Distributed Top-N Query Processing
with Possibly Uncooperative Local Systems

Clement Yu, George Philip
Dept. of Computer Science
U. of lllinois at Chicago
Chicago, IL 60607
{yu,gphilip }@cs.uic.edu

Abstract

We consider the problem of processing top-N
queries in a distributed environment with pos-
sibly uncooperative local database systems.
For a given top-N query, the problem is to find
the N tuples that satisfy the query the best
but not necessarily completely in an efficient
manner. Top-N queries are gaining popular-
ity in relational databases and are expected
to be very useful for e-commerce applications.
Many companies provide the same type of
goods and services to the public on the Web,
and relational databases may be employed to
manage the data. It is not feasible for a user to
query a large number of databases. It is there-
fore desirable to provide a facility where a user
query is accepted at some site, suitable tuples
from appropriate sites are retrieved and the
results are merged and then presented to the
user. In this paper, we present a method for
constructing the desired facility. Our method
consists of two steps. The first step deter-
mines which databases are likely to contain
the desired tuples for a given query so that
the databases can be ranked based on their
desirability with respect to the query. Four
different techniques are introduced for this
step with one requiring no cooperation from
local systems. The second step determines
how the ranked databases should be searched

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

Weiyi Meng
Dept. of Computer Science
SUNY at Binghamton
Binghamton, NY 13902
meng@cs.binghamton.edu

and what tuples from the searched databases
should be returned. A new algorithm is pro-
posed for this purpose. Experimental results
are presented to compare different methods
and very promising results are obtained us-
ing the method that requires no cooperation
from local databases.
keywords: Top-N queries,
databases, query processing.

distributed

1 Introduction

As pointed out in [1, 3, 4, 6, 7], it is of great inter-
est to find the N tuples in a database table which
best match a given user query, for some integer N. If
the table contains tuples that describe cars, then the
problem becomes finding the N best matching cars
of a given car description. Current commercial rela-
tional database systems do not support the process-
ing of such type of queries. Techniques for processing
such queries in a centralized environment have recently
been proposed by [1, 3, 4, 6]. In this paper, we exam-
ine the processing of this type of queries in large-scale
distributed relational databases. Specifically, given a
query that requests the top N matched tuples (or top
N tuples for short) across many databases, we study
different methods to determine the databases that are
likely to contain the desired results. This is of special
interest in the Internet environment where numerous
sites may provide data about the same type of prod-
ucts/services. In such an environment, most users will
be satisfied with getting most of the top IV results.

A straightforward way to process a top-N query in
a distributed environment is to send the query to all
databases. The site of each database returns the top IV
local tuples, which are then merged with results from
other sites at a common site to produce the overall top
N tuples. This strategy is, however, not efficient if the
number of databases is large, because most of them

probably won’t contain any of the desired tuples. For
example, if N = 20 and the number of databases is
200, then at least 180 of the databases won’t be useful
for this query. This simple method incurs unneces-
sary cost to send the query to the useless sites and
unnecessary cost to process the query at these sites.
Furthermore, when these sites return their retrieval
results to the common site, there will be further waste
of communication and local processing resources.

In this paper, we present a two-step process to find
the top IV matched tuples of a given relational query in
a distributed database environment. In the first step,
an attempt is made to rank databases optimally with
respect to the given query based on certain desirability
criterion. Four different histogram based methods are
utilized to estimate the desirability of each database
with respect to the query. In the second step, a merge
algorithm is used to determine which databases should
be accessed and what tuples from accessed databases
should be retrieved. Retrieved tuples are merged to
form the output to the user. A new merge algorithm
is proposed in this paper. Experimental results are
carried out to compare the performance, in terms of
both accuracy (effectiveness) and efficiency, of different
approaches. The contributions of this paper are:

1. In the e-commerce environment, it is likely that
many databases (owned by different companies) are
not willing to supply sufficient data for the construc-
tion of the histograms. We propose a method to con-
struct histograms from uncooperative databases and
we demonstrate that its ability in retrieving the top
N tuples is significantly higher than other histogram
construction techniques. To the best of our knowledge,
this is the first paper on the top-N query problem in
distributed uncooperative relational databases.

2. We provide a new merge algorithm and com-
pare it both analytically and experimentally with an
existing merge algorithm. It is found that the new
algorithm has higher retrieval effectiveness but lower
efficiency.

3. Various histogram construction and estimation
techniques are compared. Experimental results indi-
cate that our proposed histogram construction algo-
rithm that requires no cooperation from databases are
much more accurate than three other histogram gen-
eration algorithms. Furthermore, the new algorithm
gives consistently high accuracies under different query
types (different dimensions, different distance func-
tions, or a mixture of various query types).

4. We identify the type of queries where the original
merge algorithm is sufficiently accurate and the type
of queries where the new merge algorithm is needed
for high accuracy. As a consequence, we utilize both
merge algorithms to achieve both high accuracy and
high efficiency.

A comparison with related literature is as follows.

1. The work reported in this paper can be consid-

ered as a generalization of the top-N query problem
from centralized environments to distributed environ-
ments. The problem here is to identify the indepen-
dently operated databases that are likely to contain
the top N tuples for a given query; such a problem
does not exist in a centralized environment.

2. Some recent techniques to construct histograms
([5, 9, 11, 13, 18, 19]) are employed here, although
there is a significant difference. Histograms were tra-
ditionally used to estimate the number of tuples satis-
fying a certain query condition. In this paper, we mod-
ify existing techniques and propose a new technique so
that they can be used to estimate the distance of the
best matched tuple in a database to a given query.

3. Database (source) selection techniques discussed
in [16, 17] do not consider top-N queries.

4. Preference queries have received some attention
recently [10, 12]. While preference queries support
richer mechanisms for a user to express preference of
results than top-N queries, the evaluation techniques
for these two types of queries are very different. Top-
N query processing aims to evaluate only tuples that
have the potential to be ranked among the top N re-
sults and uses histogram-based techniques to narrow
the search space. Preference query evaluation typically
ranks all tuples and uses views or materialized views
to support preference capabilities [10, 12].

5. The most closely related work to this paper is [23]
but there are several significant differences between it
and this paper. First, a new merge algorithm is pro-
posed, which is is compared with that in [23] in this
paper. Second, [23] used just one type of histograms
to estimate the distance of the best matched tuple
in a database and no comparison with other meth-
ods was made. In this paper, three different types
of histograms are utilized and compared with the one
used in [23]. Third, the estimation algorithm in [23] is
of exponential complexity, while the estimation algo-
rithm in this paper takes low polynomial time com-
plexity. Fourth, the new merge algorithm and the
original merge algorithm are utilized jointly to achieve
high accuracy and efficiency.

2 Examples of Top-N Queries

In this section, we provide a few examples to illustrate
the use of the top-N queries. While such queries are
widely used in text and multimedia databases, they are
rather unusual in relational databases but are gaining
importance. Their interpretations are by no means
standard and are application dependent. Due to their
different interpretations and applicabilities, we classify
these queries into three different types. We also pro-
vide “distance” functions which may be suitable for
the three different situations.

