
The Generalized Pre-Grouping Transformation: Aggregate-
Query Optimization in the Presence of Dependencies

 Aris Tsois Timos Sellis

Institute of Communication and Computer Systems and School of Electrical and Computer Engineering
National Technical University of Athens

Zographou 15773, Athens, Hellas
{atsois,timos}@dblab.ece.ntua.gr

Abstract
One of the recently proposed techniques for the
efficient evaluation of OLAP aggregate queries
is the usage of clustering access methods. These
methods store the fact table of a data warehouse
clustered according to the dimension hierarchies
using special attributes called hierarchical
surrogate keys. In the presence of these access
methods new processing and optimization
techniques have been recently proposed. One
important such optimization technique, called
Hierarchical Pre-Grouping, uses the hierarchical
surrogate keys in order to aggregate the fact table
tuples as early as possible and to avoid redundant
joins.
In this paper, we study the Pre-Grouping trans-
formation, attempting to generalize its applica-
bility and identify its relationship to other similar
transformations. Our results include a general
algebraic definition of the Pre-Grouping transfor-
mation along with the formal definition of suffi-
cient conditions for applying the transformation.
Using a provided theorem we show that Pre-
Grouping can be applied in the presence of func-
tional and inclusion dependencies without the
explicit usage of hierarchical surrogate keys. An
additional result of our study is the definition of
the Surrogate-Join transformation that can mod-
ify a join condition using a number of dependen-
cies. To our knowledge, Surrogate-Join does not
belong to any of the Semantic Query Transfor-
mation types discussed in the past.

1. Introduction
In the Data Warehousing (DW) and OnLine Analytical
Processing (OLAP) areas, the need for fast response times
to large aggregation queries has motivated research and
implementation efforts for quite some time. Various
methods and solutions have been proposed from both the
industry and the academy. The well-known star-schema,
the specialized access methods and the usage of
materialized views containing pre-aggregated data are
some of the proposed technologies that have been
implemented and used in real-life systems. All these
solutions are implemented on top of the very successful
relational database technology.

One of the recently proposed techniques is the
Multidimensional Hierarchical Clustering and
Hierarchical Indexing technique ([MRB99, KS01]). This
technique is based on the star-schema organization with
the focus on the usage of clustering access methods. The
main goal is the reduction of the number of I/O operations
required to answer the large aggregate queries. According
to this method the fact table of a data warehouse is stored
clustered with respect to the dimension hierarchies by
using special attributes called hierarchical surrogate keys.
Since most aggregation queries apply restrictions on the
dimension hierarchies, the fact-table data needed to
answer such queries are found clustered in a relatively
small number of disk pages, improving the performance.

In the presence of this new data organization schemata
new processing and optimization techniques have been
recently proposed ([KTS02, PER03, TT01]). One of these
techniques, called Hierarchical Pre-Grouping, exploits the
existence of the hierarchical surrogate keys in order to
improve the query execution time even further. The
technique modifies the query execution plan in an attempt
to aggregate the fact-table tuples as early as possible and
avoid redundant joins.

In order to illustrate the importance of this technique
we next present an example scenario where Hierarchical
Pre-Grouping is applied according to the heuristic
algorithm presented in [KTS02].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

Example: Applying Hierarchical Pre-Grouping

Consider the simplified data warehouse schema shown
in Figure 1. The data warehouse stores sales transactions
recorded per item, store, customer and date. It contains
one fact table SALES_FACT, which is defined over the
dimensions: PRODUCT, CUSTOMER, DATE and
LOCATION. The single measure of SALES_FACT is sales
representing the sales value for an item bought by a
customer at a store on a specific day.

Each dimension is stored in a dimension table and it is
organized according to a hierarchy. For example, the
LOCATION dimension is organized into a hierarchy with
three levels: Store-Area-Region. Stores are grouped into
geographical areas and the areas are grouped into regions.
The attributes store_id, area and region are called
hierarchical attributes because they are used to define the
hierarchy in the dimension table. It is important to note
that there are functional dependencies among the
hierarchical attributes. In our example schema store_id
functionally defines area, which functionally defines
region. Hence, store_id is the key of this dimension table.
The hierarchies of our example schema are shown in
Figure 2.

Each dimension table contains a hierarchical surrogate
attribute (h-surrogate) named hsk. This attribute
represents an encoding of the entire chain of hierarchical
attributes. For example, the hsk attribute of the
LOCATION dimension is assigned the values
oc1(region)/oc2(area)/oc3(store_id), where the functions
oci (i = 1,2,3) define a numbering scheme for each
hierarchy level and assign some order-code to each
hierarchical attribute value. An important property of the
h-surrogate attributes is that we can extract from their
value any part of the path they encode. For example, from
the hsk attribute of the LOCATION dimension we can
extract the oc2(area) component (denoted with hsk.area)
and obtain an encoding of the value of the area attribute.
Due to the encoding function used there is a one-to-one
mapping between the values of the component (like
hsk.area) and the values of the corresponding attribute
(area). Consequently, functional dependencies hold for
each pair of h-surrogate component and hierarchical
attribute. Obviously the hsk attributes are candidate key-
attributes of their dimension table.

SALES_FACT

customer_id
product_id
store_id
day

cust_hsk
prod_hsk
loc_hsk
date_hsk

sales

LOCATION

store_id
area
region
hsk

DATE

day
month
year
hsk

PRODUCT

product_id
category
brand
hsk

CUSTOMER

customer_id
profession
name
address
hsk

Figure 1: The schema of the data warehouse

Day

Month

Year

Store

Area

Region

Product

Category

Customer

Profession

CUSTOMER DATE LOCATION PRODUCT

Figure 2: The dimension hierarchies

The main reasons for having these special h-surrogate
attributes is the hierarchical clustering and indexing of the
fact tables. The fact table contains foreign keys
referencing the h-surrogate attributes of each dimension
and uses these foreign h-surrogate keys to organize and
cluster the fact table. For example, the SALES_FACT
table contains the attribute loc_hsk as a foreign key to the
hsk attribute of the LOCATION dimension. The existence
of these additional foreign keys in the fact table allows the
Hierarchical Pre-Grouping transformation to optimize the
execution of star-join queries.

Consider the following SQL query on the previously
described schema:
SELECT L.area, P.brand, SUM(F.sales)
FROM SALES_FACT F, LOCATION L, DATE D,

PRODUCT P
WHERE F.day = D.day AND F.store_id =
L.store_id AND F.product_id = P.item_id
GROUP BY L.area, D.month, P.brand

The straightforward execution plan for this query is
sketched in Figure 3. The fact table is joined with the
dimension tables using the equality join conditions
mentioned in the query and the result of the join is
grouped and aggregated according to the attributes of the
GROUP BY clause.

The Hierarchical Pre-Grouping transformation can
modify this execution plan in three different ways:

1. Since the month attribute is not part of the result we
can use the component date_hsk.month for which we
know that there is a one-to-one mapping among
date_hsk.month and month in order to group the fact
table tuples. This way we no longer need the join
with the DATE dimension table.

2. In a similar way we can use the component
loc_hsk.area instead of the area attribute in order to
group the tuples. In this case we still need the join
with the LOCATION dimension table in order to get
the actual values of the area attribute but this join is
not performed on the store_id as defined by the
query. One way to do this join is to group the
LOCATION dimension table on hsk.area and join
using the equality condition loc_hsk.area=hsk.area.

