to reach
the value satisfying the application’s constraints. Rule R2
could be reformulated as follows “recompute the information
that cannot be stored in the bounded RAM”. While this design
rule seems obvious, it means that the philosophy of the
algorithms remains unchanged, that is remains based on
iterating – less frequently – on the operator’s input(s).
Let us now consider the impact of additional RAM on each
operator. The goal is to exploit RAM to materialize

intermediate results, thereby reducing the number of iterations
required on the operator’s input(s). Scan, Select and Project
operators are insensitive to the RAM size since they
implement a single iteration on their respective input.

The Join algorithm benefits from additional RAM in a
straightforward fashion. The nested-loop algorithm evolves to
a block nested-loop, dividing the number of iterations on the
right input by the number of buffer entries allocated to the join
(assuming the buffered input be the left one). Tuple
comparisons can also be saved by sorting or hashing the
content of the buffer. In our context where the buffer is small,
sorting is preferred to hashing since hashing consumes RAM
on its own and would then decrease the useful part of the
buffer.

The three variations of the GroupBy algorithm can benefit
from a buffer. Let us first consider the CompMin algorithm.
Exploiting the RAM available leads to divide the buffer into
three arrays of a same cardinality b, called Current[] , Split[]
and Agg[] . At each iteration (except the first one), the
algorithm computes into Agg[] the b aggregations
corresponding to the grouping values referenced by Current[]
and searches into Split[] the b grouping values to be processed
next. These next grouping values are determined thanks to a
converging process, as in the RAM lower bound context. At a
given iteration, all input tuples t such that t.GrpLst >
max(Current[]) and t.GrpLst < max(Split[]) and t.GrpLst ∉
Split[] are Required. Indeed, each time an input tuple falls into
this interval, it is inserted in sorted order into Split[] and the
highest value of Split[] is discarded, thereby decreasing the
upper bound of the interval. At each iteration, the algorithm
considers at most one Required tuple per distinct grouping
value remaining to be processed, as in the RAM lower bound
context. However, since the number of iterations is divided by
b, the total number of Required tuples considered by the
algorithm is much less than in the RAM lower bound context.
The CompMax algorithm can be buffered in the same way
(i.e., by changing variables into arrays) except that a single
Split variable is necessary to reference, at a given iteration, the
highest grouping value previously computed. With buffering,
the gap between CompMax and CompMin in terms of
Required tuples increases since at each iteration, many
aggregation calculus are partially performed before being
discarded. On the other hand, CompMax produces less
iterations than CompMin since more space is left to the
Current[] array in the buffer. This makes the CompMax
algorithm more efficient when iteration filters are not
considered. The buffered extension of IterMin is not discussed
since it has the same memory requirements as CompMin and
considers more Required tuples.

The buffered adaptation of the Sort algorithm shares some
similarities with CompMax. The buffer is divided into an
array Current[] of b’ entries dedicated to the storage of the
smallest tuples to be delivered at a given iteration and Split, a
single variable referencing the highest sorting value
encountered at the previous iteration. At the first iteration, the
algorithm scans its inputs and inserts the tuples in ascending
order into Current[]. When Current[] overflows, the highest
tuple in the sort order is discarded. At the end of this iteration,
Current[] contains the b’ smallest tuples corresponding to a
sequence of sorted values of the form v1v1v1<v2v2< …vn-1vn-1

R S

T

Group by R.a, S.b

Current = a1,b1
Split = a3,b5
9

R.a ≥ a1 & R.a ≤ a3

(R.a, S.b) ≥ (a1,b1) & R.a,S.b < (a3, b5)

R.a,S.b < (a3, b5)

scan scan

scan

<vnvnvn (this sequence expresses the presence of duplicates
wrt the Sort condition). All Current[] tuples having a sorting
value in the range [v 1,vn-1] are then delivered in the sort order
and Split is set to vn (see Figure 6). At the next iteration, tuples
of the input having a sorting value less than vn are not
considered, tuples sharing the value vn are delivered and tuples
having a sorting value greater than vn are inserted in ascending
order into Current[], and so on. At each iteration all input
tuples t such that t.SortLst∈[Split, max(Current[])[can be
either Relevant or Required and their status is actually
determined a posteriori, at the time Split is reset (i.e., at
iteration end). The Sort algorithm takes less benefit from a
RAM growth than the GroupBy. This is due to the fact that
tuples sharing the same sorting value have to be delivered
together instead of being aggregated. Consequently, the
performance of the Sort algorithm is driven by the number of
duplicates wrt the sort condition.

