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Abstract 
One of the recently proposed techniques for the 
efficient evaluation of OLAP aggregate queries 
is the usage of clustering access methods. These 
methods store the fact table of a data warehouse 
clustered according to the dimension hierarchies 
using special attributes called hierarchical 
surrogate keys. In the presence of these access 
methods new processing and optimization 
techniques have been recently proposed. One 
important such optimization technique, called 
Hierarchical Pre-Grouping, uses the hierarchical 
surrogate keys in order to aggregate the fact table 
tuples as early as possible and to avoid redundant 
joins. 
In this paper, we study the Pre-Grouping trans-
formation, attempting to generalize its applica-
bility and identify its relationship to other similar 
transformations. Our results include a general 
algebraic definition of the Pre-Grouping transfor-
mation along with the formal definition of suffi-
cient conditions for applying the transformation. 
Using a provided theorem we show that Pre-
Grouping can be applied in the presence of func-
tional and inclusion dependencies without the 
explicit usage of hierarchical surrogate keys. An 
additional result of our study is the definition of 
the Surrogate-Join transformation that can mod-
ify a join condition using a number of dependen-
cies. To our knowledge, Surrogate-Join does not 
belong to any of the Semantic Query Transfor-
mation types discussed in the past. 

1. Introduction 
In the Data Warehousing (DW) and OnLine Analytical 
Processing (OLAP) areas, the need for fast response times 
to large aggregation queries has motivated research and 
implementation efforts for quite some time. Various 
methods and solutions have been proposed from both the 
industry and the academy. The well-known star-schema, 
the specialized access methods and the usage of 
materialized views containing pre-aggregated data are 
some of the proposed technologies that have been 
implemented and used in real-life systems. All these 
solutions are implemented on top of the very successful 
relational database technology.  

One of the recently proposed techniques is the 
Multidimensional Hierarchical Clustering and 
Hierarchical Indexing technique ([MRB99, KS01]). This 
technique is based on the star-schema organization with 
the focus on the usage of clustering access methods. The 
main goal is the reduction of the number of I/O operations 
required to answer the large aggregate queries. According 
to this method the fact table of a data warehouse is stored 
clustered with respect to the dimension hierarchies by 
using special attributes called hierarchical surrogate keys.  
Since most aggregation queries apply restrictions on the 
dimension hierarchies, the fact-table data needed to 
answer such queries are found clustered in a relatively 
small number of disk pages, improving the performance. 

In the presence of this new data organization schemata 
new processing and optimization techniques have been 
recently proposed ([KTS02, PER03, TT01]). One of these 
techniques, called Hierarchical Pre-Grouping, exploits the 
existence of the hierarchical surrogate keys in order to 
improve the query execution time even further. The 
technique modifies the query execution plan in an attempt 
to aggregate the fact-table tuples as early as possible and 
avoid redundant joins. 

In order to illustrate the importance of this technique 
we next present an example scenario where Hierarchical 
Pre-Grouping is applied according to the heuristic 
algorithm presented in [KTS02]. 
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Example: Applying Hierarchical Pre-Grouping 

Consider the simplified data warehouse schema shown 
in Figure 1. The data warehouse stores sales transactions 
recorded per item, store, customer and date. It contains 
one fact table SALES_FACT, which is defined over the 
dimensions: PRODUCT, CUSTOMER, DATE and 
LOCATION. The single measure of SALES_FACT is sales 
representing the sales value for an item bought by a 
customer at a store on a specific day. 

Each dimension is stored in a dimension table and it is 
organized according to a hierarchy. For example, the 
LOCATION dimension is organized into a hierarchy with 
three levels: Store-Area-Region. Stores are grouped into 
geographical areas and the areas are grouped into regions. 
The attributes store_id, area and region are called 
hierarchical attributes because they are used to define the 
hierarchy in the dimension table. It is important to note 
that there are functional dependencies among the 
hierarchical attributes. In our example schema store_id 
functionally defines area, which functionally defines 
region. Hence, store_id is the key of this dimension table. 
The hierarchies of our example schema are shown in 
Figure 2.  

Each dimension table contains a hierarchical surrogate 
attribute (h-surrogate) named hsk. This attribute 
represents an encoding of the entire chain of hierarchical 
attributes. For example, the hsk attribute of the 
LOCATION dimension is assigned the values 
oc1(region)/oc2(area)/oc3(store_id), where the functions 
oci (i = 1,2,3) define a numbering scheme for each 
hierarchy level and assign some order-code to each 
hierarchical attribute value. An important property of the 
h-surrogate attributes is that we can extract from their 
value any part of the path they encode. For example, from 
the hsk attribute of the LOCATION dimension we can 
extract the oc2(area) component (denoted with hsk.area) 
and obtain an encoding of the value of the area attribute. 
Due to the encoding function used there is a one-to-one 
mapping between the values of the component (like 
hsk.area) and the values of the corresponding attribute 
(area). Consequently, functional dependencies hold for 
each pair of h-surrogate component and hierarchical 
attribute. Obviously the hsk attributes are candidate key-
attributes of their dimension table. 
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Figure 1: The schema of the data warehouse 
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Figure 2: The dimension hierarchies 

The main reasons for having these special h-surrogate 
attributes is the hierarchical clustering and indexing of the 
fact tables. The fact table contains foreign keys 
referencing the h-surrogate attributes of each dimension 
and uses these foreign h-surrogate keys to organize and 
cluster the fact table. For example, the SALES_FACT 
table contains the attribute loc_hsk as a foreign key to the 
hsk attribute of the LOCATION dimension. The existence 
of these additional foreign keys in the fact table allows the 
Hierarchical Pre-Grouping transformation to optimize the 
execution of star-join queries.  

Consider the following SQL query on the previously 
described schema: 
SELECT L.area, P.brand, SUM(F.sales) 
FROM SALES_FACT F, LOCATION L, DATE D, 

PRODUCT P 
WHERE F.day = D.day AND F.store_id = 
L.store_id AND F.product_id = P.item_id  
GROUP BY L.area, D.month, P.brand 

The straightforward execution plan for this query is 
sketched in Figure 3. The fact table is joined with the 
dimension tables using the equality join conditions 
mentioned in the query and the result of the join is 
grouped and aggregated according to the attributes of the 
GROUP BY clause. 

