
Query Processing Concepts and
Techniques to Support

Business Intelligence Applications

Query Processing Concepts and
Techniques to Support

Business Intelligence Applications

Ralf Rantzau

University of Stuttgart
Germany

Motivation & GoalsMotivation & Goals

w Database Mining
Today, data mining tools do not analyze
the data of the warehouse DBMS but they
access flat files that have been extracted
from the warehouse and that are adapted
to the required input data structure of the
mining method in use.

w In-Memory Algorithms
SQL-based mining algorithms are
considered inferior to highly tuned in-
memory algorithms.

w Powerful Technology Unused
Data sets to be analyzed typically reside in
data warehouses, managed by powerful
relational database systems.

w Database Mining
Today, data mining tools do not analyze
the data of the warehouse DBMS but they
access flat files that have been extracted
from the warehouse and that are adapted
to the required input data structure of the
mining method in use.

w In-Memory Algorithms
SQL-based mining algorithms are
considered inferior to highly tuned in-
memory algorithms.

w Powerful Technology Unused
Data sets to be analyzed typically reside in
data warehouses, managed by powerful
relational database systems.

w Identify Data Mining Primitives
Find basic operations that appear in data
mining algorithms (“data mining
primitives”) and that require scalable and
high-performance implementations.
Example: Frequent Itemset Discovery

w Design DB Operators Supporting
the DM Primitives
Develop query processing strategies, like
novel relational operators, to support
SQL-based data mining algorithms. This
includes investigating query optimization
issues to enable a seamless integration
of such operators into commercial
database systems.
Example: Set Containment Division

w Identify Data Mining Primitives
Find basic operations that appear in data
mining algorithms (“data mining
primitives”) and that require scalable and
high-performance implementations.
Example: Frequent Itemset Discovery

w Design DB Operators Supporting
the DM Primitives
Develop query processing strategies, like
novel relational operators, to support
SQL-based data mining algorithms. This
includes investigating query optimization
issues to enable a seamless integration
of such operators into commercial
database systems.
Example: Set Containment Division

Current SituationCurrent Situation Thesis ObjectivesThesis Objectives

Pros and Cons of SQL-Based Data MiningPros and Cons of SQL-Based Data Mining

w Data Currency
The latest updates applied to the data warehouse
are reflected in the query result. No (replicated) data
copies have to be maintained.

w Scalability
If extremely large data sets are to be mined then it is
much easier to design a scalable SQL-based
algorithm than designing an algorithm that has to
manage data in external files. The storage
management is one of the key strengths of a
database system.

w Adaptability to Data
A database optimizer tries to find the best possible
execution strategy based on the current data
characteristics for a given query.

w Data Currency
The latest updates applied to the data warehouse
are reflected in the query result. No (replicated) data
copies have to be maintained.

w Scalability
If extremely large data sets are to be mined then it is
much easier to design a scalable SQL-based
algorithm than designing an algorithm that has to
manage data in external files. The storage
management is one of the key strengths of a
database system.

w Adaptability to Data
A database optimizer tries to find the best possible
execution strategy based on the current data
characteristics for a given query.

w Less Portability
A data mining application that does not rely on a
query language can be deployed more easily
because no assumptions on the language's
functionality have to be made.

w Less Performance
A highly tuned black-box algorithm with in-memory
data structures will always be able to outperform
any query processor that employs a combination of
generic algorithms.

w Less Secrecy
A tool vendor does not want to reveal application
logic. By employing SQL-based algorithms, the
database administrator will be able to see these
queries.

w Less Portability
A data mining application that does not rely on a
query language can be deployed more easily
because no assumptions on the language's
functionality have to be made.

w Less Performance
A highly tuned black-box algorithm with in-memory
data structures will always be able to outperform
any query processor that employs a combination of
generic algorithms.

w Less Secrecy
A tool vendor does not want to reveal application
logic. By employing SQL-based algorithms, the
database administrator will be able to see these
queries.