Figure 6: Buffered Sort

5.2 Impact on iteration filters

We focus below on the filter predicates expressed by the
buffered version of the GroupBy and Sort algorithms. From
the preceding section, it turns out that the predicate expressing
a GroupBy filter for the CompMin algorithm takes the form
(t.GrpLst∈Current[] or (t.GrpLst > max(Current[]) and
t.GrpLst < max(Split[]) and t.GrpLst ∉ Split[])). We do not
discuss the form of GroupBy filters for the CompMax
algorithm since CompMin is always preferred when iteration
filters are used. The predicate expressing a Sort filter takes the
following form (t.SortLst∈[Split, Max(Current[])[). The
predicates expressing these iteration filters are more costly to
check than their RAM lower bound counterpart, although they
are less frequently checked. Indeed, the inclusion of a tuple
into an interval has now to be evaluated. Note that this
evaluation can be accurate (exact match) or fuzzy (only the
bounds are checked). The cost of an accurate evaluation is
decreased by the fact that the GroupBy and Sort buffers are
kept sorted.

Let us now consider the modification made on the join
algorithm to check the filter predicates accurately (cf. section
4.3). Irrelevant tuples should now be discarded from a Join
buffer as soon as the upper-bound of the filter predicate
evolves. This leads to check all tuples present in the join
buffer, on each Next call issued by the Join parent in the QEP.
A less accurate alternative is to check only the current left
tuple being considered. This simpler alternative has been
shown more efficient by our performance evaluations.

6 Performance evaluation
The first objective of this evaluation is to assess the pertinence
of the algorithms proposed in this paper, by quantifying the
time required to execute different types of queries under
strong RAM constraints. The expected outcome is to precisely
evaluate to which extent these algorithms constitute an
alternative to the use of indices. The second objective is co-
design oriented. The expected outcome is here to provide
valuable co-design guidelines by the means of curves helping
to find the best compromise between RAM capacity, volume
of on-board data, query complexity and expected response
time.

6.1 Experimentation platform

To conduct these experiments, we have implemented a
complete query evaluator complying with the design
principles introduced in this paper. The operator’s algorithms
are the ones presented in section 5.1. Regarding the GroupBy
algorithm, CompMin is used when iteration filters are
activated and CompMax is used otherwise. The QEPs of
interest are optimized according to the heuristics described in
this paper. Thus, they take the form of Left-deep trees where
joins are ordered according to their respective selectivity and
to the cardinality of the relations involved. The RAM is
distributed on the resulting QEP thanks to a simple (and
preliminary) cost model.

Counters are introduced in the platform to capture the
number of elementary operations performed during the
execution of a QEP (e.g., read a RAM cell, read a stable
storage cell, evaluate a predicate …). These counters allow us
to calibrate our prototype in order to reflect the behavior of
different target hardware platforms (e.g., in terms of processor
speed or stable storage technology). For this study, the
platform has been calibrating with the following values: RAM
read time = 50 ns, Stable storage read time = 100 ns,
Processor speed = 50 Mips. These values correspond to
advanced smartcard prototypes and are representative of the
smartcard technology that will be available in the near future
(two to four years).

6.2 Data, queries and experiments

In the scope of these experiments, we consider an on-board
database composed of four base relations named R, S, T and
U. Each relation contains at least three attributes: an integer
primary key attribute, a string non-key attribute on which
apply GroupBy and Sort operations and a string non-key
attribute complementing the tuple to reach an average size of
100 bytes. In addition, foreign key attributes are added into S
to reference R and into T and U to reference S. These relations
are populated by a pseudo-random generator allowing us to
generate either a uniform or a Zipfian (i.e., skewed)
distribution of the data. The tuple cardinality of each relation,
for a scale factor SF=1, is: ||R||= 100, ||S||= 300, ||T||= 1200 and
||U||= 600, leading to a 220KB database.