(a) Standard top-N queries
Given a relation R(Aq, ..., Ay;;), where the A’s are the
attributes of the relation and a query Q(q1,-.-,qm),

where ¢; is a condition on attribute A;, i =1,...,m, a
distance function d such as the Euclidean distance or
the Manhattan distance can be defined such that a dis-
tance d(Q,t) can be computed, where t = (t1, ..., tm)
is a tuple in R. The distance is a measure of how well
the tuple ¢ satisfies the query Q.

Example 1 Consider a relation about used cars that
includes attributes price, p, and mileage, m. Suppose
a user is interested in finding a used car satisfying
his/her requirements on these two attributes. Suppose
the user submits the following SQL query.

Select C.id, C.p, C.m From Used-car C

Where C.p = 2000 and C.m = 100000

There may not be a tuple satisfying the given condi-
tions. The remedy is to have a distance function f such
that a distance can be computed between the query,
Q(p = 2000, m = 100000) and each tuple ¢. Then the
tuples are ordered in ascending order of distances. Fi-
nally, the N tuples having the smallest distances are
presented to the user, where N is an integer specified
by the user. This may be indicated by the SQL-like
query below:

Select C.id, C.p, C.m (10) From User-car C

Where C.p = 2000 and C.m = 100000

Order by Distance f

Here, the 10 best matched tuples are to be given to
the user, where the distance function is f. ®

Although the above example is reasonable, there
are rooms for better interpretations. First, if a car has
an additional 10,000 miles, it may still fit the user’s
need. But, if the car costs an additional $10,000,
it will definitely not be suitable to the user. This
can be remedied by normalizing the attribute value of
each tuple by the corresponding query attribute value
for each attribute. For example, if a tuple has the
price and the mileage given by (2300,110,000), then
the percentage differences in the two attributes are
(300/2000, 10,000/100,000) = (15%,10%). For the
rest of this paper, we shall use the percentage differ-
ence instead of the absolute difference. Often, different
attributes may have different degrees of significance to
the user. An importance factor I; can be associated
with the ith attribute.

If the Manhattan distance is used, the “distance”
due to the i-th attribute, d;, is given by (|t; —q;|/q:)*I;
and the overall distance due to multiple attributes is
> (Iti —qil/qi) * I;. If the Euclidean distance function
is used, then d; = ((t; — ¢;)/q:)* * I; and the overall

distance is />, ((t; — @:)/q:)* * ;.

(b) Generalized “distance” top-N queries

In the above case, a car costing $1,500 is at the same
distance as another car costing $2,500 relative to the
query condition of $2,000, though the former car with
the same mileage as the latter is likely to be more
desirable to the user. To achieve the desired effect,
the “distance” function is adjusted to permit negative
values. In deciding the top N tuples of a query, the

tuples are sorted in ascending order of distance, with
negative distances ahead of positive ones.

If the Manhattan distance is used, d; = (|t;—qi|/qi)*
Ii: if t; Z qi; otherwise, dl = —(|tz — Qz|/Qz) * Iz If the
Euclidean distance is used, then d; = ((t;—q;)/q:)** I,
if t; > q;; otherwise, d; = —((t; —qi)/qi)? * I;. Again, if
the Euclidean distance is used and when all attributes
are considered, the distances due to the individual at-
tributes are summed and then the square root is taken.
If a summed “distance” is negative, the absolute value
is taken before the square root is performed and the
negative sign is then added back in.

(c) Two sided generalized “distance” top-N
queries
Suppose we are interested in seeking an airplane ticket
from Chicago to New York City. The attributes of in-
terest could be the price and the time of departure.
For the time of departure, we may specify a range of
time which is acceptable, for example from 3pm to
5pm. Any time within the range will incur a distance
of 0, but a time outside the range incurs a positive
distance. As indicated before, we are interested in the
percentage difference in each attribute. Thus, the de-
nominator of the distance function for normalization
due to time is set to be the mid-point, i.e., 4pm in
the above example. This is to ensure that one hour
deviation from either side outside the range incurs the
same distance. For example, a 2pm departure time
incurs a percentage distance of 1/4. Recall that for
each attribute there is an importance factor. This can
be set to eliminate the effect of where the mid-point
lies. For example, the importance factor can be set
to be I; x m;, where m; is the mid-point of the inter-
val (equal to 4 in the above example), and I; is the
relative importance of the ith attribute. With these
parameter values, the mid-point m; will be cancelled
out from both the numerator and the denominator.
Let a range (I;, u;) be specified for the ith-attribute.
Let m; be the mid-point in the range, i.e., (u; —[;)/2.
If the Manhattan distance is used,

|ti—ui|/mi*li, ’Lf t; > u;
di = |ll—tl|/m,*IZ, Zf l; >t;
0, Zf t; 1sin (li,ui)

If the Euclidean distance is used,

((ti —wi)/ma)® * i, if t > wy
di = ((ll — ti)/mi)2 * Ii, Zf l; >t;
0, Zf ti 1S in (li,ui)

For the rest of this paper, we shall concentrate on
these three types of top-N queries. For each type, we
shall utilize the “Euclidean distance” function and the
“Manhattan distance” function (for generalized dis-
tance top-N queries, negative “distance” may arise.)
The use of the top-IN queries arises naturally in e-
commerce applications where the specification of de-
sired products is more complex. For example, when

buying long term care insurance for a couple, numer-
ous criterions may be significant. They may include
the number of years requiring long term care, the way
the number of years are split between the couple (say
the older person gets more years than the younger
person), the amount of expenses allowed per day, the
amount of deductible, whether the amount of allowable
expenses is adjusted based on inflation, the extent the
amount is applied to home care versus nursing home,
and the amount the couple can afford for premium per
year. It is very likely that not all of these criterions
can be satisfied simultaneously. As a result, the best
matches to the specification are needed.

3 Deciding Databases to Search

Our aim is to retrieve the the NV tuples with the small-
est distances from the query. This needs to be done
in a distributed environment across many databases.
One site may be designated as a global site which as-
sembles the tuples and returns them to the user. This
site has a global distance function which is the one de-
sired by the user. In this paper, we assume that there
is one relation in each database. Each database is op-
erated autonomously at a different site. For the re-
maining part of this paper, “relation” and “database”
will be used interchangeably.

To facilitate the identification of the top IV tuples
for a given query, we store for each relation a “his-
togram”, taking into consideration some dependencies
between the attributes. The histograms for all sites
are stored at the global site where user queries are pro-
cessed. They are used to rank databases in descend-
ing order of estimated desirability with respect to each
query, based on the global distance function. Tuples
from the selected databases are retrieved in such a way
that if the databases are ranked optimally, then all the
top N tuples will be retrieved.

In Section 3.1, we describe the constructions of four
types of histograms that will be used to estimate the
desirability of each database with respect to any given
query. In Section 3.2, a method for ranking databases
optimally with respect to a given query is provided.
The method is to simply rank databases in ascending
order of the distance of the best matched tuple in each
database. In Section 3.3, algorithms are given to es-
timate the distance of the best matched tuple in each
database to the query based on different types of his-
tograms. In Section 3.4, a new merge algorithm is pro-
vided to determine the tuples to be retrieved from the
ranked databases. This algorithm is then compared
with a previous merge algorithm [23] analytically.