The Quiver Approach for Frequent Itemset DiscoveryThe Quiver Approach for Frequent Itemset Discovery

Quiver
(Quantified itemset discovery using a vertical table layout)

w SQL-based algorithm for computing frequent itemsets

w Both candidate generation phase and support counting phase can be expressed by universal
quantifications over the items in itemsets and transactions

w Could make use of a new relational operator, called set containment division (÷⊇), which is
similar to the well-known set containment join (? ⊆) but assumes input tables in 1NF

Transaction (tid, item)
Ck (itemset, pos, item)
Fk (itemset, pos, item)

Transaction (tid, item)
Ck (itemset, pos, item)
Fk (itemset, pos, item)

c = candidate with fixed itemset value
t = transaction with fixed tid value

c ⊆ t ≡ for all values c.item there is a
matching value t.item

c = candidate with fixed itemset value
t = transaction with fixed tid value

c ⊆ t ≡ for all values c.item there is a
matching value t.item

Universal Quantification Vertical (1NF)
Table Layout

Support Counting: K-Way-Join vs. Quiver ApproachSupport Counting: K-Way-Join vs. Quiver Approach

INSERT
INTO S3 (itemset, support)
SELECT a1.itemset, COUNT(*)
FROM C3 AS c, T AS t1, T AS t2, T AS t3
WHERE c.item1 = t1.item AND

c.item2 = t2.item AND
c.item3 = t3.item AND
t1.tid = t2.tid AND
t1.tid = t3.tid

GROUP BY c.itemset
HAVING COUNT(*) >= @minimum_support;

INSERT
INTO F3 (itemset, item1, item2, item3)
SELECT c.itemset, c.item1, c.item2, c.item3
FROM C3 AS c, S3 AS s
WHERE c.itemset = s.itemset;

INSERT
INTO S3 (itemset, support)
SELECT a1.itemset, COUNT(*)
FROM C3 AS c, T AS t1, T AS t2, T AS t3
WHERE c.item1 = t1.item AND

c.item2 = t2.item AND
c.item3 = t3.item AND
t1.tid = t2.tid AND
t1.tid = t3.tid

GROUP BY c.itemset
HAVING COUNT(*) >= @minimum_support;

INSERT
INTO F3 (itemset, item1, item2, item3)
SELECT c.itemset, c.item1, c.item2, c.item3
FROM C3 AS c, S3 AS s
WHERE c.itemset = s.itemset;

INSERT
INTO S3 (itemset, support)
SELECT a1.itemset, COUNT(*)
FROM C3 AS c1, C3 AS c2, C3 AS c3,

T AS t1, T AS t2, T AS t3
WHERE c1.itemset = c2.itemset AND

c1.itemset = c3.itemset AND
t1.tid = t2.tid AND
t1.tid = t3.tid AND
c1.item = t1.item AND
c2.item = t2.item AND
c3.item = t3.item AND
c1.pos = 1 AND
c2.pos = 2 AND
c3.pos = 3

GROUP BY c1.itemset
HAVING COUNT(*) >= @minimum_support;

INSERT
INTO F3 (itemset, pos, item)
SELECT c.itemset, c.pos, c.item
FROM C3 AS c, S3 AS s
WHERE c.itemset = s.itemset;

INSERT
INTO S3 (itemset, support)
SELECT a1.itemset, COUNT(*)
FROM C3 AS c1, C3 AS c2, C3 AS c3,

T AS t1, T AS t2, T AS t3
WHERE c1.itemset = c2.itemset AND

c1.itemset = c3.itemset AND
t1.tid = t2.tid AND
t1.tid = t3.tid AND
c1.item = t1.item AND
c2.item = t2.item AND
c3.item = t3.item AND
c1.pos = 1 AND
c2.pos = 2 AND
c3.pos = 3

GROUP BY c1.itemset
HAVING COUNT(*) >= @minimum_support;