We consider different types of queries, summarized in
Table 1, of increasing complexity. Queries Q1 to Q5 are
named Regular for they are representative of usual queries
that we could foresee in an embedded context (sensors,
personal folders, ambient intelligence). The simplest Regular

Sort input flow
F A G A D C C H F D B E I EOF

Gk
G5

C

D
D
E
F

Split

Current[]

Iteration i :

Sort output flow

EOF reached : D E D

Gk
G5

F

+ ∞
+ ∞
+ ∞
+ ∞

Split

Current[]

Iteration i+1 (Open):

During iteration : C C C

query (Q1) computes a single join while the most complex
ones (Q4 and Q5) compute two joins followed by a GroupBy
or a Sort. To make the study complete, we consider also
Complex queries (Q6 and Q7) involving three joins and a
multi-attribute GroupBy or Sort.

6.3 Interpretation of the results

Let us first study how the query evaluator behaves in the
presence of Regular queries. The curves plotted in Figures
7(a) to 7(e) represent the respective execution time of queries
Q1 to Q5 as a function of the RAM. On each figure, the plain
curve represents the execution time required to execute the
query without iteration filters while the bold curve integrates
the benefit provided by iteration filters. These two curves
divide the space into three areas. The area above the plain
curve materializes all combinations of response time (RT) and
available RAM that can be reached by exploiting our
operator’s algorithms, without iteration filters nor index. The
area delimited by the two curves represents the RT/RAM
combinations that become accessible by adding iteration
filters to the preceding algorithms. Finally, the gray area
represents the RT/RAM combinations that are unreachable
without index. A fourth area on the left end side of each figure
shows the combinations that can never be considered since
they are located under the RAM lower bound. These curves
deserve two important remarks. First, the hyperbolic shape of
the curves shows that the operator’s algorithms exploit very
well any RAM incremental growth. To illustrate this, the time
required to execute Q2, without index nor iteration filter,
amounts to 75 seconds with 150 bytes of RAM and falls down
to 12 seconds with an addition of only 100 bytes of RAM.
Second, the iteration filters strongly enlarge the area where the
resort to indices can be avoided. Typically, the quantity of
RAM required to execute Q3 in 1 second without iteration
filters is 2,5KB and falls down to 1,2KB when iteration
filters are exploited. For queries Q4 and Q5, the benefit of
iteration filters seems graphically less impressive but this
feeling is only due to the logarithmic scale of the figure. For
example, executing Q5 in 1 second requires more than 16KB
of RAM while 2KB suffice when iteration filters are used.

The main conclusion of this first series of experiments is
that the combination of our operator’s algorithms with
iteration filters constitutes a very convincing alternative to the
use of indices for the considered queries. Note that, thanks to
these techniques, Q1 to Q5 can all be executed with a response
time close to 1 second (the worst case being 1,4 second for
Q5) with only 1KB of RAM. This result is particularly
significant considering that the domain of investigation
delimited by a response time around 1 second and a RAM
around 1KB seems to be very challenging. Indeed, 1 second
represents a « psychological » barrier reflecting well the
requirement of most interactive applications. 1KB of RAM
could however be considered as a two extreme bound and one
may wonder whether not to consider more comfortable
assumptions regarding the RAM resource. The first reason is
technological. Today’s ultra -light devices like smartcards are
equipped with 1 to 4 KB of RAM (for the most powerful ones)
but only a few hundred of bytes is left to the on-board
applications, the rest being consumed by the OS, the JVM and
the execution stack. Thus, 1KB of RAM allocated for query

processing is today a rather optimistic assumption and
semiconductor manufacturers do not forecast a rapid growth
of the RAM resource for several reasons like reducing the
silicium die size, the power consumption and the security
threats. The second reason is economic and leads to lower all
hardware resources (among them the RAM) to their minimum
in order to save production costs on large-scale markets. So if
more RAM is not expressly required, it will not be provided.