3.1 Histogram Construction

In this section, the constructions of four different types
of histograms are presented. Due to the space limita-
tion, only two types will be described in some detail.

(A) Linear Approximation (LA)

The construction of this type of histogram will be given
as follows and will be illustrated by the used-car rela-
tion R on price and mileage. The general case will be
sketched later in Section 3.3.

86000 : : T T T
84000 —E%oint(5450,82000) Or'i:%ltigal i
82000 |-

80000 |- N -
78000 |-
76000 |- \ -
74000 | N -
72000 |- = |
70000 | Eﬁ&?ﬁ?nqssoo,71000) -

68000 1 1 1 1 1
5400 5450 5500 5550 5600 5650 5700
Price

Mileage
o7
1

Figure 1: Linear Approximation of a Price Interval

(1). The domain of the price attribute
is partitioned into fixed size intervals (each
interval has a range of $50) as follows:

[Price | ... | $5400 | $5450 | $5500 | ... |

(2). All the tuples within an interval are replaced
by a straight line, which minimizes the least square
error. For example in Figure 1, the line is a least
square approximation to the various points in the in-
terval [$5450, $5500]. The corresponding entry in our
histogram is ($5450, 82000; $5500, 71000). Each entry
in the histogram consists of the co-ordinates of the two
end points of a line segment.

(3). Since there may be too many intervals, requir-
ing excessive storage, adjacent intervals are merged
until a fixed number of, say r, intervals remain. The
criterion to choose which adjacent intervals to merge is
given by the Greedy Merge algorithm [13]. For every
two adjacent intervals, the combined interval contains
a straight line with a least square approximation to the
tuples within it. The Greedy Merge algorithm chooses
the combined interval with the smallest least square
error. This process of combining adjacent intervals
continues until r intervals remain.

This method requires cooperation from local
databases in the sense that it requires to have access
to all data in each local database.

(B) MAXDIFF MHIST-2 (MHIST-2)

This method [19] operates as follows. Initially, there
is a single region (in the case of two-dimensional data,
this is a rectangle) containing all points. Then, a re-
gion (this is unique initially, but needs to be deter-
mined in later iterations of the algorithm) is chosen to
be partitioned on one dimension into two regions such
that the difference in density (the number of points
within a region divided by the size of the region) be-
tween the two regions is the largest. (We also tried
using frequency instead of density, but the result is
worse.) This process is repeated until a fixed num-
ber of regions is reached. For each region in the his-

togram, the number of points as well as two corner
points defining the region are kept. This method also
needs cooperation from local databases.

(C) Frequent Queries (FQ)

As pointed out in [2], queries usually follow a Zip-
fian distribution and histograms should be constructed
utilizing the uneven query distribution. As a conse-
quence, it is important to provide accurate estimation
for frequently submitted queries. In [2], the queries
are range-queries. Here, they are top-N queries.

We now propose a method to construct a special
type of “histograms” which can be constructed with-
out the cooperation of local database systems. In the
Internet environment we cannot expect the needed his-
tograms to be provided by the local e-commerce search
engines. However, these engines will respond with re-
sults when a query is submitted. Thus, our approach is
to submit user queries to the different databases (this
has to be done anyway, so not much additional over-
head is involved) and to construct the “histogram”
based on the returned results of the frequently sub-
mitted queries. Our intuition is that if precise in-
formation is kept for data which are frequently ac-
cessed, then accuracy of estimation will be obtained.
It is well-known that in realistic situations, data in a
database are unevenly accessed with small amount of
data heavily accessed but most other data lightly ac-
cessed. Since heavily accessed data are likely due to
frequently submitted queries, we proceed to identify
such queries. Ideally, we can keep track of all submit-
ted queries and for each distinct submitted query, we
record a frequency of submission. The queries can be
sorted in descending order of frequency and the k most
frequently submitted queries are retained to construct
a histogram. This approach may not be practical, as
the number of submitted queries is very large, which
requires potentially unbounded storage. In order to
approximate the ideal scheme with fixed amount of
storage, we utilize two lists: Freq-Q and Infreq-Q. The
Infreq-Q list serves as a filter. Only queries which have
been submitted twice or more within a certain period
of time can enter the Freq-Q list. We want to eliminate
queries, each of which is submitted more than once but
not too many times from the Freq-Q list. This is ac-
complished by the transposition scheme [20] in which
every time an element is accessed, it is interchanged
with the next element. It has been shown analytically
[20, 15] that the transposition schema is a very good
approximation to the ideal situation where records are
arranged in descending order of frequencies of access.
The transposition method is used to retain the fre-
quently submitted queries. The same principle is used
to retain the frequently accessed best matched tuples
of the queries. Note that it is possible multiple dis-
tinct queries access the same data. We now describe
our approach in more detail as follows.

Maintain a linked list of frequent-queries, Freq-Q, a

linked list of best matched tuples, BMT, to some of the
queries in Freq-Q and a queue of queries, each of which
occurs only once within a period of time, Infreq-Q.
The three data structures are all of limited fixed sizes.
Initially, all three data structures are empty. When
a query Q arrives, if it is absent from both Infreq-Q
and Freq-Q, and Infreq-Q is not full, it is inserted into
Infreq-Q. This indicates that the query is submitted
exactly once. If Infreq-Q is full, then Q is inserted and
the first (i.e., the oldest) query in Infreq-Q is removed.

If the query is found in Infreq-Q, then it is removed
from Infreq-Q and inserted into Freq-Q. If Freq-Q is
not at least % full for some z (say 90), then the query
is inserted at the end of Freq-Q else it is inserted at
the % position towards the end (allowing some time
for it to be moved forward, if it is accessed again. This
causes the query at the end of Freq-Q to be dropped.).
The top N tuples of Q are found from the databases.
From each database that contains at least one of these
N tuples, the best matched tuple for the database de-
noted by B(Q,D) is retained. The set of B(Q,D)’s
from different databases together with the correspond-
ing database IDs are placed into the linked list BMT.
In addition, the distance of the N-th best matched tu-
ple to Q, N-distance, is attached to the query Q in
the linked list Freq-Q. If BMT is not at least 2% full,
then {B(Q,D)} is inserted at its end else it is inserted
at the z% position towards the end, possibly causing
some end elements to be removed from the linked list.

If the query is found in Freq-Q, then it is moved
up one position in the list (i.e., interchanged with the
element in front of it). Each of the best matched tu-
ples of Q in the linked list BMT, which can be de-
termined using the distance of the N-th best matched
tuple of Q and with a data structure such as G-tree
[14], is moved up one position in BMT. The actions
in Freq-Q and BMT are to move frequently submit-
ted queries and the frequently accessed tuples towards
the fronts of the two lists. The process of process-
ing queries in Infreq-Q, Freq-Q and BMT continues
until there are no substantial changes in the set of
queries in the front part of Freq-Q. In other words, if
the frequent queries submitted by the users become
stable, the construction of the “histogram” (which is
the linked list of best matched tuples, BMT, together
with the frequent queries in Freq-Q) can stop. If user
access pattern needs to be monitored for changes, the
construction process continues.