The Hierarchical Pre-Grouping transformation can 
modify this execution plan in three different ways: 

1. Since the month attribute is not part of the result we 
can use the component date_hsk.month for which we 
know that there is a one-to-one mapping among 
date_hsk.month and month in order to group the fact 
table tuples. This way we no longer need the join 
with the DATE dimension table. 

2. In a similar way we can use the component 
loc_hsk.area instead of the area attribute in order to 
group the tuples. In this case we still need the join 
with the LOCATION dimension table in order to get 
the actual values of the area attribute but this join is 
not performed on the store_id as defined by the 
query. One way to do this join is to group the 
LOCATION dimension table on hsk.area and join 
using the equality condition loc_hsk.area=hsk.area. 

3. Finally, although there is no attribute in the fact table 
that would allow us to group on brand, we can still 
do a partial grouping on prod_hsk, which is a foreign 
key of PRODUCT, and after the join with this 
dimension table we will have to aggregate some of 



the previously created group-tuples based on the 
value of the brand attribute. This modification splits 
the aggregation operation into two stages: one before 
the join with PRODUCT and the second after this 
join. 

F

Aggregate:
SUM(F.sales)
GroupBy:

D.month, L.area, P.brand

P DL

Join
F.day=D.day

F.sotre_id=L.store_id
F.product_id=P.item_id

 

Figure 3: The original execution plan 

The modified execution plan appears in Figure 4 and 
is expected to perform better than the original plan in 
most cases. However, a cost-based optimization approach 
([TKS02]) can detect cases where the application of 
Hierarchical Pre-Grouping is not beneficial.  
� 

The above example demonstrates the significant 
impact that Hierarchical Pre-Grouping can have on the 
execution plan of a star-join query. The experimental 
measurements ([KTS02, PER03]) have shown that this 
technique can reduce the time needed to answer large 
aggregate queries to less than 50%. 

These results have motivated us to study the details of 
the Hierarchical Pre-Grouping technique and identify the 
conditions under which it can be applied in order to make 
this technique applicable to database schemata that do not 
contain hierarchical surrogate keys. In this paper we 
present the main results of this work which include: 

1. The formal, declarative definition of the 
Generalized Hierarchical Pre-Grouping 
optimization technique in the form of an algebraic 
transformation. 

2. The definition of the conditions under which the 
transformation can be applied in terms of integrity 
constraints. This result makes the transformation 
available to other database schemata where 
hierarchical surrogate keys are not available. Proof 
for the sufficiency of the defined conditions is also 
provided. 

3. The identification of a number of simple 
transformations that can be considered as the 
building blocks from which Hierarchical Pre-
Grouping is constructed. These building blocks can 

be used to identify other types of transformations 
where integrity constraints play an important role. 
In fact, one these blocks, the Surrogate-Join 
transformation, can be directly used for query 
optimization. 

F

P

L

Aggregate: m=SUM(F.sales)
GroupBy: F.date_hsk.month,

F.loc_hsk.area, F.prod_hsk

Join
prod_hsk=P.hsk

Join
L.hsk.area=loc_hsk.area

GroupBy:
L.area, L.hsk.area

Aggregate: SUM(m)
GroupBy: date_hsk.month,

loc_hsk.area, P.brand

 

Figure 4: The transformed execution plan 

The rest of the paper is organized as follows. Section 2 
presents related work and briefly comments on how our 
results use or extend previous work. In Section 3 we 
introduce a number of terms and explain the notation used 
throughout this paper. Section 4 presents the Hierarchical 
Pre-Grouping transformation and its algebraic general 
form while Section 5 contains the main results of our 
work. In this section we define a number of simple and 
complex transformations along with the conditions 
required to apply them. These transformations are used in 
the proof of the final theorem. The final theorem defines 
sufficient conditions for the application of the Generalized 
Hierarchical Pre-Grouping transformation. Finally, 
Section 6 summarizes our contribution and presents 
directions for further research. 

2. Related work 
Throughout this paper we adopt the relational model 

with bag semantics, assuming (and allowing) each 
relation to be a bag. Hence, all our algebraic expressions 
use the relational algebra operators extended for bags.  

The practical importance of bags (initially called 
multisets) has been recognized from the early days of the 
relational model. Dayal et al. ([DGK82]) where the first to 
publish the extension of the relational model and of the 
relational algebra for bags. Mumick et al. ([MPR90]) 
presented a formal treatment of bags and aggregate 
operators studying the semantics and showing that the 
Magic-Set technique can be extended to support these 
‘non-relational features’.  Albert ([Alb91]) provided 



various important results regarding the algebraic 
properties of bag data types and the work of Chaudhuri 
and Vardi ([CV93]) and of Ioannidis and Ramakrishnan 
([IR95]) addressed various additional issues related to 
conjunctive query containment and query equivalence for 
the relational model with bag semantics. 

Many of the transformations presented in this paper 
rely on the existence of integrity constraints. The idea of 
using integrity constraints to optimize queries is not new. 
In the area of Semantic Query Optimization, starting with 
King ([King81]), researchers have proposed various ways 
to use integrity constraints for optimization. The relation 
elimination proposed by Shenoy and Ozsoyoglu ([SO87]) 
and the elimination of an unnecessary join described by 
Sun and Yu ([SY94]) are very similar to the one that we 
use in our transformations. The difference is that our 
transformations are applicable on bags while the previous 
semantic query optimization techniques were discussed 
only for sets. 

In the presence of bag semantics one needs to control 
duplicate elimination in order to efficiently take 
advantage of integrity constraints. Group and aggregate 
operators can be used for this purpose. The manipulation 
of the grouping and aggregation operations for SQL query 
optimization has been presented by Kim ([Kim82]) and 
completed by Dayal ([Day87]). Their proposal was to 
move a grouping and aggregation operation before a join 
operation in the query tree. Later, with the intensive usage 
of relational databases by Decision Support Systems the 
issue of optimization of aggregate SQL queries was re-
examined. The emerged results addressed the problem of 
having relations with bag semantics. 

