Testing Isolation Levels
of Relational Database Management Systems

Dimitrios Liarokapis

(dimitris@cs.umb.edu)

University of Massachusetts Boston

Overview

Isolation Levels have been introduced in RDBMS in order to
increase performance when absolute concurrency correctness
1s not necessary or when correctness can be guaranteed at the
application level.

The ANSI SQL standard has provided definitions for four
1solation levels: READ UNCOMITTED, READ COMMITED,
REPEATABLE READ and SERIALIZABLE.

There has been some critique in the literature, about the
clarity and generality of these definitions. This raises
concerns about the quality of the implementation of isolation
levels by database vendors since it becomes more probable
that the implementation of concurrency control could be
sometimes incorrect or over-restrictive.

By incorrect we mean that a database system could allow
executions that should be proscribed by a given isolation
level, leading to an unintentional corruption of the database or
to the return of incorrect information. By over-restrictive we
mean that the database system would not allow executions
that are not proscribed by the isolation level at use. This
would generally lead to reduced performance.

The general questions we try to answer are:

Does a given database system implement Isolation Levels
correctly?

Can we design a tool and methodologies to test the support of
isolation levels by database management systems?

Tool & Methodologies

We have devised a notation similar to the one used in the
Serializability Theory and a tool that executes sequences of
operations (input histories) against commercial database
applications and produces output histories.

HISTEX

Threads

Monitor

—P .<\
\.4/
Output History

r1(A [=100],[10000])w2(A [=100],[10001])c2w1(B[=200],[20001])c1

Input History
rl(A)w2(A)c2w1(B)cl }

Database System

In addition to the traditional operations for reading (R) and
writing (W) data items and committing (C) or aborting (A)
transactions, HISTEX supports a predicate read operation
(PR) for accessing the rows that satisfy a predicate. This can
be used for testing if a database system guards against
phantoms (updates causing a row to enter or leave a set of
rows satisfying a predicate read by another transaction).

Operations can include variable names to represent data
items, values and predicates. HISTEX translates the input
notation to SQL statements for accessing an underlying
database table. Internal structures are used to map the
variable names to specific rows in the table and hold the
corresponding values.

HISTEX Data Model

Operation Examples:
Data Item Map Value Map Predicate Map [R(A,X1)
A 1100 X1]1000 P [k2=0 W(B,898), W(C,X1)
B [200 X210 Q |k3>1 PRED(P "K2=O")
C [300 Y [300 ’
PR(P)
PR(P;10, Z1)
REC REC
—1 | KEY VAL | €| C3 €4/ C5/C6| €50/ C100| K2 K3 | K4| K5 | K6| K50 K100
8 100/ 1000] o] o[o o o o o o o o o o o 0
= [2002000 1] 1 1] 1] 1 1 1]] af a1 1
5 300130000 o 2| 2[2[2[2 2l o 2[2 2[2] 2 2
A | 4004000 1] o 3[3[3 3 3 1 o 3 3 3 3 3

Comparative Testing

One way for examining the correctness and precision of
isolation level implementations is by using comparative
testing: The same testing scenarios can be executed by
different database products. The results are then compared
and clustered according to their similarity.

When the results are different, it is an indication that one of
the products might have demonstrated a problem. There can
also be some special cases (single-version vs. multi-version
systems) where even though the results are literally different
the behavior of both the examined products is correct.

When the results are similar it is most likely that the testing
scenarios do not reveal any problem. This i1s because the
probability of many products demonstrating the same error is
relatively small.

Gray Box Testing (Conditional Testing)

In general we could test the implementation of concurrency
control by trying to force a database system to produce
histories that should be proscribed by some isolation level.

Such histories are

those that contain a cycle in their

serialization graph, when using the SERIALIZABLE level, or
cycles of certain types at lower levels.

In order to simplify the creation and analysis of testing
scenarios, we decided to utilize assumptions about the
underlying implementation and test certain aspects of the
underlying system. We call this method gray box testing.