INSERT
INTO F3 (itemset, pos, item)
SELECT c.itemset, c.pos, c.item
FROM C3 AS c, S3 AS s
WHERE c.itemset = s.itemset;

INSERT
INTO Sk (itemset, support)
SELECT itemset, COUNT(DISTINCT tid) AS support
FROM (

SELECT c1.itemset, t1.tid
FROM Ck AS c1, T AS t1
WHERE NOT EXISTS (

SELECT *
FROM Ck AS c2
WHERE NOT EXISTS (

SELECT *
FROM T AS t2
WHERE NOT (c1.itemset = c2.itemset) OR

(t2.tid = t1.tid AND
t2.item = c2.item)))

) AS Contains
GROUP BY itemset
HAVING support >= @minimum_support;

INSERT
INTO Fk (itemset, pos, item)
SELECT c.itemset, c.pos, c.item
FROM Ck AS c, Sk AS s
WHERE c.itemset = s.itemset;

INSERT
INTO Sk (itemset, support)
SELECT itemset, COUNT(DISTINCT tid) AS support
FROM (

SELECT c1.itemset, t1.tid
FROM Ck AS c1, T AS t1
WHERE NOT EXISTS (

SELECT *
FROM Ck AS c2
WHERE NOT EXISTS (

SELECT *
FROM T AS t2
WHERE NOT (c1.itemset = c2.itemset) OR

(t2.tid = t1.tid AND
t2.item = c2.item)))

) AS Contains
GROUP BY itemset
HAVING support >= @minimum_support;

INSERT
INTO Fk (itemset, pos, item)
SELECT c.itemset, c.pos, c.item
FROM Ck AS c, Sk AS s
WHERE c.itemset = s.itemset;

T (tid, item): transactions

Sk (itemset, support): support counts of candidate k-itemsets

Vertical Table Layout:
Ck (itemset, pos, item): candidate k-itemsets

Fk (itemset, pos, item): frequent k-itemsets

Horizontal Table Layout:
Ck (itemset, item1, …, itemk): candidate k-itemsets

Fk (itemset, item1, …, itemk): frequent k-itemsets

Original K-Way-Join
(Horizontal Layout)

Original K-Way-Join
(Horizontal Layout)

Adapted K-Way-Join
(Vertical Layout)

Adapted K-Way-Join
(Vertical Layout)

Quiver
(Vertical Layout)

Quiver
(Vertical Layout)

Frequent Itemset Discovery & Set Containment DivisionFrequent Itemset Discovery & Set Containment Division

diapers1003
chips1003
avocados1003

diapers1001

beer1003
diapers1002
chips1002
chips1001
beer1001

itemtid

2
2
1
1
1

itemset

diapers
beer
chips

diapers
avocados

item

11003
1003

1001
tid

1

2

itemset

Which transactions contain ALL items of a given itemset?Which transactions contain ALL items of a given itemset?

=Transaction Itemsets Contains÷⊇

Find frequent itemsets
by counting

)())()))((((),(),(a,d?xSspRdcSbaR
(S)px xdccb

d
=×÷=÷

∈ =⊇ U
Definition of set containment division operator:

Expected Results & Future WorkExpected Results & Future Work

w Demonstrate that SQL-
based data mining
algorithms are useful
under certain conditions
despite known problems

w Find a set of basic query
processing operations that
are shared by more
sophisticated data mining
algorithms

w Demonstrate that SQL-
based data mining
algorithms are useful
under certain conditions
despite known problems

w Find a set of basic query
processing operations that
are shared by more
sophisticated data mining
algorithms

w Compare set containment
join algorithms (set-valued
attributes) with set
containment division
algorithms (based on 1NF
tables)

w Develop optimization
strategies for set
containment division

w Investigate further data
mining methods:
classification & clustering

w Compare set containment
join algorithms (set-valued
attributes) with set
containment division
algorithms (based on 1NF
tables)

w Develop optimization
strategies for set
containment division

w Investigate further data
mining methods:
classification & clustering