3. Finally, although there is no attribute in the fact table
that would allow us to group on brand, we can still
do a partial grouping on prod_hsk, which is a foreign
key of PRODUCT, and after the join with this
dimension table we will have to aggregate some of

the previously created group-tuples based on the
value of the brand attribute. This modification splits
the aggregation operation into two stages: one before
the join with PRODUCT and the second after this
join.

F

Aggregate:
SUM(F.sales)
GroupBy:

D.month, L.area, P.brand

P DL

Join
F.day=D.day

F.sotre_id=L.store_id
F.product_id=P.item_id

Figure 3: The original execution plan

The modified execution plan appears in Figure 4 and
is expected to perform better than the original plan in
most cases. However, a cost-based optimization approach
([TKS02]) can detect cases where the application of
Hierarchical Pre-Grouping is not beneficial.
�

The above example demonstrates the significant
impact that Hierarchical Pre-Grouping can have on the
execution plan of a star-join query. The experimental
measurements ([KTS02, PER03]) have shown that this
technique can reduce the time needed to answer large
aggregate queries to less than 50%.

These results have motivated us to study the details of
the Hierarchical Pre-Grouping technique and identify the
conditions under which it can be applied in order to make
this technique applicable to database schemata that do not
contain hierarchical surrogate keys. In this paper we
present the main results of this work which include:

1. The formal, declarative definition of the
Generalized Hierarchical Pre-Grouping
optimization technique in the form of an algebraic
transformation.

2. The definition of the conditions under which the
transformation can be applied in terms of integrity
constraints. This result makes the transformation
available to other database schemata where
hierarchical surrogate keys are not available. Proof
for the sufficiency of the defined conditions is also
provided.

3. The identification of a number of simple
transformations that can be considered as the
building blocks from which Hierarchical Pre-
Grouping is constructed. These building blocks can

be used to identify other types of transformations
where integrity constraints play an important role.
In fact, one these blocks, the Surrogate-Join
transformation, can be directly used for query
optimization.

F

P

L

Aggregate: m=SUM(F.sales)
GroupBy: F.date_hsk.month,

F.loc_hsk.area, F.prod_hsk

Join
prod_hsk=P.hsk

Join
L.hsk.area=loc_hsk.area

GroupBy:
L.area, L.hsk.area

Aggregate: SUM(m)
GroupBy: date_hsk.month,

loc_hsk.area, P.brand

Figure 4: The transformed execution plan

The rest of the paper is organized as follows. Section 2
presents related work and briefly comments on how our
results use or extend previous work. In Section 3 we
introduce a number of terms and explain the notation used
throughout this paper. Section 4 presents the Hierarchical
Pre-Grouping transformation and its algebraic general
form while Section 5 contains the main results of our
work. In this section we define a number of simple and
complex transformations along with the conditions
required to apply them. These transformations are used in
the proof of the final theorem. The final theorem defines
sufficient conditions for the application of the Generalized
Hierarchical Pre-Grouping transformation. Finally,
Section 6 summarizes our contribution and presents
directions for further research.

2. Related work
Throughout this paper we adopt the relational model

with bag semantics, assuming (and allowing) each
relation to be a bag. Hence, all our algebraic expressions
use the relational algebra operators extended for bags.

The practical importance of bags (initially called
multisets) has been recognized from the early days of the
relational model. Dayal et al. ([DGK82]) where the first to
publish the extension of the relational model and of the
relational algebra for bags. Mumick et al. ([MPR90])
presented a formal treatment of bags and aggregate
operators studying the semantics and showing that the
Magic-Set technique can be extended to support these
‘non-relational features’. Albert ([Alb91]) provided

various important results regarding the algebraic
properties of bag data types and the work of Chaudhuri
and Vardi ([CV93]) and of Ioannidis and Ramakrishnan
([IR95]) addressed various additional issues related to
conjunctive query containment and query equivalence for
the relational model with bag semantics.

Many of the transformations presented in this paper
rely on the existence of integrity constraints. The idea of
using integrity constraints to optimize queries is not new.
In the area of Semantic Query Optimization, starting with
King ([King81]), researchers have proposed various ways
to use integrity constraints for optimization. The relation
elimination proposed by Shenoy and Ozsoyoglu ([SO87])
and the elimination of an unnecessary join described by
Sun and Yu ([SY94]) are very similar to the one that we
use in our transformations. The difference is that our
transformations are applicable on bags while the previous
semantic query optimization techniques were discussed
only for sets.

In the presence of bag semantics one needs to control
duplicate elimination in order to efficiently take
advantage of integrity constraints. Group and aggregate
operators can be used for this purpose. The manipulation
of the grouping and aggregation operations for SQL query
optimization has been presented by Kim ([Kim82]) and
completed by Dayal ([Day87]). Their proposal was to
move a grouping and aggregation operation before a join
operation in the query tree. Later, with the intensive usage
of relational databases by Decision Support Systems the
issue of optimization of aggregate SQL queries was re-
examined. The emerged results addressed the problem of
having relations with bag semantics.

Chaudhuri and Shim ([Chau94]) defined a number of
transformations for the execution trees of SQL queries
with aggregate functions. These transformations can move
an aggregation operator bellow or above join nodes using
key integrity constraints. The most powerful
transformation can split the aggregation operator into (at
least) two aggregation operators: one of which is applied
before the join and the other after the join. The main idea
here is that grouping and aggregation can be performed in
stages. At each stage the aggregation node groups a
number of tuples that were generated during the previous
stage, creating group tuples that represent larger groups.
This process ends when the desired grouping level is
achieved.

Yan and Larson presented a similar result ([YL94]). In
a following paper ([YL95]) they extended these results
covering the case where aggregate functions are applied
on attributes of both sources of a join. Using a COUNT
function they proved that even in this case the aggregation
operator could be split into two stages: one before the join
on one of the sources, and one after the join. An important
contribution of this work is the definition of the sufficient
(and some times necessary) conditions for applying the
transformations, even in the presence of NULL values,
and the provision of formal proofs.

Gupta, Harinarayan and Quass ([GHQ95]) clearly
state the similarity of the classical (duplicate eliminating)
project operator and of the grouping and aggregation
operator by defining a combined operator called
Generalized Projection (GP). Using this operator they
provide a number of rules that can be used to move (or
split/combine) a GP in the query execution tree.

The idea of having only one operator that combines
project with grouping and aggregation seems quite elegant
and it is adopted in this paper. In fact we redefine the
Generalized Project operator (denoted with the symbol Л
in this paper) in a way that can also include the duplicate
retaining project operation. We argue that this general
definition of the Л operator simplifies the definition of
various transformations.

We consider the main theorem provided by Yan and
Larson ([YL95]) to be the most general result regarding
the transformation of queries with aggregations. It seems
that this theorem can be used to prove all the other
transformations defined in the previously mentioned
publications (except for some very special results
involving MIN and MAX). In this paper we adopt this
transformation and use it under the name Split-Л. In fact,
we show that the new transformations we discuss are
particularly useful when Split-Л can be applied. With the
help of additional integrity constraints, Split-Л can be
applied more efficiently, even in cases where previously it
could not be applied.

3. Notation
In this section we provide a number of definitions
required to present our results. We clarify the meaning
assigned to relations, we introduce the notation and
operators used in our algebraic expressions and define a
number of integrity constraints used in following sections.
Furthermore, we discuss some interesting properties of
aggregate functions. Due to space limitations the reader
is referred to the extended version of this paper [TS03] for
further details.