When a query Q is submitted to be processed, it is
checked against the list Freq-Q. If it is there, {B(Q,D)}
(the best matched tuple from each desired database)
in BMT are retrieved and the database IDs are used
to decide which databases should be accessed to pro-
cess the query. (It is possible that some elements in
{B(Q,D)} are removed from BMT or some of the best
matched tuples in various databases have been modi-
fied. That situation can be detected by processing the

query and by comparing the distance of the N-th re-
trieved best matched tuple against N-distance. If they
are different, additional databases need to be searched
to obtain the actual top N tuples. The new B(Q,D)’s
need to be inserted into the linked list BMT and the
N-distance in Freq-Q needs to be updated.) If the top
N tuples of the query are unchanged and all elements
in the set {B(Q, D)} are present in BMT, then all top
N tuples of Q will be retrieved.

If a query is not found in Freq-Q, the N best
matched tuples from BMT are obtained. They are
sorted in ascending order of distance and their corre-
sponding database IDs are used in the merge algorithm
(see Section 3.4) to retrieve the top N tuples from the
databases. Here, there is no guarantee that all of the
top N tuples of the query will be retrieved.

(D) Independent Linear Approximation (ILA)
In this approach, there is a histogram for each at-
tribute and the values under different attributes are
assumed to be independent. This is the approach used
n [23]. Again, cooperation of local systems is needed
to construct the histograms.

3.2 Criterion for Ranking Databases Opti-
mally

We now sketch how databases containing the top N
tuples should be selected. First, all databases should
be ranked with respect to the query (Proposition 1).
Next, the proper databases (and the proper tuples) are
selected using the merge algorithms to be described in
Section 3.4,

Definition 1 Suppose a user is interested in retriev-
ing the N best matched tuples to a submitted query Q.
Databases {D;,1 < i < n} are optimally ranked in
the order Dy,Ds,...,D,, if for every N, there exists
a t such that Dy, D, ..., Dy collectively contain all the
N best matched tuples of QQ and each D;,1 < i < t,
contains at least one of the N best matched tuples.

The following proposition provides a criterion for
ranking databases optimally [22]. (In [22], the result
is stated in terms of similarity. Since similarity and
distance are inverses of each other, the databases are
arranged in descending order of similarities in [22].)

Proposition 1 For a given query @, if databases are
ranked in ascending order of the distances of the best
matched tuples to Q, then they are ranked optimally
with respect to Q.

Example 2 Suppose there are 4 databases D1, D5, D3
and D4. Suppose that the distances of the best
matched tuples in these databases to query () are
0.8, 0.6, 0.3, and 0.5, respectively. Then, for query
(), the databases should be ranked in the order
D3,D4,D3,D;. R

This proposition cannot be used as is because it is
impractical to actually search each database in order
to find the distance of its best matched tuple for each

query. Therefore, the distance will need to be esti-
mated as described in the next subsection.

3.3 Estimate Smallest Distance to Query

The estimation of the distance of the best matched
tuple in each database is carried out based on the his-
togram(s) of the database.

First, consider the case when the histogram is
constructed using the linear approximation (LA) ap-
proach. Consider the query (price = p, mileage = q).
From the histogram of a database, find the interval
I, which contains price = p. From the interval, the
distance of the query point to the closest point in the
straight line is computed. Details can be found in [24].

The closest point to the query point may or may not
appear in the interval, I. To improve the accuracy, a
fixed number of intervals, each of which is either I or
close to I are chosen. Then the distance of the clos-
est point is the minimum of the distances computed in
the various intervals. Since a fixed number of intervals
is used, then only constant time is needed. However,
finding the interval containing the query point takes
O(log|F|) times. In summary, for a two-attribute re-
lation, the estimation time is O(log|F).

The above scheme for histogram construction and
estimation can be generalized to n-dimensions, n > 2.
Intervals and straight lines in 2 dimensions are re-
placed by hyper rectangles and hyper planes in higher
dimensions.

Consider other types of histograms. For MHIST-2,
to estimate the distance of the best matched tuple to a
query, it is assumed that the points within a region are
uniformly distributed. The idea of selecting databases
for a query using the FQ method is sketched in Sec-
tion 3.1 (see the last two paragraphs of item (C)). For
ILA, the method proposed in [23] to perform the es-
timate can be used. This method has an exponential
complexity.

3.4 Algorithms to Select Tuples from Ranked
Databases

In this section, two algorithms for selecting tuples from
the ranked databases are given. The first algorithm,
Merge-1, was proposed in [23] and is included for com-
parison purpose; The second algorithm is MIN-2. It
will be slightly modified to become MOD-MIN-2. It
will be shown that Merge-1 is more efficient (i.e., fewer
databases are likely to be accessed for a given query),
while the MOD-MIN-2 is more effective (i.e., more ac-
tual top N tuples are likely to be obtained).

3.4.1

Let databases be ranked in the order [Dy, D, ..., Dy].
Let N be the number of tuples the user desires. The
databases are accessed in the order in which they are
ranked, one at a time. (In practice, the first few

Algorithm Merge-1

highest ranked databases may be accessed in parallel.)
Suppose the first ¢ databases have been accessed and
d is the maximum value of the distances of the best
matched tuples, one from each of these ¢ databases.
Tuples from these ¢ databases with distance < d are
retrieved. If N or more tuples have been retrieved,
then they are sorted in ascending order of distances,
the first N tuples are returned to the user and the pro-
cess is terminated; else the next database is accessed,
d is updated and tuples from these (¢ + 1) databases
with distance d are retrieved. Two remarks about the
above merge algorithm:

1. Whenever a database is accessed for the first
time, its top N tuples are retrieved and cached at the
global site. All subsequent “interactions” between the
accessed database and the global site will actually take
place at the global site only. This ensures that each
database is accessed at most once.

2. In the future, relational databases for e-
commerce will support top IV queries of different types
as discussed in Section 2. Thus, in this paper, we as-
sume that local distance functions are identical to the
corresponding global distance functions. If this is not
the case, each invoked database is required to return
N or slightly more local top IV tuples. These tuples
are then re-ranked using the global distance function.

The remarks apply to all the merge algorithms.

3.4.2 Algorithm MIN-2

The Merge-1 algorithm retrieves at least one tuple
from each database it accesses, because when database
D; is accessed, tuples with distances less than or equal
to the maximum of the distances of the best matched
tuples in the accessed databases are retrieved. If an
accessed database does not contain any of the N best
matched tuples of the query, some of its tuples will still
be retrieved. To remedy this situation, the MIN-2 al-
gorithm allows such a bad database to be skipped over,
as long as each of its two adjacent databases contains
at least one of the IV best matched tuples.