Chaudhuri and Shim ([Chau94]) defined a number of 
transformations for the execution trees of SQL queries 
with aggregate functions. These transformations can move 
an aggregation operator bellow or above join nodes using 
key integrity constraints. The most powerful 
transformation can split the aggregation operator into (at 
least) two aggregation operators: one of which is applied 
before the join and the other after the join. The main idea 
here is that grouping and aggregation can be performed in 
stages. At each stage the aggregation node groups a 
number of tuples that were generated during the previous 
stage, creating group tuples that represent larger groups. 
This process ends when the desired grouping level is 
achieved. 

Yan and Larson presented a similar result ([YL94]). In 
a following paper ([YL95]) they extended these results 
covering the case where aggregate functions are applied 
on attributes of both sources of a join. Using a COUNT 
function they proved that even in this case the aggregation 
operator could be split into two stages: one before the join 
on one of the sources, and one after the join. An important 
contribution of this work is the definition of the sufficient 
(and some times necessary) conditions for applying the 
transformations, even in the presence of NULL values, 
and the provision of formal proofs. 

Gupta, Harinarayan and Quass ([GHQ95]) clearly 
state the similarity of the classical (duplicate eliminating) 
project operator and of the grouping and aggregation 
operator by defining a combined operator called 
Generalized Projection (GP). Using this operator they 
provide a number of rules that can be used to move (or 
split/combine) a GP in the query execution tree. 

The idea of having only one operator that combines 
project with grouping and aggregation seems quite elegant 
and it is adopted in this paper. In fact we redefine the 
Generalized Project operator (denoted with the symbol Л 
in this paper) in a way that can also include the duplicate 
retaining project operation. We argue that this general 
definition of the Л operator simplifies the definition of 
various transformations. 

We consider the main theorem provided by Yan and 
Larson ([YL95]) to be the most general result regarding 
the transformation of queries with aggregations. It seems 
that this theorem can be used to prove all the other 
transformations defined in the previously mentioned 
publications (except for some very special results 
involving MIN and MAX). In this paper we adopt this 
transformation and use it under the name Split-Л. In fact, 
we show that the new transformations we discuss are 
particularly useful when Split-Л can be applied. With the 
help of additional integrity constraints, Split-Л can be 
applied more efficiently, even in cases where previously it 
could not be applied. 

3.   Notation 
In this section we provide a number of definitions 
required to present our results. We clarify the meaning 
assigned to relations, we introduce the notation and 
operators used in our algebraic expressions and define a 
number of integrity constraints used in following sections. 
Furthermore, we discuss some interesting properties of 
aggregate functions.  Due to space limitations the reader 
is referred to the extended version of this paper [TS03] for 
further details. 

Assume the existence of a countable set of attributes 
A. Each attribute a∈A is related to a domain of values 
dom(a). Each domain of values contains the special value 
NULL. A relation schema a(R) is a set of attributes: 
a(R)⊆ A. We define a relation to be a collection of tuples 
not necessarily distinct (bag). Each tuple is a mapping 
from the attributes of the relation schema to values in the 
corresponding domains. 

In the following we use the capital letters (X, H, K, G, 
…) to denote sets of attributes and the bold symbols R, 
Ru, Rd to represent relations. If t is a tuple of the relation 
R and H a set of attributes of R, we use the notation t[H] 
to represent the vector of values in the tuple t that 
correspond to the attributes in H. We also use the 
relational algebra operators Select (σ ) and Cross-Product 
(× ) with their extended definitions for bags. 



Note that the evaluation of the selection conditions 
implies the usage of a three-state logic in the presence of 
NULLs as defined by SQL. For example the expression 

( )K Kσ = R  contains all tuples of R without the ones that 
assign a NULL value to any of the attributes in K. 

3.1 Integrity Constraints 
In this paper integrity constraints are used to identify 

conditions under which various transformations can be 
applied. The integrity constraints used are: 

Functional dependencies: K  H denotes that the 
attributes K functionally define each of the attributes in H. 
In the case of functional dependencies the NULL values 
are treated as ordinary values. So, K  H implies that all 
tuples with the same t[K] part, even containing NULLs, 
must have the same t[H] part, which can also contain 
NULLs. 

Super-Keys: A∈SupKey(R) denotes the attributes A as 
a (super) key of R. Besides the fact that the attributes A 
functionally define all attributes of R, we require that t[A] 
can act as a unique identifier for all the tuples in R that 
contain no NULL value in t[A]. However, there can be 
many duplicate tuples in R that contain a NULL value for 
some attribute of A. This flexibility is removed when a 
Super-Key is called a Strict Super-Key. So, when 
A∈Strict-SupKey(R) we have as an additional condition 
that the t[A] vector acts as a unique identifier for all tuples 
in R, even when t[A] contains NULL values. If a relation 
has a Strict Super-Key then this relation can contain no 
duplicate tuples. In this case the relation can be 
considered as a set of tuples. 

Inclusion dependencies: Let Ru, Rd be two relations 
and Hu, Kd be two sets of attributes so that Hu contains 
only attributes of Ru and Kd contains only attributes of Rd. 
We say that that there is an inclusion dependency 
restricting Hu to Kd when the values of the Hu attributes of 
Ru are restricted to the values of the attributes Kd in Rd: 

: ' [ ] '[ ]
n

u dt t t H t K∀ ∈ ∃ ∈ ∧ =u dR R .  
In the above expression the equality predicate treats 

NULL values as any other ordinary value and does not 
use the three-state logic of the SQL equality predicate. 

An inclusion dependency is called strict when in 
addition to the above conditions there is no tuple in Ru for 
which t[Hu] contains a NULL value. 

3.2 Generalized Aggregate functions 
In order to simplify notation we need to define 

generalized aggregate functions. Just like ordinary 
aggregate functions, the generalized aggregate functions 
are applied on a bag of tuples and produce as a result a 
single value. Note that a bag does not define an order for 
its members so we do not discuss aggregate functions that 
require any kind of ordering of the input tuples. The new 
property of the generalized aggregate functions is an 
additional parameter that controls the multiplicity of each 

input tuple. We use the notation Ag(M;x) for generalized 
aggregate functions. The parameter M defines the set of 
attributes used to compute the result value while the x 
parameter defines the multiplicity with which each input 
tuple is considered. For example SUM(salary;2) computes 
the sum of salaries adding twice the salary value of each 
tuple. Note that x may also be an attribute of the input 
tuple or even an arithmetic expression. In any case the x 
parameter must at all times be a non-negative integer 
number. In the following we use the term aggregate 
function to refer to a generalized aggregate function.  