Assume the existence of a countable set of attributes
A. Each attribute a∈A is related to a domain of values
dom(a). Each domain of values contains the special value
NULL. A relation schema a(R) is a set of attributes:
a(R)⊆ A. We define a relation to be a collection of tuples
not necessarily distinct (bag). Each tuple is a mapping
from the attributes of the relation schema to values in the
corresponding domains.

In the following we use the capital letters (X, H, K, G,
…) to denote sets of attributes and the bold symbols R,
Ru, Rd to represent relations. If t is a tuple of the relation
R and H a set of attributes of R, we use the notation t[H]
to represent the vector of values in the tuple t that
correspond to the attributes in H. We also use the
relational algebra operators Select (σ) and Cross-Product
(×) with their extended definitions for bags.

Note that the evaluation of the selection conditions
implies the usage of a three-state logic in the presence of
NULLs as defined by SQL. For example the expression

()K Kσ = R contains all tuples of R without the ones that
assign a NULL value to any of the attributes in K.

3.1 Integrity Constraints
In this paper integrity constraints are used to identify

conditions under which various transformations can be
applied. The integrity constraints used are:

Functional dependencies: K H denotes that the
attributes K functionally define each of the attributes in H.
In the case of functional dependencies the NULL values
are treated as ordinary values. So, K H implies that all
tuples with the same t[K] part, even containing NULLs,
must have the same t[H] part, which can also contain
NULLs.

Super-Keys: A∈SupKey(R) denotes the attributes A as
a (super) key of R. Besides the fact that the attributes A
functionally define all attributes of R, we require that t[A]
can act as a unique identifier for all the tuples in R that
contain no NULL value in t[A]. However, there can be
many duplicate tuples in R that contain a NULL value for
some attribute of A. This flexibility is removed when a
Super-Key is called a Strict Super-Key. So, when
A∈Strict-SupKey(R) we have as an additional condition
that the t[A] vector acts as a unique identifier for all tuples
in R, even when t[A] contains NULL values. If a relation
has a Strict Super-Key then this relation can contain no
duplicate tuples. In this case the relation can be
considered as a set of tuples.

Inclusion dependencies: Let Ru, Rd be two relations
and Hu, Kd be two sets of attributes so that Hu contains
only attributes of Ru and Kd contains only attributes of Rd.
We say that that there is an inclusion dependency
restricting Hu to Kd when the values of the Hu attributes of
Ru are restricted to the values of the attributes Kd in Rd:

: ' [] '[]
n

u dt t t H t K∀ ∈ ∃ ∈ ∧ =u dR R .
In the above expression the equality predicate treats

NULL values as any other ordinary value and does not
use the three-state logic of the SQL equality predicate.

An inclusion dependency is called strict when in
addition to the above conditions there is no tuple in Ru for
which t[Hu] contains a NULL value.

3.2 Generalized Aggregate functions
In order to simplify notation we need to define

generalized aggregate functions. Just like ordinary
aggregate functions, the generalized aggregate functions
are applied on a bag of tuples and produce as a result a
single value. Note that a bag does not define an order for
its members so we do not discuss aggregate functions that
require any kind of ordering of the input tuples. The new
property of the generalized aggregate functions is an
additional parameter that controls the multiplicity of each

input tuple. We use the notation Ag(M;x) for generalized
aggregate functions. The parameter M defines the set of
attributes used to compute the result value while the x
parameter defines the multiplicity with which each input
tuple is considered. For example SUM(salary;2) computes
the sum of salaries adding twice the salary value of each
tuple. Note that x may also be an attribute of the input
tuple or even an arithmetic expression. In any case the x
parameter must at all times be a non-negative integer
number. In the following we use the term aggregate
function to refer to a generalized aggregate function.

In order to present a set of aggregate functions in a
compact way we use the notation: A=F({Agi(Mi;ni)})
where A={a1,a2,…,ak} is a set of result attributes the
values of which are computed by the function F. The
function F uses in its computations the values of
aggregate functions: Ag1(M1;n1), Ag2(M2;n2), …,
Agk(Mm;nm), where m and k are arbitrary non-negative
integers implied by the context.

Furthermore, we write {Ag} as a shortcut to
{Agi(Mi;ni)} and we use the notation Ag(N) to represent
Ag(M;x). In this case we are not interested in the precise
definition of the parameter x but only on the set of
attributes on which the aggregate function depends.
Hence, N contains all attributes of M plus the attributes
referenced in x (if any).

3.3 The Generalized Projection operator Л
The generalized project operator is a combination of the
classical (duplicate eliminating) project operator, the
duplicate preserving project operator and of the grouping
and aggregation operator. As shown in the next sections,
these operators have very similar properties with regard to
algebraic transformations. The unification of these
operators in a single operator does not alter the expressive
power of the defined algebra but simplifies the definition
of various transformation rules.
The generalized project operator is defined as:

1 2, ,..., , ({ }) ()
k

G
S S S A F= Ag RЛ

The relation R is the input on which the operator is
applied. The set G is the set of grouping attributes of R,
while S1, S2, … Sk are sets of selected (projected)
attributes. The set A={a1, a2, …, am} is the set of
computed and projected attributes.

Assuming that S={S1∪S2∪…∪Sk} is the set of all
selected (projected) attributes of R, in the above definition
we do not require that S ⊆ G as one would expect. In
order for the operator definition to be correct S must be
functionally dependent on G (G S) in R. Obviously
when S ⊆ G this property holds for any R. Note that an
immediate consequence of this flexible definition is that
the Л operator can produce duplicate tuples.

The Л operator has two special forms that need to be
explained: when the G set is missing the operator does no
grouping and the aggregation functions in {Ag} are

applied for each tuple of R separately. In this case the
operator functions as a typical project operator that
maintains duplicates. The second special form of the
operator is when G=∅. In this case the operator outputs
exactly one tuple after applying the aggregation functions
on all tuples in R. If R is empty then the operator still
outputs a tuple. Compatibility with SQL requires that in
this case all the COUNT aggregation functions return 0.

The semantics of the operator Л can be defined as
follows:

1 2, ,..., , ({ }) ()
k

G
S S S A F= Ag RЛ groups the tuples in R

according to the values of the attributes defined in G. The
tuples in each group have the same values for the
attributes in G. The grouping process treats NULL as a
regular value. If G=∅ a group is formed with all tuples of
R (even zero). If G is missing, each tuple of R forms a
group (if R is empty the operator produces zero groups).
For each group the operator returns an output tuple. In the
output tuple the value of each attribute s∈S1∪S2∪…∪Sk
is equal to the value of the s attribute of any tuple in the
group. The attributes in A are computed by the F function
after the aggregate functions {Ag} are computed from the
tuples of the group.

Using the Л operator we can use the formula
() ()d u

d u

K H
K H⊇d uR RЛ Л to define an inclusion dependency

restricting the values of the attributes Hu to the values of
the attributes Kd. In this formula, the results of the Л
operators are known to be sets, allowing us to use the
symbol ⊇ with its usual set semantics. In a similar way,
the formula () ()d u

d d d u

K H
K K K Hσ = ⊇d uR RЛ Л defines a strict

inclusion dependency.

3.4 Interesting classes of aggregate functions

In general we need not restrict the aggregate functions to
the set of SQL2 aggregate functions (SUM, MIN, MAX,
COUNT, AVERAGE). Any aggregate function can be used
as long as it has the required properties. The properties
that may be required for an aggregate function are:

Definition 1: (Distribution property)
We say that an aggregate function Ag(M;x) is
decomposable into AgO(AgI()) if and only if for every
compatible relation R containing the attributes in M and x
and for every attribute sets G, G1 of R, so that G ⊆ G1,
there are two aggregate functions AgI(M;x) and AgO(y;z)
so that: 1

(;) (;1) (;)() (())
O I

G G G
a Ag M x a Ag y y Ag M x= = ==R RЛ Л Л

Definition 2: (Identity property)
We say that an aggregate function Ag(M;x) has the
identity property if and only if for any compatible tuple t
the result of applying Ag(M;1) on the tuple t is t[M].

