

Kaiyang Liu

Supervisor: Frederick H. Lochovsky

Hong Kong University of Science and Technology

2

�� An XML tree for a database of articles

�� Query “ //section1//paragraph”

� � Node pair <F, G>
� � Other <section1, paragraph> pairs

�� Simple Containment Query

B (paper)

level 0

level 1

level 3

A (database)

C (title)

D (abs)

I (sect2) M (sect3)

E (para)

G (para) J (para)

K (table)

O (paper) P (paper)
. . .

level 2

L (para)
level 4

F (sect1)

.

abs=abstract

H (fig)

N (sect3.1)

sect=section
para=paragraph

fig=figure

�� Need efficient method to determine if one node
N2 is a child/descendent of another node N1

�� Pre-order traversal based encoding [ZND+01]

�� The general form of containment queries is

“ //NA1{cond1}//NA2{cond2}//...//NAk{condk}”
(NAi denotes a node name, and condi refers to
an optional condition that applies on the
attributes of NAi)

�� “ //paper { year = 2000} // section1 { wrdcnt
800} // paragraph” : all paragraphs that appear in
the first section (with no more than 800 words)
of any paper published in 2000.

Indexing attr ibutes in XML documents
requires a multi-dimensional structure,
since one dimension should store the
traversal order to efficiently process
containment.

3

�� Graph traversal based approaches
� � Simplify the original XML trees
� � Traversal method: Bottom-up, Top-

down, and hybrid
� � Poor performance, due to possibly

exponential number of children

�� Pre-order traversal encoding based approaches
� � MPMJ, εε-join, and SJ
� � Much more efficient than graph traversal

based ones
� � false-hit problem

�� A general containment query requires simultaneous evaluation on multiple dimensions:

� � The traversal encoding for node containment
� � The attr ibute values for range conditions

�� One-dimensional structures, such as B-trees, cannot optimize search in multiple dimensions.

�� Obtain the pre-order encoding [I, J] for

each element
�� Transform each element into a 2D line

segment (or point) as follows:
� � x-axis: pre-order encoding [I, J]
� � y-axis: attribute value

30

x axis

y axis

10 100

500

1000

850
s3

200250

s4

250

400 550

750

x axis

y axis

170

110

p1

230

60

460

p2

100

80

p4

(wrdcnt) (wrdcnt)

encoding encoding

s1

s2

400

300 450

p3

380

150

 Section1 Elements Paragraph Elements

4

30

x axis

y axis

10

500

1000

850
s3

250

s4

250

550

750

x axis

y axis

170

110

p1

230

60

460

p2

100

80

p4

(wrdcnt) (wrdcnt)

encoding encoding

s1

s2

400

300

p3

380

150

S1

S2
P1

P2

Section1 Paragraph

��Use an R-tree to index the transformed intervals and points

�� “ //NA1{ attr1∈[ql1, qh1]} //NA2{ attr2∈[ql2, qh2]} ”

� � attr1(2) is an attribute of nodes with names NA1(2)
� � [ql1(2),qh1(2)] is a range condition on attr1(2)

�� If a pair of intermediate nodes (N1, N2) from the respective

R-trees contains qualifying elements, their MBRs must
satisfy the following traversal conditions:

� � N1.y-range (i.e., the y-range of N1.MBR) intersects
[ql1, qh1]

� � N2.y-range intersects [ql2, qh2]

�� “ //section1 { wrdcnt ∈ [500,1000]} //

paragraph{ wrdcnt ∈ [60,110]} ”

The shaded regions in each tree
show the query conditions. The
sub-tree of S1 does not contain any
qualifying entr ies because the S1.y-
range does not intersect the query
region [500, 1000]. Thus, the pair
<S1, P1> will not be followed, even
though the x-ranges of the nodes
intersect. In fact, it can be ver ified
that only the sub-trees of S2, P2
need to be explored.

�� In general, CJ performs joins by testing

only the x coordinates for intersection,
and using the y coordinates to restrict the
number of nodes.

�� It constitutes a combination of RJ and
window query processing.

5

��Use [XMark] to create synthetic data sets.
��Cardinality(item)=10,000
��Cardinality(mail)=100,000
��Simple containment query: //item//mail

� � CSitem: the percentage of item nodes that
contain mail nodes in their sub-tree

� � CSmail: shows the percentage of mail nodes
that reside in the sub-trees of item nodes.

�� General containment query: //item [q1 < quantity]
// mail [y1 < year < y2]

� � ASitem: The percentage of items whose
quantity value is larger than the query
condition q1

� � ASitem: The percentage of mail whose year
value lies in between y1 and y2

0
2
4
6
8

10
12
14
16
18
20

1% 2% 4% 8% 16% 32% 64% 100%

"item" containment selectivity

CJ-CPU

CJ-I/O

SJ-CPU

SJ-I/O
total cost

seconds

�� Compare CJ with SJ

�� Fix CSmail = 10%

�� As the cardinality of mail is larger than

that of item by an order of magnitude,
different values of CSitem do not have
much influence on the performance of
either CJ or SJ

6

0

5

10

15

20

1% 2% 4% 8% 16% 32% 64% 100%

"mail" containment selectivity

CJ-CPU

CJ-I/O

SJ-CPU

SJ-I/O

total cost

seconds

�� Fix CSitem to 10%

�� The cost of SJ is the same as in the

previous experiment

�� The cost of CJ now increases with the

percentage of qualifying mail nodes

�

�

�

�

��

��

��

��

�	

�

�� �� 	� �� ��� ��� �	� ����

INSJCJ SJSSJtotal cost

seconds

"item" attribute selectivity

�� CSitem = CSmail = 100%, and ASmail = 10%
�� INSJ: Index nested loop SJ, first retrieve

//item [q1 < quantity], then evaluate //item
[q1 < quantity]//mail.

�� SSJ: Sorting SJ, first retrieve //item [q1 <
quantity] and mail [y1 < year < y2], then
sort and join them

7

�� CSitem = CSmail = 100%
�� ASitem = 10%

�� The cost of SSJ grows with ASitem due

to the high cost of external sorting as
the qualifying mail elements increase.

�� The performance of INSJ is stable
since the cost of the first two steps
does not depend on ASmail.

0
10
20

30

40

50
60

70

1% 2% 4% 8% 16% 32% 64% 100%

INSJCJ SJSSJ
total cost

seconds

"mail" attribute selectivity

�� Construct a cost model to finely tune the

algor ithms’ parameters

�� Some problems of pre-order traversal
encoding-based approaches

� � Pre-order traversal encoding cannot give
the path between two elements

� � The cost increases rapidly when the
length of a path expression increases

�� Investigate new query processing techniques

� � The cost of the new technique would
roughly remain constant no matter how
much the length of an XML path
expression increases, and

� � Be able to give the exact path instances
between any pair of XML elements

�� Explore new XML query types