As before let these databases be ordered in
D, Ds,...,D,. MIN-2 operates as follows. Access the
top two ranked databases D; and D> to obtain the
best matched tuple from each of them. Let the dis-
tances of the best matched tuples be denoted by d;
and ds. Let the minimum of the two values be thresh-
old d = min{di, d>}. Tuples from these two databases
with distances < d are retrieved. If N or more tuples
are retrieved, sort them in ascending order of the ac-
tual distances; output the first IV tuples and terminate;
else, access the next database, D; and let the actual
distance of the best matched tuple in this database be
d;. Re-compute d = min{d;,d;_1}, where d;_; is the
distance of the best matched tuple in the last accessed
database. Retrieve from all accessed databases tuples
with distance < d. (Tuples which have been retrieved

previously will not be retrieved again.) If N or more
tuples have been retrieved, sort them in ascending or-
der of the actual distances; output the first N tuples
and terminate; else, the process is repeated until N or
more tuples are retrieved. Then output the N tuples
with the smallest distances.

Proposition 2 Let the distance of the N-th best
matched tuple, Ny, be distinct. If the first t databases
collectively contain T, the set of the top N tuples and
each of these databases contains at least one tuple in
T, then algorithm MIN-2 will retrieve all tuples in T
by accessing at least t + 1 databases and at most t + 2
databases.

An example in [24] shows that the condition “the
distance of the N-th best matched tuple is distinct” is
necessary for guaranteeing the retrieval of all the top
N tuples. All proofs in this section can be found in
[24].

Although in general the MIN-2 algorithm has higher
retrieval effectiveness than the Merge-1 algorithm, the
following example shows that it is possible that MIN-2
has a lower effectiveness in some situation.

Example 3 Suppose site 1 has a single tuple with dis-
tance 0.6, site 2 has a single tuple with distance 0.55,
site 3 has a tuple with distance 0.52, site 4 has 3 tu-
ples with distances 0.4, 0.45 and 0.5 and site 5 has
a single tuple with distance 0.3. Let the number of
tuples to be retrieved be 4. The original algorithm,
Merge-1, after visiting site 4, retrieves the tuples with
distances 0.6, 0.55, 0.52, 0.4, 0.45, and 0.5. It then
returns the 4 tuples with distances 0.4, 0.45, 0.5 and
0.52. After visiting site 4, MIN-2 retrieves the tuples
with distances 0.55, 0.52 and 0.4 only. Therefore, it
needs to proceed further. After visiting site 5, it re-
trieves the tuples with distances 0.55, 0.52, 0.4 and
then 0.3. Clearly, the 4 best matched tuples are those
with distances 0.3, 0.4, 0.45 and 0.5. The original algo-
rithm, Merge-1, retrieves 3 of them, while the MIN-2
algorithm retrieves only 2 of them. B

One possible way for a remedy is as follows. We pro-
ceed exactly the same as MIN-2. At the same time,
we also consider the set of tuples, P, which is retriev-
able by the original algorithm, Merge-1. At any site,
the number of tuples retrieved by the modified MIN-2
algorithm is identical to that of MIN-2. However, if
there are tuples in P which have lower distances than
those of tuples retrievable by MIN-2, replace the latter
tuples by the former tuples.

Example 4 Continue on the last Example. After vis-
iting the first 4 sites, the new algorithm retrieves the
tuples with distances 0.55, 0.52 and 0.4. But, it also
considers the set of tuples retrievable by Merge-1. This
includes the set of tuples with distances 0.45 and 0.5.
Since the tuples having distances 0.55 and 0.52 are not
as good as tuples with distances 0.45 and 0.5, they are
replaced by the latter two tuples. Thus, after visiting 4

sites, the set of tuples retrieved by the modified MIN-
2 have distances 0.4, 0.45 and 0.5. After visiting site
5, we get, the four tuples with distances 0.3, 0.4, 0.45
and 0.5. This set of tuples has higher retrieval effec-
tiveness than the set of tuples retrieved by the original
algorithm, Merge-1. B

The modified algorithm, MOD-MIN-2, initially re-
trieves the same set of documents as MIN-2, except
that documents with larger distances are replaced by
documents with smaller distances in Merge-1. Both
MOD-MIN-2 and MIN-2 retrieve the same number of
documents. See [24] for details.

Proposition 3 The new algorithm, MOD-MIN-2,
has effectiveness at least as high as that of algorithm
Merge-1, when the number of databases is at least 2N.

4 Experiments

The data and query collections used in the experiments
are described in Section 4.1. In Section 4.2, two mea-
sures of retrieval, one reflecting the effectiveness and
the other reflecting the efficiency, are provided. Ex-
perimental results are provided in Section 4.3.

4.1 Data Sets and Query Sets

Two data sets are used.

(1). Used car data were collected from Excite’s
Classification 2000 website with the following condi-
tions: Make = “any”, Model = “all models”, Year =
“1900 to 2000”, Price = “$500 to $27,000”. There
are 32,449 tuples. The tuples are arbitrarily assigned
to 28 databases without duplication. Two types of
queries are used and they are 2-D queries and 3-D
queries. 2-D queries are two-attribute queries involv-
ing price and mileage and 3-D queries involve price,
mileage and age. The values associated with the two
attributes are chosen to reflect reality and some diver-
sification. Ideally, if the mileage is high, the price must
be low; if the mileage is low, the price must be high.
A set of 50 queries is generated on price and mileage.
This query set is used in all the experimental runs.
Each query is interpreted as a standard top-N query,
a generalized top-N query and a two sided-generalized
top-N query. For each interpretation, the two “dis-
tance functions”, namely, the Euclidean distance and
the Manhattan distance functions are used.

(2). Forest Cover data were obtained from UC
Irvine (ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/covtype/). There are 581,012 tuples which
are randomly assigned to 50 databases. Three types of
queries are utilized. 2-D queries involve the attributes
elevation and slope; 3-D queries use an additional
attribute horizontal_distance_to_road; 5-D queries use
two more attributes horizontal_distance_to_hydro and
horizontal_distance_to_fire_points.

A set of 10,000 distinct queries that satisfy the Zip-
fian distribution are randomly generated, i.e., the i-

th most frequently submitted query has probability
% where K = 10,000 is the number of distinct

SNV

queries. This is used for the FQ method. For all other
methods, the 50 queries having the highest frequen-
cies of submission are used. (If these 50 queries were
used by the FQ method, then 100% accuracy would be
achieved.) Each method is assigned the same amount
of space for histogram construction. It is about 2% of
the size of the data for the forest-cover data set and
also about 2% of the size of the data for the used-car
data set.