Figures 7(f) and 7(g) gives another insight into the gain
brought by iteration filters. Figure 7(f) expresses the ratio
between the execution times obtained without and with
iteration filters for the two queries Q2 and Q3 as a function of
the RAM. Not surprisingly, the lower the RAM the higher the
ratio since the RAM determines the number of iterations
performed by the GroupBy and Sort algorithms. Note that this
ratio would be even greater with queries Q4 and Q5 since the
GroupBy and Sort algorithms would reiterate on a bigger
subtree. The highest benefit is measured in the range [RLB,
1,5KB] of RAM. This motivates further the use of iteration
filters when the RAM resource of a device has to be
minimized. Figure 7(g) plots the percentage of RAM saved in
the execution of Q2 and Q3 by iteration filters as a function of
the expected execution time. For example, the amount of
RAM required to execute Q2 in less than 1 second is 200
bytes with iteration filters and 940 bytes without iteration
filters, leading to a gain of 78% of RAM.

Figures 7(h) and 7(i) evaluate the robustness of our
algorithms against an increase of distinct values and skewed
data. The evaluation of Q2 and Q3 is measured with and
without iteration filters for a given amount of RAM of 1KB.
As shown by Figure 7(h), the use of iteration filters makes the
operator’s algorithm more stable when facing more distinct
values. This phenomenon is due to the eager elimination of the
Irrelevant tuples that participate in an increasing number of
iterations. Figure 7(i) shows that the GroupBy algorithm is
insensitive to skewed data, the number of iterations remaining
constant. The Sort algorithm takes advantage of skewed data
because several sorting values shared by few tuples can be
processed at the same iteration.

Finally, the last four figures evaluate to which extent our
algorithms scale when the query complexity or the volume of
data augments. Figure 7(j) illustrates the benefit of iteration
filters for a complex query involving 3 joins and a multi-
attribute GroupBy. For 1KB of RAM, iteration filters reduce
the cost of the execution from 9,6 to 1,4 seconds. Clearly, the
more complex the query, the more efficient the iteration
filters. Figure 7(k) plots the execution time of the filtered
execution of all queries of interest as a function of the RAM.
This figure demonstrates that the proposed algorithms scale
well when they face complex queries. Indeed, all queries
except Q7 can be executed around one second (the worst case
being 1,4 second for Q5 and Q6) with only 1KB of RAM.
Figure 7(l) plots the execution time of the filtered execution of
all queries as a function of the database size for a fixed
quantity of RAM of 1KB . The first learning of this figure is
that our algorithms scale pretty well for Regular queries.
However, they scale badly in the presence of Sort or in the

Query Query Type Output Tuples / Dist. Values
Q1 Join(S, T) 1200
Q2 GroupBy(S.a, join(S, T)) 60 / 60
Q3 Sort(S.a, join(S, T)) 1200 / 60
Q4 GroupBy(R.a, Join(R, S, T)) 1200 / 20
Q5 Sort(R.a, join(R, S, T)) 1200 / 20
Q6 GroupBy(R.a, S.b, join(R, S, T, U)) 200 / 200
Q7 Sort(R.a, S.b, join(R, S, T, U)) 2400 / 200

Table 1: Queries Description

(a) Q1 - logarithmic scale

0,1

1

10

0 500 1000 1500
RAM (bytes)

re
sp

on
se

 ti
m

e
(s

)

NO INDEX

RLB

Buffers

INDEX

(b) Q2 - logarithmic scale

0,1

1

10

0 500 1000 1500
RAM (bytes)

re
sp

on
se

 ti
m

e
(s

)

NO INDEX

RLB

INDEX

Buffers & Filters
Buffers

(c) Q3 - logarithmic scale

0,1

1

10

0 500 1000 1500
RAM (bytes)

re
sp

on
se

 ti
m

e
(s

)

NO INDEX

INDEX

RLB

Buffers & Filters
Buffers

(d) Q4 -logarithmic scale

0,1

1

10

0 500 1000 1500
RAM (bytes)

re
sp

on
se

 ti
m

e
(s

)

NO INDEX

INDEX

RLB

Buffers & Filters
Buffers

(e) Q5 - logarithmic scale

0,1

1

10

100

0 500 1000 1500
RAM (bytes)

re
sp

on
se

 ti
m

e
(s

)

NO INDEX

INDEX

RLB

Buffers & Filters
Buffers

(f) Filter / No Filter Ratio

0

2

4

6

8

10

0 1000 2000 3000
RAM (bytes)

re
sp

on
se

 ti
m

e
ra

tio Q2 - Gby Filters
Q3 - Sort Filters
Tps

48 53

RLB

(g) Saved RAM

0

20

40

60

80

100

0246
response time (s.)