In order to present a set of aggregate functions in a 
compact way we use the notation: A=F({Agi(Mi;ni)}) 
where A={a1,a2,…,ak} is a set of result attributes the 
values of which are computed by the function F. The 
function F uses in its computations the values of 
aggregate functions: Ag1(M1;n1), Ag2(M2;n2), …, 
Agk(Mm;nm), where m and k are arbitrary non-negative 
integers implied by the context. 

Furthermore, we write {Ag} as a shortcut to 
{Agi(Mi;ni)} and we use the notation Ag(N) to represent 
Ag(M;x). In this case we are not interested in the precise 
definition of the parameter x but only on the set of 
attributes on which the aggregate function depends. 
Hence, N contains all attributes of M plus the attributes 
referenced in x (if any). 

3.3 The Generalized Projection operator Л 
The generalized project operator is a combination of the 
classical (duplicate eliminating) project operator, the 
duplicate preserving project operator and of the grouping 
and aggregation operator. As shown in the next sections, 
these operators have very similar properties with regard to 
algebraic transformations. The unification of these 
operators in a single operator does not alter the expressive 
power of the defined algebra but simplifies the definition 
of various transformation rules. 
The generalized project operator is defined as: 

1 2, ,..., , ({ }) ( )
k

G
S S S A F= Ag RЛ  

The relation R is the input on which the operator is 
applied. The set G is the set of grouping attributes of R, 
while S1, S2, … Sk are sets of selected (projected) 
attributes. The set A={a1, a2, …, am} is the set of 
computed and projected attributes.  

Assuming that S={S1∪S2∪…∪Sk} is the set of all 
selected (projected) attributes of R, in the above definition 
we do not require that S ⊆ G as one would expect. In 
order for the operator definition to be correct S must be 
functionally dependent on G (G  S) in R. Obviously 
when S ⊆ G this property holds for any R. Note that an 
immediate consequence of this flexible definition is that 
the Л operator can produce duplicate tuples. 

The Л operator has two special forms that need to be 
explained: when the G set is missing the operator does no 
grouping and the aggregation functions in {Ag} are 



applied for each tuple of R separately. In this case the 
operator functions as a typical project operator that 
maintains duplicates. The second special form of the 
operator is when G=∅. In this case the operator outputs 
exactly one tuple after applying the aggregation functions 
on all tuples in R. If R is empty then the operator still 
outputs a tuple. Compatibility with SQL requires that in 
this case all the COUNT aggregation functions return 0. 

The semantics of the operator Л can be defined as 
follows:  

1 2, ,..., , ({ }) ( )
k

G
S S S A F= Ag RЛ  groups the tuples in R 

according to the values of the attributes defined in G. The 
tuples in each group have the same values for the 
attributes in G. The grouping process treats NULL as a 
regular value. If G=∅ a group is formed with all tuples of 
R (even zero). If G is missing, each tuple of R forms a 
group (if R is empty the operator produces zero groups). 
For each group the operator returns an output tuple. In the 
output tuple the value of each attribute s∈S1∪S2∪…∪Sk 
is equal to the value of the s attribute of any tuple in the 
group. The attributes in A are computed by the F function 
after the aggregate functions {Ag} are computed from the 
tuples of the group. 

Using the Л operator we can use the formula 
( ) ( )d u

d u

K H
K H⊇d uR RЛ Л  to define an inclusion dependency 

restricting the values of the attributes Hu to the values of 
the attributes Kd. In this formula, the results of the Л 
operators are known to be sets, allowing us to use the 
symbol ⊇ with its usual set semantics. In a similar way, 
the formula ( ) ( )d u

d d d u

K H
K K K Hσ = ⊇d uR RЛ Л  defines a strict 

inclusion dependency. 

3.4 Interesting classes of aggregate functions 

In general we need not restrict the aggregate functions to 
the set of SQL2 aggregate functions (SUM, MIN, MAX, 
COUNT, AVERAGE). Any aggregate function can be used 
as long as it has the required properties. The properties 
that may be required for an aggregate function are: 

Definition 1: (Distribution property)  
We say that an aggregate function Ag(M;x) is 
decomposable into AgO(AgI()) if and only if for every 
compatible relation R containing the attributes in M and x 
and for every attribute sets G, G1 of R, so that G ⊆ G1, 
there are two aggregate functions AgI(M;x) and AgO(y;z) 
so that: 1

( ; ) ( ;1) ( ; )( ) ( ( ))
O I

G G G
a Ag M x a Ag y y Ag M x= = ==R RЛ Л Л  

Definition 2: (Identity property)  
We say that an aggregate function Ag(M;x) has the 
identity property if and only if for any compatible tuple t 
the result of applying Ag(M;1) on the tuple t is t[M]. 

It is trivial to show that the typical SQL functions SUM, 
MIN, MAX have both of the above properties and that 
COUNT is decomposable into SUM(COUNT()). 

4.   The Pre-Grouping transformation 
The Hierarchical Pre-Grouping transformation (called 
Pre-Grouping for short) has been presented as a heuristic 
optimization algorithm in the context of processing star 
queries on hierarchically clustered fact tables. In the area 
of Data Warehouses and ROLAP, the schema of the 
database is almost certain to be based on a number of star 
schemata containing fact tables and dimension tables 
([CD97]). The usage of hierarchically clustered and 
indexed fact tables is a recent approach ([MRB99, KS01]) 
that aims to minimize the number of I/O operations 
required to answer heavy aggregate queries. The major 
bottleneck in evaluating such queries has been the join of 
the central (and usually very large) fact table with the 
surrounding dimension tables (also known as a star-join).  

In the above context, the application of the Pre-
Grouping transformation depends on the existence of the 
hierarchical surrogate keys (h-surrogates). Using the 
properties of these special attributes heuristic algorithms 
have been proposed to modify the initial query execution 
plan in order to remove redundant joins and group fact 
table tuples as early as possible, even if this requires 
grouping them in stages ([PER03, KTS02, TT01]).  

As already mentioned, the Pre-Grouping 
transformation has been proven to be a very efficient 
optimization technique. The previously published 
measurement results ([KTS02, PER03]) show that Pre-
Grouping can speed up typical OLAP star-join queries by 
a factor of more than two. 

