GeMBASE: A Geometric Mediator for Brain Analysis
with Surface Ensembles

Simone Santinif

Amarnath Gupta*

"National Biomedical Computing Resource *San Diego Supercomputer Center

ssantini@ncmir.ucsd.edu

gupta@sdsc.edu

University of California San Diego

1 Introduction

Brain researchers, neurologists and neurosurgeons ac-
quire 3D brain images from normal and diseased sub-
jects with the idea to study the properties of brains,
make comparisons and to measure changes caused by
factors like age and disease. Over the last few years,
significant efforts have been made [1, 2, 3, 4] to create
software to extract the cerebral cortex (or other struc-
tures) from the brain, and reconstruct it as a 3D digital
object for further analysis. While they all use different
techniques to derive the digital representation of the
structure, they all represent it as some form of a sur-
face mesh object, often with a thickness at every node
of the mesh. In this demonstration, we present GeM-
BASE, a prototype system that stores brain structures
in a database, and allows researchers to perform their
tasks in a database environment. The system borrows
ideas from information mediation to answer complex
queries on surface meshes.

2 The Need for Geometric Mediation

In general, a surface mesh M can be modeled as a 5-
tuple M = {V,Ly,P,Lp,T}, where V is a relation
of vertex objects containing an ID (Vid) and 3 coor-
dinates, Ly is a relation of labels over vertex points,
P is a relation of k vertex ids that make a polygon,
Lp is a relation of labels over polygons, and T (for
topology) is an adjacency matriz over polygon IDs
(Pid), specifying the neighborhood of each polygon.
The cortex has a very complex geometry with numer-
ous hills, valleys and intricate foldings. This makes
it difficult for humans and programs to assign labels

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

labels,
representation-dependent coordinates
comparison functions

Comparison window
User Interface —
Selection window
Cost models — Algebraic Evaluation
MRI .
I
mages e ET _Query Formulation

GeMBASE p——

gj?f“a?:'ee Conversion functions
f [DBMS

generation Wrapper o Geometry functions

tool surface

representation

Figure 1: Architecture of the GeMBASE system

to its vertices and polygons, and compute derived at-
tributes (called measurements hereafter) such as dis-
tances between vertices along the surface. The stan-
dard workaround provided by a surface manipulation
software [2, 3, 4] is to create an ensemble of representa-
tions for a single brain structure, each with a different
simplification. The typical representations are spheres,
planes (called flatmaps) and inflations. Each simplified
representation makes some labeling or measurement
simple, and others impossible or prohibitively expen-
sive. For instance, the spherical representation is well
suited for the efficient computation of the distance be-
tween two points, but the original (fiducial) representa-
tion the computation is very expensive. Table 1 gives a
qualitative idea of the relative cost of computing mea-
surements on different representations.

Similar to the AMOS-II system [5], GeMBASE
presents to the user an integrated complex object type
called SURFACE, such that individual data sets become
instances of surface. At query time the system com-
poses the user view with the integrated data type def-
inition to determine which concrete representation of
the surface should be used for the query.

Operation Operations
Curvature | Connectivity | Distance | Area | Label Selection
Fiducial Hi Lo Hi Hi Lo
Inflated Lo Lo
Spherical Lo Lo Hi Lo
Flat Lo Lo

Table 1: Relative costs of sample operations on the different representations

3 The GeMBASE System

Figure 1 shows the architecture of the GeMBASE sys-
tem. GeMBASE uses a set of wrappers to convert from
the proprietary brain surface representations produced
by different surface generation software packages into
a canonical form, consisting of relational tables for ver-
tex labels, vertex coordinates, vertex-to-polygon map-
pings, polygon labels and topology. The relational
tables are placed in a commercial RDBMS (Oracle
8i) under the control of GeMBASE. Each represen-
tation (e.g., sphere, flatmap ...) creates a different ta-
ble for vertex coordinates and topology. The database
has been augmented with special-purpose function li-
braries to perform operations like distance-based se-
lection, neighborhood computation and conversion be-
tween coordinate systems.

Queries can be posed, and results collected, through
a browser-based interface, shown in Figure 3 or
through an application, shown in Figure 2 which al-
lows the user to create selection queries that may use
functions on the surface structures. In this case, the
user has selected a region on the interface, and a win-
dow with high level operation is displayed. The user
can choose what class of query will be made based on
the selection. Additional windows will then be dis-
played to define the parameters of the queries.