It is trivial to show that the typical SQL functions SUM,
MIN, MAX have both of the above properties and that
COUNT is decomposable into SUM(COUNT()).

4. The Pre-Grouping transformation
The Hierarchical Pre-Grouping transformation (called
Pre-Grouping for short) has been presented as a heuristic
optimization algorithm in the context of processing star
queries on hierarchically clustered fact tables. In the area
of Data Warehouses and ROLAP, the schema of the
database is almost certain to be based on a number of star
schemata containing fact tables and dimension tables
([CD97]). The usage of hierarchically clustered and
indexed fact tables is a recent approach ([MRB99, KS01])
that aims to minimize the number of I/O operations
required to answer heavy aggregate queries. The major
bottleneck in evaluating such queries has been the join of
the central (and usually very large) fact table with the
surrounding dimension tables (also known as a star-join).

In the above context, the application of the Pre-
Grouping transformation depends on the existence of the
hierarchical surrogate keys (h-surrogates). Using the
properties of these special attributes heuristic algorithms
have been proposed to modify the initial query execution
plan in order to remove redundant joins and group fact
table tuples as early as possible, even if this requires
grouping them in stages ([PER03, KTS02, TT01]).

As already mentioned, the Pre-Grouping
transformation has been proven to be a very efficient
optimization technique. The previously published
measurement results ([KTS02, PER03]) show that Pre-
Grouping can speed up typical OLAP star-join queries by
a factor of more than two.

In this paper we try to generalize the applicability of
Pre-Grouping by separating it from the context in which it
was defined and identify the elementary concepts on
which it is based. In order to achieve this goal we first
provide a general definition of the Pre-Grouping
transformation in the form of an algebraic transformation.

4. 1 The Generalized Pre-Grouping transformation

The Generalized Pre-Grouping transformation is
applied to star-join queries. These queries join a central
(fact) table with a number of (dimension) tables using
foreign keys. The star-join query may define a number of
local constraints on the values of various attributes. The
characterization “local” means that the constraints do not
contain expressions involving attributes of more than one
table. Finally, the star-join query may define a number of
grouping attributes and require the computation of a
number of aggregate functions on the attributes of the
central (fact) table. Obviously, the example query in
section 1 is a star-join query.

Using the Л operator defined in the previous section
we can represent the core part of a star-join query with the
algebraic expression E1:

1 2 3

1 1 2 2 3 31 2

, , ,
, ,, , , ({ ()})

E1:

()

u d d d
ii u d u d u du d d u

S S S S
H K H K H KS S S A F Ag M

σ = = ==

u d1 d2 d3R × R × R × R

Л

The symbols Ru, Rd1, Rd2, Rd3 represent relations or
views (expressions). The attributes Su, Mu, Hu1, Hu2, Hu3
are attributes of Ru: Su are grouping and selected
attributes, Mu are the attributes on which the aggregate
functions Agi() are computed and Hu1, Hu2, Hu3 are the
foreign key attributes for Rd1, Rd2, Rd3. The attributes Sd1
are attributes of Rd1 and Kd1 is a (strict super) key of Rd1.
Likewise, Sd2, Kd2 are attributes of Rd2 and Sd3, Kd3 are
attributes of Rd3.

It is rather trivial to see that by using appropriate
substitutions the expression E1 can represent a star-join
query with an arbitrary number of tables. Any of the Rd1,
Rd2, Rd3 can represent an expression containing a join or a
cross-product of a number of (dimension) tables. A local
condition on a relation (or even a view) can be expressed
by substituting the corresponding symbol with a selection
expression: for example we can substitute Rd1 with

()cσ d1R . Also, any of the Rd1, Rd2, Rd3 can be removed
from the expression along with the corresponding join
condition and the corresponding attributes in the Л
operator.

A thorough study of the heuristic algorithms used to
define Hierarchical Pre-Grouping in previous publications
reveal that the following expression E2 can represent the
result of applying Pre-Grouping to the expression E1.

1 3 2

1 2 2 2 1 3 2

3 2 1

1 1 3 2 1

1 2

1 1 2 2

, , ,
, , , , , , , ({ (;1)})

, , ,
, , , , ()

, ,

E2: (

((()

())) ())

u d u u
i i

u d d u d u d u u O I

u u u u
i i iu d u u u u I I u

i

d d

d d d d

S S SH SH
S S S A SH SK S S SH SH A F Ag m

S SH SH SH
SH SK S SH SH SH m Ag M

SK SK
S SK S SK

σ

σ

= =

= =
×

×

u

d1 d2

R

R R

∪

Л Л

Л

Л Л

Note that the join with the relation Rd3 is missing and
the grouping attribute Sd3 is substituted with the attribute
SHu3. Also, the remaining join conditions have changed
and four Л operators are used to perform the grouping and
aggregation and one (the first one) to perform projection.

The E1 expression was carefully created in order to
contain all situations on which Pre-Grouping can be
applied. In fact the Rd1, Rd2, Rd3 relations (or expressions)
are used in order to classify the (dimension) tables of the
star-join query according to the type of modification that
Pre-Grouping can apply to them:
1. Some (dimension) tables may be skipped from the

join sequence completely (Rd3). This is the case for
the DATE dimension in our example.

2. Some (dimension) tables are joined after all
grouping operations (Rd2). This is the case for the
LOCATION dimension in our example.

3. Aggregation may be split into two stages: before and
after the join with some (dimension) tables (Rd1).
This is the case for the PRODUCT dimension in our
example.

One can check that the optimized execution plan
presented in Figure 4 represents an instance of E2.

Definition 3: Generalized Hierarchical Pre-Grouping:
We define Generalized Hierarchical Pre-Grouping as the
transformation of the expression E1 into the expression
E2: E2=E1.

The previous definition completes the generalization
of the Pre-Grouping transformation and its definition in
an algebraic form. Note that none of the expressions use
h-surrogates or dimension hierarchies. Using these
general expressions, the Pre-Grouping transformation can
be applied in databases that do not use h-surrogates or
multidimensional hierarchical clustering and indexing.
The conditions required to apply the Generalized
Hierarchical Pre-Grouping are the subject of the next
section.

5. Decomposing Pre-Grouping
In this section we start with the algebraic expressions E1
and E2 that define the Generalized Pre-Grouping
transformation. Our goal is to transform the expression E1
into E2 using a sequence of simple transformations for
which we can prove the sufficient conditions required in
order to apply them. This task mainly achieves two goals:

• Identify and prove that a particular set of
conditions is sufficient in order to apply the
Generalized Pre-Grouping transformation.

• Identify the relationship of the Pre-Grouping
transformation to other similar and more
elementary transformations like the “eager
groupby-count” defined by Yan and Larson
([YL95]) and the “Literal Elimination” technique
described in the Semantic Query Optimization area
([CGM90]).

An additional result of this decomposition task is the
definition of the Surrogate-Join transformation. This
transformation, as described in detail in the following, can
use a number of integrity constraints in order to modify a
join expression by altering the join condition.

In the following we define a number of simple and
complex transformations and provide propositions and
theorems proving the conditions under which each
transformation can be applied. All omitted proofs can be
found in the extended version of this paper [TS03].