sa
ve

d
R

A
M

 (
%

)
Q2 - Gby Filters
Q3 - Sort Filters

 (h) Dist. Values - RAM 1KB

0

1

2

3

0 20 40 60 80 100
distinct value (% base tuples)

re
sp

on
se

 ti
m

e
(s

)

Q2 - Buffers
Q2 - Buffers & Filters
Q3 - Buffers
Q3 - Buffers & Filters

(i) Zipfian Distrib. (RAM 1KB)

0

1

2

3

0 0,2 0,4 0,6 0,8 1
zipfian factor

re
sp

on
se

 ti
m

e
(s

)

Q2 - Buffers
Q2 - Buffers & Filters
Q3 - Buffers
Q3 - Buffers & Filters

(j) Q6 - loragithmic scale

0,1

1

10

100

0 500 1000 1500
RAM (bytes)

re
sp

on
se

 ti
m

e
(s

)

NO INDEX

INDEX

RLB

Buffers & Filters
Buffers

0,1

1

10

100

0 500 1000 1500
RAM (bytes)

re
sp

on
se

 ti
m

e
(s

)

RLB

Q2
Q4

Q6
Q5

Q3

Q7

(k) Varying the Query Complexity
(log. Scale)

Q1

0

2

4

6

8

10

0 200 400 600 800 1000
DB size (KB)

re
sp

on
se

 ti
m

e
(s

)

Q2

Q4

Q6Q5
Q3Q7

Q1

(l) Varying the DB size (R A M 1KB)

0

2

4

6

8

10

0 200 400 600 800 1000
DB size (KB)

re
sp

on
se

 ti
m

e
(s

)

Q2

Q4

Q6

Q5

Q3

Q7

Q1

(m) Varying the DB size (R A M 10KB)

Figure 7: Evaluation results

presence of several joins. This situation was predictable and
one cannot expect execute complex queries on a large
database without index and with only 1 KB of RAM in less
than 1 second. Two ways can be investigated to decrease the
query execution time, namely adding more RAM or adding
indices. Figure 7(m) plots the same curves with a larger
RAM of 10KB and shows that the problem becomes less
critical without totally disappearing and that complex queries
involving Sort are still not tackled. Adding indices is the way
followed by PicoDBMS [PBV01]. It solves the performance
problem at the price of the side effects mentioned in section 2.

As a conclusion, these experiments show the accuracy of
the proposed operator’s algorithms along with their iteration
filters and demonstrate that they constitute a real alternative
to the index in a wide range of situations. Beyond this range,
indices should be considered. Finally, note that all the curves
presented in this section can be used for co-design purpose.
Indeed, they provide valuable information to determine:
whether indices or iteration filters are required in a given
situation, how much RAM should be added to reach a given
response time, how much the expected response time should
be relaxed to tackle a given query with a given quantity of
RAM and how much data can be embedded in a given device
without hurting an expected execution time.

7 Conclusion
Pervasive computing and ambient intelligence motivate the
development of new data-centric applications that must be
tackled in a growing variety of ultra-light computing devices.
As far as query execution is concerned, RAM appears to be
the most critical resource in these devices. In the absence of
a precise understanding of the RAM consumption problem,
ad-hoc solutions have been developed. Most of them
introduce strong restrictions on the type of queries and on the
amount of data that can be tackled while the others resort to
dedicated index methods having negative side effects. This
introduces the need for pre-designed database components
that can be integrated in Systems on Chip.

This paper precisely addresses this issue and proposes a
framework helping to design RAM-constrained query
evaluators. First, we proposed a query execution model that
reaches a lower bound in terms of RAM consumption.
Second, we devised a new form of optimization, called
iteration filter, that drastically reduces the prohibitive cost
incurred by the preceding model, without hurting the RAM
lower bound. Third, we proposed variations of the preceding
techniques that best exploit any incremental growth of RAM.
Our performance evaluations led to two important and
practical outcomes. First, they show the accuracy of the
proposed techniques and demonstrate that they constitute a
convincing alternative to the index in a wide range of
situations. Second, they provide helpful guidelines helping to
calibrate the RAM resource of a hardware platform
according to given application’s requirements as well as to
adapt an application to an existing hardware platform.

