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Goal:
n Reduce amount of programming for building metadata-driven applications

Model Management:
n General-purpose system for managing complex models
n Algebraic operations to manipulate metadata in large chunks

Thesis questions:
n Can model management be done in a generic fashion?
n Does generic model management offer practical benefits?
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Source schemas (relational): Export schemas (XML schema):

Sample scenario: Data Translation

manually automatically!

operator PropagateChanges(rdb1, rdb2, xsd1’, xsd1_xsd1’)

rdb1_rdb2 = Match(rdb1, rdb2, NGram(rdb1, rdb2))
(xsd1, rdb1_xsd1) = SQLDDL2XSD(rdb1)
(xsd2, rdb2_xsd2) = SQLDDL2XSD(rdb2)
xsd1_xsd2 = Match(xsd1, xsd2, Invert(rdb1_xsd1) • rdb1_rdb2 • rdb2_xsd2)
xsd1’’ = Delete(xsd1’, Range(RestrictDomain(xsd1_xsd1’), All(xsd1) – Domain(xsd1_xsd2)))
xsd2_add = All(xsd2) – Range(xsd1_xsd2)
xsd2’ = Select(xsd2, xsd2_add)
xsd2’’ = Delete(xsd2’, xsd2_add)
xsd2’_xsd1’’ = RestrictDomain(Invert(xsd1_xsd2) • xsd1_xsd1’), All(xsd2’’))
xsd3 = Merge(xsd2’, xsd1’’, xsd2’_xsd1’’)
xsd2_xsd3 = (Invert(xsd1_xsd2) • xsd1_xsd1’) ∪ Id(xsd2_add)
return (xsd3, xsd2_xsd3)

rdb1

rdb2

xsd1 xsd1’

xsd1’’

xsd2
xsd2’
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Operators and Data Structures

Primitive operators: Derived operators:

Data structures:
Model: directed labeled graph w/ OIDs and literals
Selector: set of OIDs
Mapping: (weighted) binary relation on OIDs
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CREATE TABLE Personnel (
Pno int,
Pname string,
Dept string,
. . . )

Domain(map):
set of OIDs that are in the domain of map

RestrictDomain(map, selector):
mapping w/ domain restricted by selector

Id(selector): identity mapping

Invert(map): inverts a mapping

Compose(map1, map2): composition of mappings

TransitiveClosure(map):
returns the transitive closure of map

All(M): set of all OIDs used in model M

∪ , ∩ , – : set operators

Subgraph(M, selector):
subgraph of M induced by the nodes in selector

Language-specific operators:
DependenciesSQL(M), DependenciesXSD(M): model elements required for consistency, e.g., field table

operator Reachable(selector, map)
return Range(RestrictDomain(TransitiveClosure(map), selector))

operator Select(M, selector, dependencies)
return Subgraph(M, selector ∪ Reachable(selector, dependencies))

operator DeleteSoft(M, selector, dependencies)
cannotBeDeleted = Reachable(All(M) – selector, dependencies)
toDelete = selector – cannotBeDeleted
toKeep = All(M) – toDelete
return Select(M, toKeep, dependencies)

operator DeleteHard(M, selector, dependencies)
toDelete = selector ∪ Reachable(selector, Invert(dependencies))
toKeep = All(M) – toDelete
return Select(M, toKeep, dependencies)

. . .

Semiautomatic operators:

operator Match(M1, M2, map12): correspondences between elements

operator Merge(M1, M2, map12): use map12 for glueing M1 and M2
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n Intuition: similar objects have similar context
n Basic formula: σi+1=normalize(σi+ϕ(σi)), with similarity vector σi, iteration i
n Corresponds to eigenvector computation σi+1 = λ i ΜΜΜΜ σ i

n Filtering of results exploits stable marriage property

n Accuracy metric: 1 – = Recall (2 – )
n S. Melnik, H. Garcia-Molina, E. Rahm: “Similarity Flooding: A Versatile Graph

Matching Algorithm and its Application to Schema Matching”, ICDE 2002
(best student paper award)

Matching: Similarity Flooding Algorithm
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Sample graphs: Fixpoint computation on propagation graph:
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•• BrowserBrowser
•• Import/exportImport/export
•• ScriptingScripting

•• EditorsEditors
•• CatalogsCatalogs
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GEMMYS: A Generic Model Management System
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n Goal:
– Study deployment aspects of GMM

n Product:
– automated provisioning and support of

telecommunication devices and services

n Challenges:
– Multitude of equipment vendors
– Devices with incompatible interfaces and

varying capabilities

n Approach:
– Represent device specifications in

machine-readable form
– Manage all metadata uniformly
– Uses industry-tailored variant of GEMMYS

Industrial setting: Ontologent, Inc.
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n Model “Shuffler”:
– Simulates evolutionary changes of models
– Helps clarify semantics of operators
– Used for quantifying benefits of GMM in

typical scenarios

n Scenarios:
– Model evolution
– Schema integration
– Data translation
– 3-way merge (reintegration)
– Reverse engineering

n Open questions:
– Manipulation of complex mappings (SQL views, XSLT, scripts)
– Ordered relationships in models
– Instance data transformation
– DB backend operator execution, optimization
– Impedance mismatch, GUI support

Ongoing work
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