5.1 Simple transformations

Simplify-GroupBy: The transformation removes one or
more grouping attributes of the Л operator when it is
known that the remaining grouping attributes functionally
define the removed ones. The algebraic expression of the
Simplify-GroupBy transformation is:

1, 2 1
, ({ ()}) , ({ ()})

() ()i i i i

G G G
S A F Ag M S A F Ag M= =

≡R RЛ Л

Proposition: Let both sides of the Simplify-GroupBy
transformation be valid expressions. The transformation is
valid if and only if G2 is functionally dependent on G1
(G1 G2) in R.

Simplify-Aggregations: The transformation removes a
number of redundant aggregation functions simplifying
the expression of a Л operator. This transformation is
applicable when the Л operator performs no grouping and
acts only as a duplicate-retaining project operator. The
algebraic expression of the transformation is:

1, ({ (;1)},{ }) , ({ },{ })
() ()i i iS A F Ag M S A F M= =

≡
22Ag Ag

R RЛ Л

Proposition: Let both sides of the Simplify-Aggregations
transformation be valid expressions. The transformation is
valid for any R if and only if all the aggregate functions
Ag1

i() have the identity property.

Remove-GroupBy: The transformation is the
combination of the previous two transformations. It
removes the grouping attributes and the aggregation
functions of a of Л operator when we know that they are
redundant. The algebraic expression of the Remove-
GroupBy transformation is:

, ({ }), ({ (;1)})
() ()ii i

G
S A F MS A F Ag M ==

≡R RЛ Л

Proposition: Let both sides of the Remove-GroupBy
transformation be valid expressions. The transformation is
valid if all the aggregation functions Agi() have the
identify property and G∈SupKey(R).

Remove-Join: When the attributes of a joining relation
are not used and all tuples of the other join relation appear
exactly once in the result of the join then the join is
redundant. The Remove-Join transformation removes
such a redundant join. The algebraic expression of the
Remove-Join transformation is:

, ({ ()}) , ({ ()})
() ()u u

i i i iu du uu u

G G
H KS A F Ag M S A F Ag M

σ == =
≡u d uR × R RЛ Л

Proposition: Let both sides of the Remove-Join
transformations be valid expressions and let Hu contain
only attributes of Ru while Kd contains only attributes of
Rd. The transformation is valid if and only if the
following conditions hold:
C1: () ()d u

d d d u

K H
K K K Hσ = ⊇d uR RЛ Л

C2: () () NULL()) {1, }u u

u u d u

H H
MAX a a COUNT H H K Hσ∅

= = × ∈u dR RЛ Л (Л

Condition C1 defines a strict inclusion dependency
(see section 3) while condition C2 is quite difficult to
define in terms of integrity constraints. Instead of C2 one
can use a more restrictive condition and require Kd to be a
Super-Key of Rd or at least Kd∈SupKey(()

dK dRЛ).
However, this condition is not required (but it is sufficient
along with the condition C1) in order for the
transformation to be valid.

Normalization: The transformation replaces a relation
with the natural join of two generalized projections of this
relation. The goal of the transformation is to separate the
functionally dependent attributes from other attributes of
the relation. The algebraic expression of Normalization is:

1
1 1 1 2, 1 1 1, 2(() ())G

R S G R G G S G G Gσ = − ∪ =≡ ×R R RЛ Л Л

Proposition: The Normalization transformation is valid
whenever the right-hand side is a valid expression.

The right-hand side expression requires that G1 and
G2 are attributes of R and that G2 is functionally
dependent on G1 (G1 G2) in R. Note that in this
transformation the Л operator acts only as a project
operator, some times eliminating duplicates and some
times retaining them. The correctness of the
transformation can easily be proven using the Remove-
Join and Simplify-GroupBy transformations.

An interesting remark regarding this transformation is
its applicability in the process of normalizing a database
schema into 3rd Normal Form. Any such normalization
process implicitly uses this transformation.

Add-Join-Predicate: The transformation simply adds (or
removes) a redundant equi-join predicate to an existing
equi-join. With this transformation one can modify and
even replace join conditions. The algebraic expression of
the Add-Join-Predicate transformation is:

() ()
u d u d u dH K H K SH SKσ σ= = ∧ =≡ ×u d u dR × R R R

Proposition: Let both sides of the Add-Join-Predicate
transformation be valid expressions. The transformation is
valid if the following conditions hold:
C1: , ,

, ,() ()d d u u

d d d d d d u u u u

K SK H SH
K SK K K SK SK H SH H Hσ σ= ∧ = =⊇d uR RЛ Л

C2: () () NULL()) {1, }u u

u u d u

H H
MAX a a COUNT H H K Hσ∅

= = × ∈u dR RЛ Л (Л

Condition C1 can be satisfied using SQL integrity
constraints. If {Hu, SHu} are defined as not NULL and as
foreign keys referencing {Kd, SKd} then we can prove C1.
Also, just like in the case of the Remove-Join
transformation, we can use the constraint Kd∈SupKey(Rd)
in order to prove condition C2. Note that the above
conditions are required in order to make sure that the
removed condition SHu=SKu is redundant with respect to
the remaining condition Hu=Kd.

5.2 Complex transformations

Split-Л: The transformation pushes an aggregation
operation that is applied on the result of a join into the
members of the join. This is achieved by splitting the
aggregation operation into two aggregation stages. The
first one is performed before the join on one of the joined
sources and the other is performed on the result of the join
in place of the original aggregation operation (see [YL95]
for a detailed discussion of this complex transformation).
The algebraic expression of the Split-Л transformation is:

,
(,), , ({ ()},{ (; ())})

,
(,), , ({ (;1)},{ (; ()*)})

, , , , , (), ()

()

()

d u
i i i i i i i i d ud u uu d u d u

d u
i i i i i i i i d ud u I uO d u d u

u
i i i i i

u u u I uu u I u
i i i

G G
c E ES S A F Ag M Ag M C g N Z

G G
c E ES S A F Ag m Ag M C g N Z x

NG
E G S C Z m Ag M x COUNT TID

σ

σ

= ∪ ∪

= ∪ ∪

= =

× ≡u d

u

R R

R∪ ∪ ∪

Л

Л (

Л)× dR

In the above expressions the COUNT(TID) aggregate
function counts the number of tuples in each group. Note
that this is the only transformation that uses the analytic
notation Ag(X;g(Y)) for the aggregate functions. In fact, it
is due to this transformation that we have chosen to adopt
this notation. Without this notation the formal definition
of the impact of the term gi()*xu would be quite
complicated. A final remark is that the selection operator
is not essential to the transformation and we could have
also defined it without it.
Theorem 5.1: Let both sides of the Slit-Л transformation
be valid expressions. The transformation is valid if the
following conditions hold:
C1: NGu Gu∪Su∪Ci

u∪Zi
u.

C2: The aggregate functions Agi
u() are decomposable into

Agi
O(Agi

I())
This theorem is equivalent to the eager-groupby-count

theorem presented by Yan and Larson ([YL95]). The only
minor difference is that we are using a different notation
and we allow the Agi() functions to use not only attributes
of Rd but also attributes of Ru. Also, due to the way we
have defined aggregate functions, we need not impose any
conditions on the properties of the Agi() aggregate
functions as done by the eager-groupby-count theorem. In
fact, the extra condition imposed by that theorem is not
really restrictive.