We have focused on gray-box testing of database systems that
are known to use single-version concurrency control
algorithms based on preventing concurrent execution of
conflicting operations. This is usually achieved by locking.

We have proven a theorem showing that for testing these types
of schedulers it is adequate to test whether each isolation level
proscribes the execution of certain pairs of conflicting

operations.

Isolation Level

Proscribed Pairs of Concurrent
Operations

Read Uncommitted

Transactions are READ ONLY. There should
not be concurrent conflicting operations.

Read Committed | Wi(A)W,(A)

Wi(A)R,(A)

Wi (A changes P) PR,(A)
Repeatable Read | All above and

Ri(A) Wa(A)
Serializable All above and

PR;(A) W,(A changes P)

4

Results

We have executed histories including all different types of
conflicting pairs of operations against 3 commercial database
systems A, B and C (A and B were successive versions of the
same database system) and we have observed several
interesting results.

One major finding is related to the results received for the
following histories:

History Name Type of Conflict
h.14.w pr Wi(A out of P) ...PR,(P)
h.17.w_pr D(A in P)...PR,(P)

(D indicates a Delete operation)

For the database system A, the isolation level that corresponds
to the READ COMMITTED level in the ANSI SQL
specification, would allow a transaction to observe an
uncommitted state of the database.

This was happening in cases where a transaction T; would
force a row out of a predicate P, and before this transaction
committed another transaction T, accessing the rows in
predicate P would not see this row.

Output file prim-key prim-key no-prim-key no-prim-key
index no-index index no-index
h.14.w pr.RC_RC : EXECUTED* : TIMEOUT : EXECUTED* : TIMEOUT
h.14.w pr.RC_RR : EXECUTED* : TIMEOUT : EXECUTED* : TIMEOUT
h.14.w pr.SR _RC : EXECUTED* : TIMEOUT : EXECUTED* : TIMEOUT
h.14.w pr.SR_RR : EXECUTED* : TIMEOUT : EXECUTED* : TIMEOUT
h.14.w pr.RR _RC : EXECUTED* : TIMEOUT : EXECUTED* : TIMEOUT
h.14.w pr.RR _RR : EXECUTED* : TIMEOUT : EXECUTED* : TIMEOUT
h.17.w pr.RC_RC : EXECUTED* : EXECUTED* : EXECUTED* : EXECUTED*
h.17.w pr.RC_RR : EXECUTED* : EXECUTED* : EXECUTED* : EXECUTED*
h.17.w _pr.SR _RC : EXECUTED* : EXECUTED* : EXECUTED* : EXECUTED*
h.17.w _pr.SR_RR : EXECUTED* : EXECUTED* : EXECUTED* : EXECUTED*
h.17.w pr.RR RC : EXECUTED* : EXECUTED* : EXECUTED* : EXECUTED%*
h.l7.w:pr.RR:RR : EXECUTED* : EXECUTED* : EXECUTED* : EXECUTED*

This behavior has not been observed in the successive version
of the same database product (B).

We have also noticed that a transaction running at the READ
UNCOMMITTED isolation level on systems A and B can
perform updates. In general this is disallowed by the ANSI
SQL specification, in order to eliminate the risk of performing
an update based on non-committed information.

In addition to incorrect behavior our analysis also detected
cases where the underlying database systems behaved over-
restrictively.

This work was done in cooperation with Professors: Elizabeth O’Neil
(Thesis Advisor) and Patrick O Neil.

For more info please visit: www.cs.umb.edu/~dimitris/thesis
Or contact : dimitris@cs.umb.edu

http://www.cs.umb.edu/~dimitris/thesis

	Testing Isolation Levels
	Dimitrios Liarokapis
	
	Overview

	Isolation Levels have been introduced in RDBMS in order to increase performance when absolute concurrency correctness is not necessary or when correctness can be guaranteed at the application level.

	All above and