4.2 Performance Measures

Performances are measured by the effectiveness and
the efficiency of retrieval. The former is measured by
the number of the retrieved tuples that are among the
actual N best matched tuples divided by N. If the
quantity is 100%, then all of the N best matched tu-
ples are retrieved. Higher percentages indicate higher
retrieval effectiveness. Efficiency is measured by two
factors: the first factor is the ratio of the number of
databases accessed to the actual number of databases
containing the N best matched tuples. If the ratio is
100%, then the number of databases accessed is the
same as the number of databases containing the N
best matched tuples although not necessarily the same
set of databases is accessed. A ratio exceeding 100%
indicates inefficiency. Lower ratios indicate higher effi-
ciency. The second factor is the time to determine the
ordering of the databases with respect to the query by
executing against the histogram. (This is an overhead
versus sending a query to all databases.) Since the
FQ method seems to be the only viable method (see
the next subsection), we shall report that factor for
the FQ Method only. Ideal retrieval is achieved when
accuracy is 100%, efficiency is 100% and the time to
order the databases for each query is small.

4.3 Experimental Results

In Section 4.3.1, we use the used car data set to show
that the new merge method, MOD-MIN-2, used in
conjunction with Linear Approximation Method (LA)
is much better than the previous merge method used
in conjunction with the Independent Linear Approxi-
mation Method (ILA). (Experimental results showing
that the new merge method by itself yields substantial
improvement over the previous merge method are ob-
tained, but they are not shown here for lack of space.)
Thus, we eliminate the ILA method from further con-
sideration. In Section 4.3.2, the three methods LA,
MHIST-2 and FQ are compared with respect to the
used-car data set and the forest-cover data set. It
will be shown that in most situations, the FQ method
achieves significantly higher accuracy than the other
two methods for both 2-D and 3-D queries and has
high accuracy in all situations. 5-D queries using the

Method LA Method ILA

N | Accu. | Effic. | Accu. | Effic. | #Q
5 70.4 | 153.7 | 284 75.6 50
10 | 742 | 135.2 | 31.6 68.9 50
20 | 83.6 | 1189 | 37.3 59.9 50
30 | 86.7 | 116.5 | 42.3 60.3 50

Table 1: Standard Manhattan Distance

Method LA Method ILA
N | Accu. | Effic. | Accu. | Effic. | #Q
5 69.6 | 156.9 | 27.6 73.8 50
10 | 776 | 137.6 | 30.4 67.1 50
20 | 86.5 | 1244 | 36.5 58.3 50
30 | 88.8 | 119.6 | 39.9 60.9 50

Table 2: Standard Euclidean Distance

forest-cover data set are executed by the FQ method
and superior results are also obtained. (The used car
data set does not have 5 attributes requiring approx-
imation. Attributes such as the model and the make
of a car require exact satisfaction, not approximate
satisfaction.) In the above experiments, a histogram
is constructed for each combination of distance func-
tion and query dimension. In Section 4.3.3, we also
experiment with the situation that a single histogram
is used for all types of queries (having different dimen-
sions and/or having different distance functions). The
FQ-method continues to do well in this situation. Fi-
nally, the original algorithm and the new merge algo-
rithm, MOD-MIN-2, are used for different query types
to yield both high accuracy and high efficiency. The
average time to order the databases for each query for
the FQ method is reported to be reasonable.

4.3.1 Comparing ILA with LA Using the Used

Car Data Set

A previous solution [23] consists of the Merge-1 algo-
rithm and a method (with an exponential time com-
plexity) to estimate the distance of the best matched
tuple based on the ILA histograms. The LA method
consists of the new merge algorithm, MOD-MIN-2, the
LA histograms and a new algorithm (with low poly-
nomial time complexity [24]) for estimation.

Tables 1 and 2 give the accuracies and the efficien-
cies of the two methods for 2-D queries when the stan-
dard Manhattan and the standard Euclidean distance
functions are employed. (In all tables, #Q stands for
“number of queries used”.) It clearly demonstrates
that the LA method is much better than the ILA
method. Furthermore, the ILA has too low an ac-
curacy to be useful in practice. (In [23], much higher
accuracy was reported for the ILA method. However,
much more space was allocated for histogram construc-
tion in [23] than in here.)

Tables 3 and 4 show the corresponding results for

Method LA Method ILA
N | Accu. | Effic. | Accu. | Effic. | #Q
5 100 193.5 | 42.0 147.0 50
10 100 169.2 | 48.8 181.0 50
20 100 153.0 | 49.7 189.0 50
30 | 99.3 | 141.8 | 52.9 158.5 50

Table 3: Generalized Manhattan Distance

Method LA Method ILA
N | Accu. | Effic. | Accu. | Effic. | #Q
5 83.6 | 141.7 | 49.6 98.5 50
10 83.4 124.2 54.6 84.8 50
20 | 86.7 | 113.2 | 57.1 76.7 50
30 | 89.6 | 110.1 | 60.2 76.2 50

Table 4: Two-sided Manhattan Distance

the methods LA and ILA for the Generalized Manhat-
tan Distance function and the Two-sided Manhattan
Distance. When an estimation method, a histogram
construction method and a merge algorithm are fixed,
the differences in accuracy between the Manhattan dis-
tance and the Euclidean Distance functions are usu-
ally 1 to 2 percentages. As a consequence, we do
not show the corresponding results for the Generalized
Euclidean Distance function and the Two-sided Eu-
clidean Distance function. Again, for all these distance
functions, the LA method with the new merge algo-
rithm has much higher accuracy than the ILA method
with the original merge algorithm. Based on the re-
sults identified in Tables 1-4, it is clear that signifi-
cantly higher accuracies can be achieved by having a
histogram construction process which incorporates the
dependencies between attributes and utilizing the new
merge algorithm.

4.3.2 Comparing LA, MHIST-2 and FQ

In the second set of experiments, the following issues
are addressed: (1) Are there significant differences in
accuracies among LA, MHIST-2 and FQ? (2) How do
these methods perform when the number of dimen-
sions increases? It is known that maintaining accura-
cies in high dimensional space is very challenging. For
both issues, both the used-car data set and the forest-
cover data set are used. For issue 1, only 2-D queries
are submitted and answered. For issue 2, the number
of dimensions is increased to 3 and then to 5.

From Tables 1-5 involving the used-car data set,
the best performance in accuracy is achieved by the
FQ method; it is followed by the LA method and then
the MHIST-2 method. The differences in accuracy be-
tween the FQ method and the LA method are very sig-
nificant for the Standard Manhattan distance and the
Standard Euclidean distance functions, ranging from
20% for 5 best matched tuples to about 6-9% for 30
best matched tuples. The high accuracy of the FQ

Method MHIST-2 Method FQ
N | Accu. | Effic. | #Q | Accu. | Effic. #Q
5 48.0 | 162.5 | 50 90.9 | 139.2 | 10000
10 | 58.6 | 137.5 | 50 93.3 | 136.3 | 10000
20 | 727 | 1229 | 50 95.0 | 122.4 | 10000
30 | 81.3 | 1233 | 50 95.5 | 118.9 | 10000

Table 5: Standard Manhattan Distance, 2-D Used-Car
Data Set

Method MHIST-2 Method FQ
N | Accu. | Effic. | #Q | Accu. | Effic. #Q
5 49.2 | 154.0 | 50 89.3 | 139.7 | 10000
10 | 56.6 | 134.8 | 50 91.8 | 137.6 | 10000
20 | 69.4 | 123.0 | 50 93.6 | 120.5 | 10000
30 | 76.1 | 121.0 | 50 94.2 | 121.9 | 10000

Table 6: Standard Euclidean Distance, 2-D Used-Car
Data Set

method for the Standard Manhattan and the Standard
Euclidean distance functions is also confirmed when
the Forest Cover data set is used, as seen in Tables
9-10. While the MHIST-2 method is inferior to the
LA method for the used-car data, it is better than the
latter method for the forest cover data set (see Tables
9-11). For both data sets, the FQ method is much
better than the other methods for the two standard
distance functions. For both data sets, the same is
true in efficiency.