Surrogate-Join: This transformation modifies an equi-
join expression and provides an alternative way to join the
two sources. The goal is to remove any redundant parts
that exist in the joined sources and join only the
remaining necessary sections. In order to achieve this goal
the transformation replaces the join condition with a
different one while performing appropriate projections
and duplicate elimination on the joined sources. The
algebraic definition of Surrogate-Join is:

,

, , ,

()

(() ())
u d u d

d

u d u d u u d d

S S H K

SK
S S SH SK S SH S SK

σ

σ
=

=

≡

×

u d

u d

R × R

R R

Л

Л Л Л

Theorem 5.2: Let both sides of the Surrogate-Join
transformation be valid expressions. The transformation is
valid if the following conditions hold:
C1: , ,

, ,() ()d d u u

d d d d d d u u u u

K SK H SH
K SK K K SK SK H SH H Hσ σ= ∧ = =⊇d uR RЛ Л

C2: () () NULL()) {1, }u u

u u d u

H H
MAX a a COUNT H H K Hσ∅

= = × ∈u dR RЛ Л (Л

Note that in order to apply the Surrogate-Join
transformation an additional constraint must hold:
SKd Sd. Without this constraint the right-hand side
expression is not valid.
Proof: Our approach is to split the relation Rd into two
parts separating the attributes SKd and Sd from the rest.
We can do that using the Normalization transformation.
The redundant part of Rd can then be removed with the
Remove-Join transformation while the new join condition
is introduced with the Add-Join-Predicate transformation.

Surrogate-Join application example

Consider the following example. A web hosting
company is maintaining a database with statistics about
the web sites it hosts. The company uses a number of
servers and each hosted page is assigned to a particular
server. Every month the company is making available to
its customers a number of materialized views with
aggregated results. One of these views, called
Page_Server_Hits, reports the total hits for each page
along with the total hits for the server to which the page is
allocated. The schema of this view contains (at least) the
attributes: PageID, PageHits, ServerID, ServerHits. A
second view is made available per client containing
additional details about the pages owned by the particular
client. This second view, called Page_Hour_Hits,
contains the hits of each page aggregated separately for
each hour of the day. So, in this view there are 24 tuples
describing the hits of each page. The attributes of
Page_Hour_Hits contain at least the attributes: PageID,
ServerID, Hour, HourPageHits.

If a client wants to compute the percentage
HourPageHits/ServerHits for each of his/her pages and
each of the 24 hours, he/she could use the following SQL
query:
SELECT PageID, HourPageHits/ServerHits
FROM Page_Hour_Hits P, Page_Server_Hits S
WHERE P.PageID=S.PageID

However, using the semantics implied by the schema
there is a different query that produces the same result:
SELECT PageID, HourPageHits/ServerHits
FROM Page_Hour_Hits P,
 (SELECT ServerID, ServerHits
 FROM Page_Server_Hits
 GROUPBY ServerID, ServerHits) S
WHERE P.ServerID=S.ServerID

The second query is the result of applying the
Surrogate-Join transformation on the first one. We know
that the view Page_Hour_Hits contains page IDs that
also appear in the Page_Server_Hits and that in both
views a page ID is related to the same server ID. These
facts satisfy the condition C1 of the Surrogate-Join
theorem. With the additional knowledge that each page ID
appears only once in the view Page_Server_Hits, the
condition C2 is also satisfied allowing us to apply the
Surrogate-Join transformation. □

Surrogate-Join-Early-GroupBy: The transformation is
similar to the Split-Л transformation, only that it does not
divide the aggregation operation into two parts. The
complete aggregation operation is performed on only one
of the joined sources. In order to achieve this push-down
of the aggregation operation the transformation may need
to modify the join condition and eliminate possible
duplicate tuples. In fact, the transformation can be
considered as a combination of Surrogate-Join and Split-
Л. The algebraic expression of the transformation is:

,
, , ({ ()})

,
, , ,, , ({ ()})

()

(() ())

u d
ii u du d u

u u d
iiu d u d d du u u

S S
H KS S A F Ag M

S SH SK
S S A SH SK SK SS SH A F Ag M

σ

σ

==

= =

≡u d

u d

R × R

R × R

Л

Л Л Л

Theorem 5.3: Let both sides of the Surrogate-Join-Early-
GroupBy be valid expressions. The transformation is
valid if the following conditions hold:
C1: , ,

, ,() ()d d u u

d d d d d d u u u u

K SK H SH
K SK K K SK SK H SH H Hσ σ= ∧ = =⊇d uR RЛ Л

C2: () () NULL()) {1, }u u

u u d u

H H
MAX a a COUNT H H K Hσ∅

= = × ∈u dR RЛ Л (Л

C3: SKd↔Sd
C4: The aggregate functions Agi() are decomposable into

Agi
O(Agi

I()) and the functions Agi
O() have the

identity property.
Proof: We start with the original expression and apply the
Surrogate-Join transformation in order to modify the join
condition. This allows us to apply Split-Л without adding
Hu as grouping attribute for the inner aggregation
performed on Ru before the join. Finally, using the given
conditions, we realize that the outer aggregation operator
is redundant. We apply Remove-GroupBy and get the
final result. Using a more complicated proof we could
show that the condition C4 is not really required.

We now present the final and main theorem of the
paper. Recall that the Generalized Hierarchical Pre-
Grouping transformation is defined as E1=E2 where:
E1: 1 2 3

3 31 2

2 2 1 1

, , ,
, , , ({ ()})

(

(()))

u d d d
ii u du d d u

u d u d

S S S S
H KS S S A F Ag M

H K H K

σ

σ σ
==

= = u d1 d2 d3R × R × R × R

Л

E2:

1 3 2

1 2 2 2 1 3 2

3 2 1

1 1 3 2 1

1 2

1 1 2 2

, , ,
, , , , , , , ({ (;1)})

, , ,
, , , , ()

, ,

((

(()

())) ())

u d u u
i i

u d d u d u d u u O I

u u u u
i i iu d u u u u I I u

i

d d

d d d d

S S SH SH
S S S A SH SK S S SH SH A F Ag m

S SH SH SH
SH SK S SH SH SH m Ag M

SK SK
S SK S SK

σ

σ

= =

= =
×

×

u

d1 d2

R

R R

∪

Л Л

Л

Л Л

Main Theorem: Let both E1 and E2 be valid expressions.
The Generalized Hierarchical Pre-Grouping transforma-
tion is valid if the following conditions hold:
I1: SKd3↔Sd3 in Rd3

I2: 3 3 3 3

3 3 3 3 3 3 3 3 3 3

, ,
, 3 ,() ()d d u u

d d d d d d u u u u

K SK H SH
K SK K K SK SK H SH H Hσ σ= ∧ = =⊇d uR RЛ Л

I3: 3 3

3 3 3 3() () 3 NULL()) {1, }u u

u u d u

H H
MAX a a COUNT H H K Hσ∅

= = × ∈u dR RЛ Л (Л

I4: 2 2 2 2

2 2 2 2 2 2 2 2 2 2

, ,
, 2 ,() ()d d u u

d d d d d d u u u u

K SK H SH
K SK K K SK SK H SH H Hσ σ= ∧ = =⊇d uR RЛ Л

I5: 2 2

2 2 2 2() () 2 NULL()) {1, }u u

u u d u

H H
MAX a a COUNT H H K Hσ∅

= = × ∈u dR RЛ Л (Л

I6: SKd2↔Sd2 in Rd2
I7: The aggregate functions Agi() are decomposable into

Agi
O(Agi

I()) and the functions Agi
O() have the

identity property.