In this paper we try to generalize the applicability of 
Pre-Grouping by separating it from the context in which it 
was defined and identify the elementary concepts on 
which it is based. In order to achieve this goal we first 
provide a general definition of the Pre-Grouping 
transformation in the form of an algebraic transformation.  

4. 1   The Generalized Pre-Grouping transformation 

The Generalized Pre-Grouping transformation is 
applied to star-join queries. These queries join a central 
(fact) table with a number of (dimension) tables using 
foreign keys. The star-join query may define a number of 
local constraints on the values of various attributes. The 
characterization “local” means that the constraints do not 
contain expressions involving attributes of more than one 
table. Finally, the star-join query may define a number of 
grouping attributes and require the computation of a 
number of aggregate functions on the attributes of the 
central (fact) table. Obviously, the example query in 
section 1 is a star-join query. 

Using the Л operator defined in the previous section 
we can represent the core part of a star-join query with the 
algebraic expression E1: 

1 2 3

1 1 2 2 3 31 2

, , ,
, ,, , , ({ ( )})

E1:   

( )

u d d d
ii u d u d u du d d u

S S S S
H K H K H KS S S A F Ag M

σ = = ==

u d1 d2 d3R × R × R × R

Л
 



The symbols Ru, Rd1, Rd2, Rd3 represent relations or 
views (expressions). The attributes Su, Mu, Hu1, Hu2, Hu3 
are attributes of Ru: Su are grouping and selected 
attributes, Mu are the attributes on which the aggregate 
functions Agi() are computed and Hu1, Hu2, Hu3 are the 
foreign key attributes for Rd1, Rd2, Rd3. The attributes Sd1 
are attributes of Rd1 and Kd1 is a (strict super) key of Rd1. 
Likewise, Sd2, Kd2 are attributes of Rd2 and Sd3, Kd3 are 
attributes of Rd3. 

It is rather trivial to see that by using appropriate 
substitutions the expression E1 can represent a star-join 
query with an arbitrary number of tables. Any of the Rd1, 
Rd2, Rd3 can represent an expression containing a join or a 
cross-product of a number of (dimension) tables. A local 
condition on a relation (or even a view) can be expressed 
by substituting the corresponding symbol with a selection 
expression: for example we can substitute Rd1 with 

( )cσ d1R . Also, any of the Rd1, Rd2, Rd3 can be removed 
from the expression along with the corresponding join 
condition and the corresponding attributes in the Л 
operator. 

A thorough study of the heuristic algorithms used to 
define Hierarchical Pre-Grouping in previous publications 
reveal that the following expression E2 can represent the 
result of applying Pre-Grouping to the expression E1. 
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Note that the join with the relation Rd3 is missing and 
the grouping attribute Sd3 is substituted with the attribute 
SHu3. Also, the remaining join conditions have changed 
and four Л operators are used to perform the grouping and 
aggregation and one (the first one) to perform projection. 

The E1 expression was carefully created in order to 
contain all situations on which Pre-Grouping can be 
applied. In fact the Rd1, Rd2, Rd3 relations (or expressions) 
are used in order to classify the (dimension) tables of the 
star-join query according to the type of modification that 
Pre-Grouping can apply to them: 
1. Some (dimension) tables may be skipped from the 

join sequence completely (Rd3). This is the case for 
the DATE dimension in our example. 

2. Some (dimension) tables are joined after all 
grouping operations (Rd2). This is the case for the 
LOCATION dimension in our example. 

3. Aggregation may be split into two stages: before and 
after the join with some (dimension) tables (Rd1). 
This is the case for the PRODUCT dimension in our 
example. 

One can check that the optimized execution plan 
presented in Figure 4 represents an instance of E2. 

Definition 3: Generalized Hierarchical Pre-Grouping: 
We define Generalized Hierarchical Pre-Grouping as the 
transformation of the expression E1 into the expression 
E2:  E2=E1. 

The previous definition completes the generalization 
of the Pre-Grouping transformation and its definition in 
an algebraic form. Note that none of the expressions use 
h-surrogates or dimension hierarchies. Using these 
general expressions, the Pre-Grouping transformation can 
be applied in databases that do not use h-surrogates or 
multidimensional hierarchical clustering and indexing. 
The conditions required to apply the Generalized 
Hierarchical Pre-Grouping are the subject of the next 
section. 

5.   Decomposing Pre-Grouping 
In this section we start with the algebraic expressions E1 
and E2 that define the Generalized Pre-Grouping 
transformation. Our goal is to transform the expression E1 
into E2 using a sequence of simple transformations for 
which we can prove the sufficient conditions required in 
order to apply them. This task mainly achieves two goals: 

• Identify and prove that a particular set of 
conditions is sufficient in order to apply the 
Generalized Pre-Grouping transformation. 

• Identify the relationship of the Pre-Grouping 
transformation to other similar and more 
elementary transformations like the “eager 
groupby-count” defined by Yan and Larson 
([YL95]) and the “Literal Elimination” technique 
described in the Semantic Query Optimization area 
([CGM90]). 

An additional result of this decomposition task is the 
definition of the Surrogate-Join transformation. This 
transformation, as described in detail in the following, can 
use a number of integrity constraints in order to modify a 
join expression by altering the join condition. 

In the following we define a number of simple and 
complex transformations and provide propositions and 
theorems proving the conditions under which each 
transformation can be applied. All omitted proofs can be 
found in the extended version of this paper [TS03]. 

5.1   Simple transformations 

Simplify-GroupBy: The transformation removes one or 
more grouping attributes of the Л operator when it is 
known that the remaining grouping attributes functionally 
define the removed ones. The algebraic expression of the 
Simplify-GroupBy transformation is:  

1, 2 1
, ({ ( )}) , ({ ( )})

( ) ( )i i i i

G G G
S A F Ag M S A F Ag M= =

≡R RЛ Л  

Proposition: Let both sides of the Simplify-GroupBy 
transformation be valid expressions. The transformation is 
valid if and only if G2 is functionally dependent on G1 
(G1 G2) in R. 