For the Generalized Manhattan distance function,
the 3 methods LA, MHIST-2 and FQ all averaged
higher than 95% accuracy (see Tables 3 and 7). These
methods also perform similarly for the generalized Eu-
clidean distance function (the results are not shown
here due to space limitation). Thus, all these meth-
ods perform extremely well for these two generalized
distance functions, although the FQ method performs
slightly worse. In terms of efficiency, the three meth-
ods are comparable for the used-car data set. For each
of the Two-Sided distance functions, each method per-
forms better than its corresponding Standard distance
function but worse than the corresponding Generalized
distance function (See for example, the results of FQ
in Tables 5, 7 and 8). For these Two-sided distance
functions, the FQ method has superior performance
(see Table 8. Results for the FQ method involving
the Two-sided Euclidean distance function are similar

Method MHIST-2 Method FQ
N | Accu. | Effic. | #Q | Accu. | Effic. #Q
5 97.2 | 200.6 | 50 100 196.1 | 10000
10 | 96.2 | 172.5 | 50 93.8 | 163.9 | 10000
20 | 94.7 | 156.5 | 50 98.2 | 153.4 | 10000
30 | 98.7 | 159.0 | 50 99.0 | 144.1 | 10000

Table 7: Generalized Manhattan Distance, 2-D Used-
Car Data Set

Method MHIST-2 Method FQ
N | Accu. | Effic. | #Q | Accu. | Effic. #Q
5 65.2 | 159.3 | 50 96.1 | 141.3 | 10000
10 | 71.6 | 129.8 | 50 96.0 | 134.1 | 10000
20 | 74.8 | 1185 | 50 95.4 | 117.2 | 10000
30 | 77.0 | 1164 | 50 94.4 | 120.7 | 10000

Table 8: Two-Sided Manhattan Distance, 2-D Used-
Car Data Set

Method MHIST-2 Method FQ
N | Accu. | Effic. | #Q | Accu. | Effic. #Q
5 62.8 | 245.8 | 50 95.8 | 167.5 | 10000
10 | 67.0 | 195.0 | 50 96.8 | 152.9 | 10000
20 | 70.4 | 169.4 | 50 97.4 | 140.9 | 10000
30 | 785 | 160.0 | 50 97.8 | 131.0 | 10000

Table 9: Standard Manhattan Distance, 2-D Forest
Cover Data Set

and are not shown.). In summary, the FQ method has
excellent accuracies for both data sets and for all 6
distance functions.

We now report the results for the 3 methods involv-
ing 3 attributes using the Standard Manhattan Dis-
tance and the Standard Euclidean Distance only. The
accuracy results for the Two-Sided distance function
and the Generalized distance function will be higher,
as observed earlier. We first report the results of the
three methods on the forest-cover data set. As can be
seen in Tables 12-13, the accuracies of the two meth-
ods LA and the MHIST-2 are too low to be acceptable,
while the FQ method has accuracies above 95%. Only
the efficiency of the last method is reported. It is rea-
sonably efficient. The results of the FQ method for
the used-car data set are reported in Table 14. Al-
though the results are worse than those reported for
the same method with 2-D attributes, the accuracies
remain high, from 83% to 91%.

The results for the FQ method involving 5-D at-
tributes are reported in Table 15. (For the used-car
data set, there are no 5-D top-N queries, as complete
satisfaction is required for attributes such as model
and make for cars.) In comparing the results in Table
15 to those in Tables 12-13, it is clear that there is
essentially no difference in accuracy between 5-D at-
tributes and 3-D attributes, although there is a dete-
rioration in retrieval efficiency. Accuracies stay above

Method MHIST-2 Method FQ
N | Accu. | Effic. | #Q | Accu. | Effic. #Q
5 61.6 | 241.3 | 50 95.8 | 170.2 | 10000
10 | 64.8 | 2084 | 50 97.0 | 157.7 | 10000
20 | 71.1 | 1774 | 50 97.5 | 141.9 | 10000
30 | 79.5 | 163.7 | 50 97.8 | 132.8 | 10000

Table 10: Standard Euclidean Distance, 2-D Forest
Cover Data Set

Standard Euclidean Standard Manhattan

Standard Manhattan Standard Euclidean

N | Accu. | Effic. #Q Accu. | Effic. #Q N | Accu. Accu. Accu. Effic.
5 64.4 | 197.3 50 66.4 | 198.0 50 5 83.0 144.7 83.4 144.7
10 | 67.4 | 158.2 50 67.0 | 154.0 50 10 | 86.7 127.9 87.2 128.5
20 | 673 | 134.7 50 67.6 | 133.3 50 20 | 90.5 120.6 90.1 118.4
30 | 69.7 | 120.0 50 679 | 114.4 50 30 | 92.6 118.7 91.7 118.6

Table 11: Method LA, 2-D Forest Cover Data Set

Method LA | Method MHIST-2 | Method FQ
N Accu. Accu. Accu. | Effic.
5 34.0 46.0 95.8 170.2
10 36.8 50.8 97.0 157.7
20 43.1 51.9 97.5 141.9
30 45.2 57.1 97.8 132.8

Table 12: Standard Euclidean Distance, 3-D Forest
Cover Data Set

95% on the average. Based on the results reported
here, the FQ method is the only method that produces
high accuracy for 2-D, 3-D and 5-D attributes for both
data sets. Its efficiency is also very reasonable.

4.3.3 A single histogram for a mixture of
queries

In reality, users submit different types of queries (dif-
ferent dimensions, different distance functions) at dif-
ferent times. Our last experiment involves 2-D; 3-D
and 5-D queries with the 6 different distance functions.
Each of the 2-D, 3-D and 5-D type of queries has ap-
proximately the same number of occurrences; each of
the 6 distance functions involved in the queries also
has approximately the same number of occurrences.
10,000 such distinct queries satisfying the Zipfian dis-
tribution are generated. 20,000 such queries, generat-
ing from the same distribution are used to construct
the histogram using no more than 2% of the space of
the data. Then, 1,000 queries are submitted to test
the accuracy and the efficiency of the FQ method. As
indicated in the left part of Table 16, accuracy ranges
from 95.7% to 97.7%. However, efficiency ranges from
205% to 146%. After examining the accuracies of the
queries, it is found that for the Standard Euclidean
Distance queries and the Standard Manhattan Dis-
tance queries, the use of the new merge algorithm gives
approximately 3-4% improvement in accuracy over the

Method LA | Method MHIST-2 | Method FQ
N Accu. Accu. Accu. | Effic.
5 45.6 41.6 95.8 167.5
10 49.0 45.0 96.8 152.9
20 57.0 50.8 97.5 140.7
30 60.9 54.9 97.8 131.0

Table 13: Standard Manhattan Distance, 3-D Forest
Cover Data Set

Table 14: Method FQ, 3-D Used-Car Data Set

original merge algorithm, while for all other queries,
there is negligible difference in accuracy between the
merge algorithms. Thus, the experiment is repeated
in which the new merge algorithm is used for the for-
mer two types of queries and the original merge algo-
rithm is used for the remaining four types of queries.
The right part of Table 16 shows that such a strategy
yields essentially the same accuracy, while efficiency
improves significantly. The average time to determine
the ordering of the databases for a query using the FQ
method is 37.8 msec. Thus, the FQ method can order
the databases accurately in reasonable time.