I8: 1 1 1 1

1 1 1 1 1 1 1 1 1 1

, ,
, 1 ,() ()d d u u

d d d d d d u u u u

K SK H SH
K SK K K SK SK H SH H Hσ σ= ∧ = =⊇d uR RЛ Л

I9: 1 1

1 1 1 1() () 1 NULL()) {1, }u u

u u d u

H H
MAX a a COUNT H H K Hσ∅

= = × ∈u dR RЛ Л (Л

Before providing the proof of the theorem we briefly
explain the semantics of the previously defined conditions
I1-I9.

The first three conditions I1-I3 identify the
relationship of the central table Ru with the table Rd3.
Condition I1 is used to guaranty that the attributes of Rd3
on which grouping is required (Sd3) are in the set of
attributes SKd3 or have a one-to-one mapping to the
attributes in this set. Note that the sets Kd3 and SKd3 can
contain the exact same attributes. Then, condition I2
requires Ru to contain foreign keys (Hu3, SHu3) connecting
the central table Ru to Rd3. The Hu3 foreign key is required
in order to guaranty that the corresponding join operation
in E1 joins each tuple of Ru to at least one tuple of Rd3.
Condition I3, which mainly requires Kd3 to be a key of the
table Rd3, complements I2 and the two conditions together
guaranty that, in E1, each tuple of Ru joins to exactly one
tuple of Rd3.

The I2 condition is also used in order to require the
SHu3 attributes of Ru to reflect the values of the SKd3
attributes of Rd3. In this way the grouping attributes of
Rd3 are mapped to attributes in Ru.

In a very similar way the conditions I4, I5 and I6
define the relationship of the central table Ru with the
table Rd2. In fact the only difference of Rd2 to Rd3 in the
transformation is that the grouping attributes of Rd2 are
also projected attributes.

The condition I7 is required in order to be able to split
the aggregation operations into two stages. This is
required only due to the Rd1 table. If the Rd1 table does
not participate in the transformation then this condition is
not needed.

Finally, the conditions I8 and I9 are used in a similar
way to I2 and I3. They guaranty that each tuple of Ru
joins, in E1, with exactly one tuple of Rd1. Also, I8
requires that the values of the SKd1 attributes are reflected
in the SHu1 attributes of Ru. These facts in combination
with the condition SKd1 Sd1, which is implied by the
correctness of E2, allow the aggregation of Ru tuples
before the join.

Proof: We start with E1 and by applying a sequence of
transformations we get E2. The proof process can be
separated into three stages. Each stage concentrates on
one of the features of Pre-Grouping. In the first stage we
deal with the elimination of the redundant join with Rd3
using the Surrogate-Join, Simplify-GroupBy and
Remove-Join transformations. In the second stage we
push down the aggregation operation, before the join with
Rd2 using mainly the Surrogate-Join-Early-GroupBy
transformation. In the third and final stage we split the
aggregation operation into two phases, one before the join
with Rd1 and the second after this join. For this stage we
need the Surrogate-Join, Split-Л and Simplify-GroupBy
transformations. The description of the steps in each stage
follows:

Stage 1: Remove the redundant join with the Rd3.
In order to remove Rd3 we need to replace the

attributes Sd3. This requires the introduction of SKd3 for
which we know that Sd3↔SKd3. Conditions I1, I2 and I3
allow us to apply Surrogate-Join and get:

1 2 3

3 31 2

2 2 1 11 2 3

3

3 3

, , ,
, , , ({ ()})

, , , ,

,

(

(())

)

u d d d
ii u du d d u

i u d u du d d u u
i

d

d d

S S S S
SH SKS S S A F Ag M

H K H KS S S SH M

SK
S SK

σ

σ σ

==

= = u d1 d2

d3

R × R × R

× R

∪

Л

Л

Л

For the outer Л operator we have that SHu3=SKd3↔Sd3.
By exploiting this fact we apply Simplify-GroupBy and
replace Sd3 with SHu3. This transformation makes the join
with Rd3 redundant. Using conditions I2 and I3 we apply
Remove-Join and after combining the two consecutive Л
operators we finally get:

1 2 3

2 2 1 11 2

, , ,
, , , ({ ()})

(())u d d u
ii u d u du d d u

S S S SH
H K H KS S S A F Ag M

σ σ= == u d1 d2R × R × RЛ

Stage 2: Push-down aggregation below the join with Rd2.
The Surrogate-Join-Early-GroupBy is used in order to

push the aggregation operation bellow the join with Rd2.
Conditions I4-I7 satisfy the conditions of the theorem 5.3.
By applying the transformation we get:

1 2 3

1 2 2 2 1 2 3

2

1 1 2 2

, , ,
, , , , , , , ({ ()})

,

(

() ())

u d u u
iiu d d u d u d u u u

d

u d d d

S S SH SH
S S S A SH SK S S SH SH A F Ag M

SK
H K S SK

σ

σ

= =

= u d1 d2R × R × R

Л Л

Л

Stage 3: Split the aggregation into two phases.
In order to maximize the effect of an early aggregation

operation on Ru before the join with Rd1, we need to
eliminate the Hu1 attribute used in the join condition.
Surrogate-Join is used to perform the modification using
conditions I8 and I9. The resulting expression is:

1 2 2 2

1 2 3

1 11 2 3

1

1 11 2 3

2

2 2

, , ,

, , ,
, , , , ({ ()})

,, , , ,

,

(

(

() ())

())

u d d u d

u d u u
ii u du d u u u

d
i d du u u u u

i

d

d d

S S S A SH SK

S S SH SH
SH SKS S SH SH A F Ag M

SK
S SKS SH SH SH M

SK
S SK

σ

σ
=

==

u d1

d2

R × R ×

R

∪

Л

Л

Л Л

Л

Then we use the Split-Л transformation and split the
aggregation process into two phases: before and after the
join with Rd1. Using I7 we apply Split-Л and get:

1 2 2 2

1 2 3

1 11 2 3

1 2 3

1 2 3 1 2 3

1

1 1 2 2

, , ,

, , ,
, , , , ({ (;1)})

, , ,
, , , , () , , , ,

, ,

(

(

()

())

u d d u d

u d u u
i i u du d u u O II

u u u u
i i i i

u u u u II I u u u u u u
i i

d

d d d d

S S S A SH SK

S S SH SH
SH SKS S SH SH A F Ag m

S SH SH SH
S SH SH SH m Ag M S SH SH SH M

SK SK
S SK S SK

σ

σ
=

==

= u

d1

R ×

R ×

∪ ∪

Л

Л

Л Л

Л Л 2 ())d
d2R

Finally, we combine the two consecutive Л operators
and after using the Simplify-GroupBy for the Л operators
of Rd1 and Rd2 we get the final expression E2. □

The conditions of the above theorem appear quite
complicated at first sight. Still, most of them can be

satisfied by integrity constraints defined in SQL.
Conditions I3, I5, and I9 can be satisfied by UNIQUE or
PRIMARY_KEY constraints. For example, if Kd1 is
UNIQUE in Rd1 then I9 is satisfied. Conditions I2, I4 and
I8 can be satisfied by foreign key constraints. For
example, if {Hu3, SHu3} of Ru are not allowed to have
NULL values and they are declared as foreign keys
referencing {Kd3, SKd3} of Rd3, then I2 is satisfied.