Simplify-Aggregations: The transformation removes a 
number of redundant aggregation functions simplifying 
the expression of a Л operator. This transformation is 
applicable when the Л operator performs no grouping and 
acts only as a duplicate-retaining project operator. The 
algebraic expression of the transformation is: 

1, ({ ( ;1)},{ }) , ({ },{ })
( ) ( )i i iS A F Ag M S A F M= =

≡
22Ag Ag

R RЛ Л  

Proposition: Let both sides of the Simplify-Aggregations 
transformation be valid expressions. The transformation is 
valid for any R if and only if all the aggregate functions 
Ag1

i() have the identity property.  

Remove-GroupBy: The transformation is the 
combination of the previous two transformations. It 
removes the grouping attributes and the aggregation 
functions of a of Л operator when we know that they are 
redundant. The algebraic expression of the Remove-
GroupBy transformation is: 

, ({ }), ({ ( ;1)})
( ) ( )ii i

G
S A F MS A F Ag M ==

≡R RЛ Л  

Proposition: Let both sides of the Remove-GroupBy 
transformation be valid expressions. The transformation is 
valid if all the aggregation functions Agi() have the 
identify property and G∈SupKey(R). 

Remove-Join: When the attributes of a joining relation 
are not used and all tuples of the other join relation appear 
exactly once in the result of the join then the join is 
redundant. The Remove-Join transformation removes 
such a redundant join. The algebraic expression of the 
Remove-Join transformation is: 

, ({ ( )}) , ({ ( )})
( ) ( )u u

i i i iu du uu u
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Proposition: Let both sides of the Remove-Join 
transformations be valid expressions and let Hu contain 
only attributes of Ru while Kd contains only attributes of 
Rd. The transformation is valid if and only if the 
following conditions hold: 
C1: ( ) ( )d u

d d d u

K H
K K K Hσ = ⊇d uR RЛ Л  

C2: ( ) ( ) NULL( ) ) {1, }u u

u u d u

H H
MAX a a COUNT H H K Hσ∅

= = × ∈u dR RЛ Л (Л  

Condition C1 defines a strict inclusion dependency 
(see section 3) while condition C2 is quite difficult to 
define in terms of integrity constraints. Instead of C2 one 
can use a more restrictive condition and require Kd to be a 
Super-Key of Rd or at least Kd∈SupKey( ( )

dK dRЛ ). 
However, this condition is not required (but it is sufficient 
along with the condition C1) in order for the 
transformation to be valid. 

Normalization: The transformation replaces a relation 
with the natural join of two generalized projections of this 
relation. The goal of the transformation is to separate the 
functionally dependent attributes from other attributes of 
the relation. The algebraic expression of Normalization is: 

1
1 1 1 2, 1 1 1, 2( ( ) ( ))G

R S G R G G S G G Gσ = − ∪ =≡ ×R R RЛ Л Л  

Proposition: The Normalization transformation is valid 
whenever the right-hand side is a valid expression. 

The right-hand side expression requires that G1 and 
G2 are attributes of R and that G2 is functionally 
dependent on G1 (G1 G2) in R. Note that in this 
transformation the Л operator acts only as a project 
operator, some times eliminating duplicates and some 
times retaining them. The correctness of the 
transformation can easily be proven using the Remove-
Join and Simplify-GroupBy transformations. 

An interesting remark regarding this transformation is 
its applicability in the process of normalizing a database 
schema into 3rd Normal Form. Any such normalization 
process implicitly uses this transformation. 

Add-Join-Predicate: The transformation simply adds (or 
removes) a redundant equi-join predicate to an existing 
equi-join. With this transformation one can modify and 
even replace join conditions. The algebraic expression of 
the Add-Join-Predicate transformation is: 

( ) ( )
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Proposition: Let both sides of the Add-Join-Predicate 
transformation be valid expressions. The transformation is 
valid if the following conditions hold: 
C1: , ,
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d d d d d d u u u u
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Condition C1 can be satisfied using SQL integrity 
constraints. If {Hu, SHu} are defined as not NULL and as 
foreign keys referencing {Kd, SKd} then we can prove C1. 
Also, just like in the case of the Remove-Join 
transformation, we can use the constraint Kd∈SupKey(Rd) 
in order to prove condition C2. Note that the above 
conditions are required in order to make sure that the 
removed condition SHu=SKu is redundant with respect to 
the remaining condition Hu=Kd. 

5.2   Complex transformations  

Split-Л: The transformation pushes an aggregation 
operation that is applied on the result of a join into the 
members of the join. This is achieved by splitting the 
aggregation operation into two aggregation stages. The 
first one is performed before the join on one of the joined 
sources and the other is performed on the result of the join 
in place of the original aggregation operation (see [YL95] 
for a detailed discussion of this complex transformation).  
The algebraic expression of the Split-Л transformation is: 
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In the above expressions the COUNT(TID) aggregate 
function counts the number of tuples in each group. Note 
that this is the only transformation that uses the analytic 
notation Ag(X;g(Y)) for the aggregate functions. In fact, it 
is due to this transformation that we have chosen to adopt 
this notation. Without this notation the formal definition 
of the impact of the term gi()*xu would be quite 
complicated. A final remark is that the selection operator 
is not essential to the transformation and we could have 
also defined it without it. 
Theorem 5.1: Let both sides of the Slit-Л transformation 
be valid expressions. The transformation is valid if the 
following conditions hold: 
C1: NGu Gu∪Su∪Ci

u∪Zi
u. 

C2: The aggregate functions Agi
u() are decomposable into 

Agi
O(Agi

I()) 
This theorem is equivalent to the eager-groupby-count 

theorem presented by Yan and Larson ([YL95]). The only 
minor difference is that we are using a different notation 
and we allow the Agi() functions to use not only attributes 
of Rd but also attributes of Ru. Also, due to the way we 
have defined aggregate functions, we need not impose any 
conditions on the properties of the Agi() aggregate 
functions as done by the eager-groupby-count theorem. In 
fact, the extra condition imposed by that theorem is not 
really restrictive.  

