
Generic Model Management:
Experiences and Open Questions

Sergey Melnik
Leipzig University / Stanford University

Supervisor: Erhard Rahm

Goal:
n Reduce amount of programming for building metadata-driven applications

Model Management:
n General-purpose system for managing complex models
n Algebraic operations to manipulate metadata in large chunks

Thesis questions:
n Can model management be done in a generic fashion?
n Does generic model management offer practical benefits?

2

OrderID
OrderDate
Employee
Customer
PONum
SalesTaxRate

OrderID

OrderDate
Employee
Customer
PONum
SalesTaxRate

ORDERS

OrderDetailID

Quantity
UnitPrice
Discount

ORDER-DETAILS

ProductID

ProductName
Brand

PRODUCTS

OrderID
ProductID

PurchaseOrder

ProductID
ProductName
Brand
Quantity
UnitPrice
Discount

Product

OrderID

OrderDate
Employee
Customer
PONum
SalesTaxRate
ShipDate
FreightCharge
Rebate

ORDERS

OrderDetailID

Quantity
Price

ORDER-DETAILS

ProductID

ProductName

PRODUCTS

OrderID
ProductID

OrderID
OrderDate
Employee
Customer
PONum
SalesTaxRate

PurchaseOrder

ProductID
ProductName
Quantity
UnitPrice

Product

ShipDate
FreightCharge
Rebate

Source schemas (relational): Export schemas (XML schema):

Sample scenario: Data Translation

manually automatically!

operator PropagateChanges(rdb1, rdb2, xsd1’, xsd1_xsd1’)

rdb1_rdb2 = Match(rdb1, rdb2, NGram(rdb1, rdb2))
(xsd1, rdb1_xsd1) = SQLDDL2XSD(rdb1)
(xsd2, rdb2_xsd2) = SQLDDL2XSD(rdb2)
xsd1_xsd2 = Match(xsd1, xsd2, Invert(rdb1_xsd1) • rdb1_rdb2 • rdb2_xsd2)
xsd1’’ = Delete(xsd1’, Range(RestrictDomain(xsd1_xsd1’), All(xsd1) – Domain(xsd1_xsd2)))
xsd2_add = All(xsd2) – Range(xsd1_xsd2)
xsd2’ = Select(xsd2, xsd2_add)
xsd2’’ = Delete(xsd2’, xsd2_add)
xsd2’_xsd1’’ = RestrictDomain(Invert(xsd1_xsd2) • xsd1_xsd1’), All(xsd2’’))
xsd3 = Merge(xsd2’, xsd1’’, xsd2’_xsd1’’)
xsd2_xsd3 = (Invert(xsd1_xsd2) • xsd1_xsd1’) ∪ Id(xsd2_add)
return (xsd3, xsd2_xsd3)

rdb1

rdb2

xsd1 xsd1’

xsd1’’

xsd2
xsd2’
xsd2’’

xsd3

3

Operators and Data Structures

Primitive operators: Derived operators:

Data structures:
Model: directed labeled graph w/ OIDs and literals
Selector: set of OIDs
Mapping: (weighted) binary relation on OIDs

Table

Column ColumnType

Personnel

Pno

Pname

Dept

int

string

type

type

type

type

type

type

name

name

name

name

name

name
&1

&2

&4

&6

&3

&5

SQLtype

SQLtype

SQLtype

column

column

column

. . .

CREATE TABLE Personnel (
Pno int,
Pname string,
Dept string,
. . .)

Domain(map):
set of OIDs that are in the domain of map

RestrictDomain(map, selector):
mapping w/ domain restricted by selector

Id(selector): identity mapping

Invert(map): inverts a mapping

Compose(map1, map2): composition of mappings

TransitiveClosure(map):
returns the transitive closure of map

All(M): set of all OIDs used in model M

∪ , ∩ , – : set operators

Subgraph(M, selector):
subgraph of M induced by the nodes in selector

Language-specific operators:
DependenciesSQL(M), DependenciesXSD(M): model elements required for consistency, e.g., field table

operator Reachable(selector, map)
return Range(RestrictDomain(TransitiveClosure(map), selector))

operator Select(M, selector, dependencies)
return Subgraph(M, selector ∪ Reachable(selector, dependencies))

operator DeleteSoft(M, selector, dependencies)
cannotBeDeleted = Reachable(All(M) – selector, dependencies)
toDelete = selector – cannotBeDeleted
toKeep = All(M) – toDelete
return Select(M, toKeep, dependencies)

operator DeleteHard(M, selector, dependencies)
toDelete = selector ∪ Reachable(selector, Invert(dependencies))
toKeep = All(M) – toDelete
return Select(M, toKeep, dependencies)

. . .