While this paper draws the limit beyond which indices
are required, an interesting future work is to study the
combination of our operator’s algorithms, iteration filters and
indices. Our feeling is that these solutions can fit well

together and can cover a very large range of situations in the
most accurate way. Another important issue is to put these
results in practice. A cooperation has been set up with
Schlumberger to study the evolution of their smartcard
operating system to tackle on-board d ata centric applications.

8 References
[ABB01] N. Anciaux, C. Bobineau, L. Bouganim, P. Pucheral, P.

Valduriez, “PicoDBMS: Validation and Experience”, Int.
Conf. on Very Large Data Bases (VLDB), 2001.

[ABP03] N. Anciaux, L. Bouganim, P. Pucheral, “On Finding a
Memory Lower Bound for Query Evaluation in Lightweight
Devices”, Technical Report, PRiSM
www.prism.uvsq.fr/rapports/2003/document_2003_40.pdf

[BGS00] P. Bonnet, J. Gehrke, P. Seshadri, “Querying the Physical
World”, IEEE Personal Communications Special Issue on
Networking the Physical World, 2000.

[CaK97] M. J. Carey, D. Kossmann, “On Saying "Enough Already!"
in SQL”, Int. Conf. on Management of Data (SIGMOD),
1997.

[GDM98] R. Gupta, S. Dey, P. Marwedel, “Embedded System Design
and Validation: Building Systems from IC cores to Chips”,
Int. Conf on VLSI Design, 1998.

[GIG01] E. Giguère, “Mobile Data Management: Challenges of
Wireless and Offline Data Access”, Int. Conf. on Data
Engineering (ICDE), 2001.

[Gra93] G. Graefe. “Query Evaluation Techniques for Large
Databases”, ACM Computing Surveys, 25(2), 1993.

[Gra98] G. Graefe. “The New Database Imperatives”, Int. Conf. on
Data Engineering (ICDE), 1998.

[ImN02] T. Imielinski, B. Nath, “Wireless Graffiti – Data, data
everywhere”, Int. Conf. on Very Large Data Bases (VLDB),
2002.

[ISO99] Int. Standardization Organization (ISO), Integrated Circuit(s)
Cards with Contacts – Part 7: Interindustry Commands for
Structured Card Query Language-SCQL, ISO/IEC 7816-7, 1999.

[KLL01] J. S. Karlsson, A. Lal, C. Leung, T. Pham, “IBM DB2
Everyplace: A Small Footprint Relational Database System”,
Int. Conf. on Data Engineering (ICDE), 2001.

[MFH02] S. Madden, M. J. Franklin, J. Hellerstein, W. Hong, “TAG: a
Tiny AGgregation Service for Ad-Hoc Sensor Networks”,
Int. Conf on Operating Systems Design and Implementation,
2002.

[MH02] S. Madden, J. M. Hellerstein, “Distributing Queries over
Low-Power Wireless Sensor Networks” , Int. Conf. on
Management of Data (SIGMOD), 2002

[NRC01] NRC report, Embedded Everywhere, A research agenda for
networked systems of embedded computers, national academy
press, 2001.

[Ora02] Oracle Corporation, Oracle 9i Lite - Oracle Lite SQL
Reference”, Oracle Documentation, 2002.

[PBV01] P. Pucheral, L. Bouganim, P. Valduriez, C. Bobineau,
"PicoDBMS: Scaling down Database Techniques for the
Smartcard", Very Large Data Bases Journal , 10(2-3), 2001.

[SeG01] P. Seshadri, P. Garrett: “SQLServer for Windows CE - A
Database Engine for Mobile and Embedded Platforms”, Int.
Conf. on Data Engineering (ICDE), 2000.

[Ses99] P. Seshadri, “Honey, I Shrunk the DBMS': Footprint, Mobility,
and Beyond”, Int. Conf. on Management of Data (SIGMOD),
1999

[SIA02] Semiconductors Industrial Association, “STATS: SIA
Annual Databook”, 2002. http://www.semichips.org