Surrogate-Join: This transformation modifies an equi-
join expression and provides an alternative way to join the 
two sources. The goal is to remove any redundant parts 
that exist in the joined sources and join only the 
remaining necessary sections. In order to achieve this goal 
the transformation replaces the join condition with a 
different one while performing appropriate projections 
and duplicate elimination on the joined sources. The 
algebraic definition of Surrogate-Join is: 
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Theorem 5.2: Let both sides of the Surrogate-Join 
transformation be valid expressions. The transformation is 
valid if the following conditions hold: 
C1: , ,

, ,( ) ( )d d u u

d d d d d d u u u u

K SK H SH
K SK K K SK SK H SH H Hσ σ= ∧ = =⊇d uR RЛ Л  

C2: ( ) ( ) NULL( ) ) {1, }u u
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= = × ∈u dR RЛ Л (Л  

Note that in order to apply the Surrogate-Join 
transformation an additional constraint must hold: 
SKd Sd. Without this constraint the right-hand side 
expression is not valid. 
Proof: Our approach is to split the relation Rd into two 
parts separating the attributes SKd and Sd from the rest. 
We can do that using the Normalization transformation. 
The redundant part of Rd can then be removed with the 
Remove-Join transformation while the new join condition 
is introduced with the Add-Join-Predicate transformation. 

Surrogate-Join application example 

Consider the following example. A web hosting 
company is maintaining a database with statistics about 
the web sites it hosts. The company uses a number of 
servers and each hosted page is assigned to a particular 
server. Every month the company is making available to 
its customers a number of materialized views with 
aggregated results. One of these views, called 
Page_Server_Hits, reports the total hits for each page 
along with the total hits for the server to which the page is 
allocated. The schema of this view contains (at least) the 
attributes: PageID, PageHits, ServerID, ServerHits. A 
second view is made available per client containing 
additional details about the pages owned by the particular 
client. This second view, called Page_Hour_Hits, 
contains the hits of each page aggregated separately for 
each hour of the day. So, in this view there are 24 tuples 
describing the hits of each page. The attributes of 
Page_Hour_Hits contain at least the attributes: PageID, 
ServerID, Hour, HourPageHits. 

If a client wants to compute the percentage 
HourPageHits/ServerHits for each of his/her pages and 
each of the 24 hours, he/she could use the following SQL 
query: 
SELECT PageID, HourPageHits/ServerHits 
FROM Page_Hour_Hits P, Page_Server_Hits S 
WHERE P.PageID=S.PageID 

However, using the semantics implied by the schema 
there is a different query that produces the same result: 
SELECT PageID, HourPageHits/ServerHits 
FROM Page_Hour_Hits P, 
 (SELECT ServerID, ServerHits 
  FROM Page_Server_Hits 
  GROUPBY ServerID, ServerHits) S 
WHERE P.ServerID=S.ServerID 

The second query is the result of applying the 
Surrogate-Join transformation on the first one. We know 
that the view Page_Hour_Hits contains page IDs that 
also appear in the Page_Server_Hits and that in both 
views a page ID is related to the same server ID. These 
facts satisfy the condition C1 of the Surrogate-Join 
theorem. With the additional knowledge that each page ID 
appears only once in the view Page_Server_Hits, the 
condition C2 is also satisfied allowing us to apply the 
Surrogate-Join transformation. □ 

Surrogate-Join-Early-GroupBy: The transformation is 
similar to the Split-Л transformation, only that it does not 
divide the aggregation operation into two parts. The 
complete aggregation operation is performed on only one 
of the joined sources. In order to achieve this push-down 
of the aggregation operation the transformation may need 
to modify the join condition and eliminate possible 
duplicate tuples. In fact, the transformation can be 
considered as a combination of Surrogate-Join and Split-
Л. The algebraic expression of the transformation is: 
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Theorem 5.3: Let both sides of the Surrogate-Join-Early-
GroupBy be valid expressions. The transformation is 
valid if the following conditions hold: 
C1: , ,

, ,( ) ( )d d u u

d d d d d d u u u u
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C3: SKd↔Sd 
C4: The aggregate functions Agi() are decomposable into 

Agi
O(Agi

I()) and the functions Agi
O() have the 

identity property. 
Proof: We start with the original expression and apply the 
Surrogate-Join transformation in order to modify the join 
condition. This allows us to apply Split-Л without adding 
Hu as grouping attribute for the inner aggregation 
performed on Ru before the join. Finally, using the given 
conditions, we realize that the outer aggregation operator 
is redundant. We apply Remove-GroupBy and get the 
final result. Using a more complicated proof we could 
show that the condition C4 is not really required. 

We now present the final and main theorem of the 
paper. Recall that the Generalized Hierarchical Pre-
Grouping transformation is defined as E1=E2 where: 
E1: 1 2 3
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E2: 
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Main Theorem: Let both E1 and E2 be valid expressions. 
The Generalized Hierarchical Pre-Grouping transforma-
tion is valid if the following conditions hold: 
I1: SKd3↔Sd3 in Rd3 

I2: 3 3 3 3
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I4: 2 2 2 2
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I6: SKd2↔Sd2 in Rd2 
I7: The aggregate functions Agi() are decomposable into 

Agi
O(Agi

I()) and the functions Agi
O() have the 

identity property. 

I8: 1 1 1 1
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Before providing the proof of the theorem we briefly 
explain the semantics of the previously defined conditions 
I1-I9. 

The first three conditions I1-I3 identify the 
relationship of the central table Ru with the table Rd3. 
Condition I1 is used to guaranty that the attributes of Rd3 
on which grouping is required (Sd3) are in the set of 
attributes SKd3 or have a one-to-one mapping to the 
attributes in this set.  Note that the sets Kd3 and SKd3 can 
contain the exact same attributes. Then, condition I2 
requires Ru to contain foreign keys (Hu3, SHu3) connecting 
the central table Ru to Rd3. The Hu3 foreign key is required 
in order to guaranty that the corresponding join operation 
in E1 joins each tuple of Ru to at least one tuple of Rd3. 
Condition I3, which mainly requires Kd3 to be a key of the 
table Rd3, complements I2 and the two conditions together 
guaranty that, in E1, each tuple of Ru joins to exactly one 
tuple of Rd3.  

The I2 condition is also used in order to require the 
SHu3 attributes of Ru to reflect the values of the SKd3 
attributes of Rd3. In this way the grouping attributes of 
Rd3 are mapped to attributes in Ru. 

In a very similar way the conditions I4, I5 and I6 
define the relationship of the central table Ru with the 
table Rd2. In fact the only difference of Rd2 to Rd3 in the 
transformation is that the grouping attributes of Rd2 are 
also projected attributes.  