Semiautomatic operators:

operator Match(M1, M2, map12): correspondences between elements

operator Merge(M1, M2, map12): use map12 for glueing M1 and M2

4

n Intuition: similar objects have similar context
n Basic formula: σi+1=normalize(σi+ϕ(σi)), with similarity vector σi, iteration i
n Corresponds to eigenvector computation σi+1 = λ i ΜΜΜΜ σ i

n Filtering of results exploits stable marriage property

n Accuracy metric: 1 – = Recall (2 –)
n S. Melnik, H. Garcia-Molina, E. Rahm: “Similarity Flooding: A Versatile Graph

Matching Algorithm and its Application to Schema Matching”, ICDE 2002
(best student paper award)

Matching: Similarity Flooding Algorithm

wags wags

longerThan

longerThan

longerThan

wags

0.5

1.0

1.0

1.0
0.5

1.0

1.0

1.0
0.5

1.0

1.0

1.0
0.5

1.0

1.0

1.0

1.0

0.39 0.91

0.69

0.33

0.33

1.0

0.39 0.91

0.69

0.33

0.33

Sample graphs: Fixpoint computation on propagation graph:

|wrong|+|missing|
|correct| Precision

1

5

•• BrowserBrowser
•• Import/exportImport/export
•• ScriptingScripting

•• EditorsEditors
•• CatalogsCatalogs

Model
Manager

Model
Persistence

SQL
DBMS

SQL tables

graphs

files

graphs

File
System

Model Linkage

Caching and
Distribution

Match
Compose Ontologent’s

product only

Merge
. . .

GEMMYS: A Generic Model Management System

6

n Goal:
– Study deployment aspects of GMM

n Product:
– automated provisioning and support of

telecommunication devices and services

n Challenges:
– Multitude of equipment vendors
– Devices with incompatible interfaces and

varying capabilities

n Approach:
– Represent device specifications in

machine-readable form
– Manage all metadata uniformly
– Uses industry-tailored variant of GEMMYS

Industrial setting: Ontologent, Inc.

UML diagram

Device

Switch

Router

TCP/IP

Author:
Version:
Date:

Catalog metadata

(10, 10, blue)
(5, 20, green)

Presentation
metadata

Digital signature:
Principal:

Security metadata

EditorsEditors

BrowserBrowser
Provisioning systemProvisioning system

CompilerCompiler

Verification & analysis toolsVerification & analysis tools

7

n Model “Shuffler”:
– Simulates evolutionary changes of models
– Helps clarify semantics of operators
– Used for quantifying benefits of GMM in

typical scenarios

n Scenarios:
– Model evolution
– Schema integration
– Data translation
– 3-way merge (reintegration)
– Reverse engineering

n Open questions:
– Manipulation of complex mappings (SQL views, XSLT, scripts)
– Ordered relationships in models
– Instance data transformation
– DB backend operator execution, optimization
– Impedance mismatch, GUI support

Ongoing work

rdb

xsd xsd’

rdb’
rdb

rdb’ rdb’’

rdb’’’

xsd1

rdb1 rdb2

rdb’

OrderID

OrderDate
Employee
Customer
PONum
SalesTaxRate

ORDERS

OrderDetailID

Quantity
UnitPrice
Discount

ORDER-DETAILS

ProductID

ProductName
Brand

PRODUCTS

OrderID
ProductID

OrderDetailID

OrderID
ProductID
ProductName
Quantity
ItemCost
Rebate
Employee
Client

ORDER-DETAILS

shuffle!