5 Conclusion

In this paper, we presented a two-step solution for find-
ing the NN best matched tuples for a given query in
a distributed relational database environment. Four
different methods for implementing the first step, i.e.
ranking databases based on the estimated distance of
the best matched tuple in each database, were com-
pared. In addition, the new merge algorithm (MOD-
MIN-2) was proposed for the second step. This algo-
rithm was shown to achieve higher effectiveness than
the merge algorithm (Merge-1) proposed in [23]. Our
experimental results show that the FQ method when
used in conjunction with the new merge algorithm
achieves high accuracies in all cases. Furthermore,
the method does not require cooperation from various
databases, in contrast to all other histogram construc-
tion methods [21]. Thus, the approach suggested here
is very promising.

We believe that the proposed solution will be useful
in large scale distributed systems (e.g., the Internet)
where the same or similar goods and services are of-
fered by numerous vendors and the users need to seek
the best results among these offerings without exerting
excessive burden on him/her and on the computing
and communication resources. An example applica-
tion can be the long term care insurance where there
are about 120 companies selling such insurance and
the specification of the desired care required by an in-
dividual/couple can be complicated (i.e., require top-N
query processing).

Acknowledgment: This work is supported in part
by the following grants: I1IS-9902872, II1S-9902792,
ETA-9911099, IIS-0208574, IIS-0208434 and ARO-2-
5-30267. We are also grateful to Wensheng Jia who
implemented some of the programs.

Standard Manhattan Standard Euclidean

N | Accu. Accu. Accu. Effic.
5 95.2 214.1 94.4 233.4
10 96.2 182.0 95.4 202.7
20 97.1 162.7 96.7 174.1
30 97.2 152.5 96.6 161.0

Table 15: Method FQ, 5-D Forest Cover Data Set

MOD-MIN-2 Merge-1 & MOD-MIN-2 Combined

N | Accu. | Effic. | Accu. Effic.
5 95.7 205.1 95.7 153.0
10 96.9 169.7 96.7 133.8
20 97.5 156.0 97.4 126.3
30 97.7 146.4 97.6 120.1
Table 16: Method FQ
References

[1]

[8]

[9]

[10]

N. Bruno, S. Chaudhuri and L. Gravano. Perfor-
mance of Multiattribute Top-k queries on Rela-
tional Systems. Technical report, Columbia Uni-
versity, Computer Science Dept, 2000.

N. Bruno, S. Chaudhuri and L. Gravano.
STHoles: A Multidimensional Workload-Aware
Histogram. ACM SIGMOD Conference, 2001.

M. Carey and D. Kossmann. Reducing the Brak-
ing Distance of an SQL Query Engine. VLDB
Conference, 1998.

S. Chaudhuri and L. Gravano. Fvaluating Top-k
Selection queries. VLDB Conference, 1999.

A. Deshpande, M. Garofalakis and R. Rastogi.
Independence is good: Dependency-Based His-

togram Synopses for High Dimensional Data.
SIGMOD Conference, 2001.

D. Donjerkovic and R. Ramakrishnan. Probabilis-
tic Optimization of Top N Queries, VLDB Con-
ference, 1999.

A. Fu, P. Chan, Cheung Y and Moon, Y. Dynamic
VP tree indexing for N -nearest neighbor search
given pairwise distances , VLDB Journal, 2000.

L. Gravano, and Garcia-Molina, H. Merging ranks
from heterogeneous internet sources. VLDB Con-
ference, 1997.

D. Gunopulos, G. Kollios, V.J. Tsotras and
C. Domeniconi. Approzimating multi-dimensional

aggregate range queries over real attributes. ACM
SIGMOD Conference, 2000.

V. Hristidis, N. Koudas, Y. Papakonstantinou.
PREFER: A System for the Efficient Execution
of Multi-parametric Ranked Queries. ACM SIG-
MOD Conference, 2001.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Y. Ioannidis and V. Poosala. Histogram-based Ap-
proximation of Set-valued Query Answers. VLDB
Conference, 1999.

W. Kiessling, G. Koestler. Preference SQL - De-
sign, Implementation, Experiences. VLDB Con-
ference, 2002.

A. Konig and G. Weikum. Combining Histograms
and Parametric Curve Fitting for Feedback-
Driven Query Result-Size Estimation. VLDB
Conference, 1999.

A. Kumar. G-Tree: A New Data Structure for
Organizing Multidimensional Data. IEEE TKDE,
6(2), April 1994.

K. Lam, M. Siu, and C. Yu. A Generalized
Counter Scheme. J. of Theoretical Computer Sci-
ence, Sept. 1981, pp. 271-278.

A. Levy, A. Rajaraman, and J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. VLDB Conference, 1996.

L. Liu. Query Routing in Large-scale Digital Li-
brary Systems. 15th International Conference on
Data Engineering (ICDE’99), March 1999.

M. Muralikrishna and D. J. DeWitt. Equi-Depth
Histograms For Estimating Selectivity Factors For
Multi-Dimensional Queries. ACM SIGMOD Con-
ference, 1988.

V. Poosala and Y. Ioannidis. Selectivity Estima-
tion Without the Attribute Value Independence
assumption. VLDB Conference, 1997.

R. Rivest. On Self-Organizing Sequential Search
Heuristics. CACM 19(2): 63-67, 1976.

N. Thaper, S. Guha, P. Indyk, and N. Koudas.
Dynamic Multidimensional Histogram. ACM
SIGMOD Conference, 2002.

C. Yu, W. Meng, W. Wu, K. Liu. Efficient and Ef-
fective Metasearch for Text Databases Incorporat-
ing Linkages among Documents. ACM SIGMOD
Conference, May 2001.

C. Yu, P. Sharma, W. Meng and Y. Qin.
Databases Selection for Processing k Nearest

Neighbors Queries in Distributed Environments.
1st ACM/IEEE-CS joint conf. on DL, 2001.

C. Yu, G. Philip and W. Meng Distributed Top-N
Query Processing with Possibly Uncooperative Lo-
cal Systems, Technical Report, Dept. of CS, Uni-
versity of Illinois at Chicago, 2003 (available at
http://www.cs.binghamton.edu/~meng/pub.d/
vldb03long.ps).