The condition I7 is required in order to be able to split 
the aggregation operations into two stages. This is 
required only due to the Rd1 table. If the Rd1 table does 
not participate in the transformation then this condition is 
not needed. 

Finally, the conditions I8 and I9 are used in a similar 
way to I2 and I3. They guaranty that each tuple of Ru 
joins, in E1, with exactly one tuple of Rd1. Also, I8 
requires that the values of the SKd1 attributes are reflected 
in the SHu1 attributes of Ru. These facts in combination 
with the condition SKd1 Sd1, which is implied by the 
correctness of E2, allow the aggregation of Ru tuples 
before the join.  

Proof: We start with E1 and by applying a sequence of 
transformations we get E2. The proof process can be 
separated into three stages. Each stage concentrates on 
one of the features of Pre-Grouping. In the first stage we 
deal with the elimination of the redundant join with Rd3 
using the Surrogate-Join, Simplify-GroupBy and 
Remove-Join transformations. In the second stage we 
push down the aggregation operation, before the join with 
Rd2 using mainly the Surrogate-Join-Early-GroupBy 
transformation. In the third and final stage we split the 
aggregation operation into two phases, one before the join 
with Rd1 and the second after this join. For this stage we 
need the Surrogate-Join, Split-Л and Simplify-GroupBy 
transformations. The description of the steps in each stage 
follows: 



Stage 1: Remove the redundant join with the Rd3. 
In order to remove Rd3 we need to replace the 

attributes Sd3. This requires the introduction of SKd3 for 
which we know that Sd3↔SKd3. Conditions I1, I2 and I3 
allow us to apply Surrogate-Join and get: 
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For the outer Л operator we have that SHu3=SKd3↔Sd3. 
By exploiting this fact we apply Simplify-GroupBy and 
replace Sd3 with SHu3. This transformation makes the join 
with Rd3 redundant. Using conditions I2 and I3 we apply 
Remove-Join and after combining the two consecutive Л 
operators we finally get: 
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Stage 2: Push-down aggregation below the join with Rd2. 
The Surrogate-Join-Early-GroupBy is used in order to 

push the aggregation operation bellow the join with Rd2. 
Conditions I4-I7 satisfy the conditions of the theorem 5.3. 
By applying the transformation we get: 
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Stage 3: Split the aggregation into two phases. 
In order to maximize the effect of an early aggregation 

operation on Ru before the join with Rd1, we need to 
eliminate the Hu1 attribute used in the join condition. 
Surrogate-Join is used to perform the modification using 
conditions I8 and I9. The resulting expression is: 
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Then we use the Split-Л transformation and split the 
aggregation process into two phases: before and after the 
join with Rd1. Using I7 we apply Split-Л and get: 
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Finally, we combine the two consecutive Л operators 
and after using the Simplify-GroupBy for the Л operators 
of Rd1 and Rd2 we get the final expression E2. □ 

The conditions of the above theorem appear quite 
complicated at first sight. Still, most of them can be 

satisfied by integrity constraints defined in SQL. 
Conditions I3, I5, and I9 can be satisfied by UNIQUE or 
PRIMARY_KEY constraints. For example, if Kd1 is 
UNIQUE in Rd1 then I9 is satisfied. Conditions I2, I4 and 
I8 can be satisfied by foreign key constraints. For 
example, if {Hu3, SHu3} of Ru are not allowed to have 
NULL values and they are declared as foreign keys 
referencing {Kd3, SKd3} of Rd3, then I2 is satisfied. 

Conditions I1 and I6 are harder to satisfy. For 
example, assume that Rd2 is not a relation but the view: 

2 2 2 2 2 2 2 2 2, , , ,( ( ) ( ))
d d d d d d d d dK SK S XSK SK K XSK SK Sσ = ×d21 d22R RЛ Л Л  

Assume also that SKd2 is a key of Rd22, Sd2 is defined 
UNIQUE and not NULL in Rd22 and XSKd2 is defined as a 
foreign key referencing SKd2. Using the above constraints 
we get that SKd2↔Sd2 in Rd2, thus satisfying condition I6. 
Finally, note that it is trivial to satisfy condition I7 when 
the aggregate functions are limited to the typical SQL 
aggregate functions. 

6.   Conclusions 
In this paper we started with the analysis of the 

Hierarchical Pre-Grouping transformation and derived a 
generalized algebraic form using the expressions E1 and 
E2. This general form of Pre-Grouping was then 
decomposed into a sequence of elementary 
transformations proving that the set of conditions I1 – I9 
are sufficient in order to apply Pre-Grouping. 
Furthermore, we have shown that by using only functional 
and inclusion dependencies that can be defined in SQL, 
we can satisfy the conditions I1-I9 and apply Pre-
Grouping. 

Based on the presented decomposition we have 
identified the main ‘ingredients’ of this complex 
transformation. One of them is obviously Split-Л, a 
transformation that represents the various optimization 
techniques defined in previous publications ([CS94, 
YL95, GHQ95]) for aggregate queries. This 
transformation is used to push down or split in stages an 
aggregation operation. 

An additional important ‘ingredient’ of Pre-Grouping 
was identified to be the Surrogate-Join transformation. 
The Surrogate-Join transformation is a Semantic Query 
Transformation technique that uses a number of integrity 
constraints to alter equi-join expressions modifying the 
attributes used in the join condition. It is this join-
condition modification that allows the Pre-Grouping 
transformation to eliminate redundant joins and group on 
an extended number of attributes before performing a 
join. The importance of this transformation is emphasized 
by the experimental results presented in previous 
publications ([KTS02, PER03]). Furthermore, Surrogate-
Join can be applied on its own, as shown in the example 
of section 5, generating alternative plans that may be 
chosen for execution. 



 Our results emphasize the belief that Semantic Query 
Optimization techniques are particularly appropriate in 
the OLAP area where a large number of dependencies are 
present. Today’s commercial systems make little usage of 
SQO techniques, missing the opportunity to optimize an 
important class of queries  ([CGK99]). 

As future work, we plan to investigate the application 
of Pre-Grouping and Surrogate-Join to a larger query 
class including nested queries and attempt to identify 
useful transformations that combine the Л operator with 
outerjoin and semijoin operators. 
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