Conditions I1 and I6 are harder to satisfy. For
example, assume that Rd2 is not a relation but the view:

2 2 2 2 2 2 2 2 2, , , ,(() ())
d d d d d d d d dK SK S XSK SK K XSK SK Sσ = ×d21 d22R RЛ Л Л

Assume also that SKd2 is a key of Rd22, Sd2 is defined
UNIQUE and not NULL in Rd22 and XSKd2 is defined as a
foreign key referencing SKd2. Using the above constraints
we get that SKd2↔Sd2 in Rd2, thus satisfying condition I6.
Finally, note that it is trivial to satisfy condition I7 when
the aggregate functions are limited to the typical SQL
aggregate functions.

6. Conclusions
In this paper we started with the analysis of the

Hierarchical Pre-Grouping transformation and derived a
generalized algebraic form using the expressions E1 and
E2. This general form of Pre-Grouping was then
decomposed into a sequence of elementary
transformations proving that the set of conditions I1 – I9
are sufficient in order to apply Pre-Grouping.
Furthermore, we have shown that by using only functional
and inclusion dependencies that can be defined in SQL,
we can satisfy the conditions I1-I9 and apply Pre-
Grouping.

Based on the presented decomposition we have
identified the main ‘ingredients’ of this complex
transformation. One of them is obviously Split-Л, a
transformation that represents the various optimization
techniques defined in previous publications ([CS94,
YL95, GHQ95]) for aggregate queries. This
transformation is used to push down or split in stages an
aggregation operation.

An additional important ‘ingredient’ of Pre-Grouping
was identified to be the Surrogate-Join transformation.
The Surrogate-Join transformation is a Semantic Query
Transformation technique that uses a number of integrity
constraints to alter equi-join expressions modifying the
attributes used in the join condition. It is this join-
condition modification that allows the Pre-Grouping
transformation to eliminate redundant joins and group on
an extended number of attributes before performing a
join. The importance of this transformation is emphasized
by the experimental results presented in previous
publications ([KTS02, PER03]). Furthermore, Surrogate-
Join can be applied on its own, as shown in the example
of section 5, generating alternative plans that may be
chosen for execution.

 Our results emphasize the belief that Semantic Query
Optimization techniques are particularly appropriate in
the OLAP area where a large number of dependencies are
present. Today’s commercial systems make little usage of
SQO techniques, missing the opportunity to optimize an
important class of queries ([CGK99]).

As future work, we plan to investigate the application
of Pre-Grouping and Surrogate-Join to a larger query
class including nested queries and attempt to identify
useful transformations that combine the Л operator with
outerjoin and semijoin operators.

7. Acknowledgments
This work has been partially funded by the European
Union's Information Society Technologies Programme
(IST) under project EDITH (IST-1999-20722). The
authors would like to thank Nikos Karayannidis, Roland
Pieringer, Klaus Elhardt, Frank Ramsak and Dimitri
Theodoratos for the many fruitful discussions on the
Hierarchical Pre-Grouping transformation.

8. Bibliography
[Alb91] Joseph Albert: Algebraic Properties of Bag Data

Types. VLDB 1991: 211-219
[CD97] S. Chaudhuri, U. Dayal: An Overview of Data

Warehousing and OLAP Technology.
SIGMOD Record 26(1): 65-74 (1997)

[CGK99] Qi Cheng, Jarek Gryz, Fred Koo, T. Y. Cliff
Leung, Linqi Liu, Xiaoyan Qian, K. Bernhard
Schiefer: Implementation of Two Semantic
Query Optimization Techniques in DB2
Universal Database. VLDB 1999: 687-698

[CGM90] U. S. Chakravarthy, J. Grant, J. Minker:
Logic-Based Approach to Semantic Query
Optimization. TODS 15(2): 162-207 (1990)

[CS94] S. Chaudhuri, K. Shim: Including Group-By in
Query Optimization. VLDB 1994: 354-366

[CV93] Surajit Chaudhuri, Moshe Y. Vardi:
Optimization of Real Conjunctive Queries.
PODS 1993: 59-70

[Day87] Umeshwar Dayal: Of Nests and Trees: A
Unified Approach to Processing Queries That
Contain Nested Subqueries, Aggregates, and
Quantifiers. VLDB 1987: 197-208

[DGK82] Umeshwar Dayal, Nathan Goodman, Randy H.
Katz: An Extended Relational Algebra with
Control over Duplicate Elimination. PODS
1982: 117-123

[GHQ95] Ashish Gupta, Venky Harinarayan, Dallan
Quass: Aggregate-Query Processing in Data
Warehousing Environments. VLDB 1995:
358-369

[IR95] Yannis E. Ioannidis, Raghu Ramakrishnan:
Containment of Conjunctive Queries: Beyond
Relations as Sets. TODS 20(3): 288-324 (1995)

[Kim82] Won Kim: On Optimizing an SQL-like Nested
Query. TODS 7(3): 443-469 (1982)

[King81] Jonathan J. King: QUIST: A System for
Semantic Query Optimization in Relational
Databases. VLDB 1981: 510-517

[KS01] N. Karayannidis, T. Sellis: SISYPHUS: A
Chunk-Based Storage Manager for OLAP
Cubes. DMDW 2001

[KTS02] Nikos Karayannidis, Aris Tsois, Timos K.
Sellis, Roland Pieringer, Volker Markl, Frank
Ramsak, Robert Fenk, Klaus Elhardt, Rudolf
Bayer: Processing Star Queries on
Hierarchically-Clustered Fact Tables. VLDB
2002: 730-741

[MPR90] Inderpal Singh Mumick, Hamid Pirahesh,
Raghu Ramakrishnan: The Magic of Duplicates
and Aggregates. VLDB 1990: 264-277

[MRB99] Volker Markl, Frank Ramsak, Rudolf Bayer:
Improving OLAP Performance by
Multidimensional Hierarchical Clustering.
IDEAS 1999: 165-177

[NPS91] Mauro Negri, Giuseppe Pelagatti, Licia
Sbattella: Formal Semantics of SQL Queries.
TODS 16(3): 513-534 (1991)

[PER03] Roland Pieringer, Klaus Elhardt, Frank
Ramsak, Volker Markl, Robert Fenk, Rudolf
Bayer, Nikos Karayannidis, Aris Tsois, Timos
Sellis: Combining Hierarchy Encoding and
Pre-Grouping: Intelligent Grouping in Star
Join Processing. ICDE 2003

[SO87] Sreekumar T. Shenoy, Z. Meral Özsoyoglu: A
System for Semantic Query Optimization.
SIGMOD Conference 1987: 181-195

[SY94] Wei Sun, Clement T. Yu: Semantic Query
Optimization for Tree and Chain Queries.
TKDE 6(1): 136-151 (1994)

[TKS02] Aris Tsois, Nikos Karayannidis, Timos K.
Sellis, Dimitri Theodoratos: Cost-based
optimization of aggregation star queries on
hierarchically clustered data warehouses.
DMDW 2002: 62-71

[TS03] Aris Tsois, Timos Sellis: The Generalized Pre-
Grouping Transformation: Aggregate-Query
Optimization in the Presence of Dependencies.
Technical Report, KDBS Lab, NTUA, TR-
2003-4 [http://www.dblab.ece.ntua.gr/]

[TT01] Dimitris Theodoratos, Aris Tsois: Heuristic
Optimization of OLAP Queries in
Multidimensionally Hierarchically Clustered
Databases. DOLAP 2001.

[YL94] W. P. Yan, P-Å. Larson: Performing Group-
By before Join. ICDE 1994: 89-100

[YL95] Weipeng P. Yan, Per-Åke Larson: Eager
Aggregation and Lazy Aggregation. VLDB
1995: 345-357