Query rewriting in GemBASE is rule-based, and the
rule set can be extended or edited remotely through a
Java-based rule editor.

A limited number of join queries are allowed for
making comparisons across different data sets. While
textual queries can be sent from the interface, usually,
the user first navigates to a data set by non-geometric
attributes to identify a set of patients. The geome-
try query is initiated when the user brings up one (or
more) surface (sphere, flatmap ...) representation into
a geometric query window on the interface. The inter-
face provides a number of buttons to perform opera-
tions such as selecting query points and labels from a
region, select a range of regions inside a bounding box
or a sphere, and then pass the selected regions to an
“outer query” specified by filling in forms. Comparison
requests are formulated by bringing up two geometry
windows and choosing which regions need to be com-
pared and then selecting the comparison function.

Internally, the syntax of a GeMBASE query is like
a limited fragment of SQL where nested queries, ag-
gregates and GROUP-BY constructs are not allowed.

Example. Suppose the schema for an Functional
MRI is declared as follows:

create type MYSURFACE as surface
with region labels (stimulus_type:STRING,
stimulus_amount:FLOAT, activation:STRING).

Note that create type statement parameterizes the
surface by a flat relation for each polygon (called re-
gion label). Using this type definition, the actual
schema is declarared as:

create table

PATIENT (
name : STRING,
date : DATE,

image_type : STRING,
image_id : URL,
cortex : SURFACE,
cerebellum : SURFACE

)

A query against this schema may look like:

select Point pt
from PATIENT P
where pt.label.region in
select (q : Point).label.region
from P.Cortex
where dist(flatmap(screen).point(1.5, 2.1), q) < 3

This query retrieves all the points from regions that are
at less than three mm from a given point. The expression
flatmap(screen).point(200,-30) states that the input point
is given from a flatmap coordinate (see Figure 2 (forcing
the system to use the FLATMAP_VERTEX table). The query
is parsed by the GeMBASE system and rewritten as an
SQL query against the RDBMS. The important part of
the rewrite is to replace the reference to the surface (i.e.,
cortex) by one or more concrete geometric representations.
This is accomplished by the Algebraic Evaluation module of
the software, under the direction of the rule base.

In this case, the response to the query is returned in
a spherical representation. However, if the second query
condition is replaced by

total_area(R) < 300

the system would choose a flatmap representation instead.
It is possible to force the system to use a particular
output representation by citing it explicitly in the query:

select Point pt as fiducial from PATIENT P

| [2002-01-09.map015.LR.Mouse ATLAS_CEREBELLUM.13452.spec — CARET V| - | ||
File View ID Attributes Layers Surface Flatten Comm Help

JREF AUx] [View step|1ON|108] [Node [ink [ite edge] 8] o

M| LIAIPIDIVIR| x|}V 2| x90|¥90|z90| Yoke]Light]

i ICiE

[Node [Gink [Tile Edge] 8| |
labels intersect|

‘curvature| evolution|

View.

View 0[50 Li[¥ Screen Rot M:[Zoom RifPan’

Figure 2: A user interface of the GeMBASE system

Figure 3: Web Based interface for the GemBASE sys-
tem

Passing from a representation to another in our model re-
quires a join on the point id. Given that certain operations
can be executed on multiple representations, and that the
input and output representations are fixed, opportunities
for query optimization arise from balancing the efficiency of
the required operations in certain representations with the
need of minimizing the number of representation changes,
that is, the number of joins. Note also that the previous
query specified a geometry (fiducial) but not a topology.
In this case, the default topology for the fiducial geonetry
(that is, the open topology) will be used.

The query of the previous example (with the as clause)
builds a fiducial map of all the regions that are at less than
3mm from the query point, given in the flatmap. The in-
ternal SELECT query doesn’t specify in which representa-
tion should the distance be computed. However, distances
can’t be computed in the flatmap that constitute the in-
put, therefore the options are either to compute distances
in the fiducial map (in which case the result can be used
directly to generate the output representation), or in the
spherical representation (in which case the output must be
converted to the fiducial representation).

More specifically, assume that the database is consti-
tuted by the following tables:

Label(id : int, anatomical : int),

Flat (id : int, map : SURFACE),

Spherical(id : int, sphere : SURFACE),
Fiducial (id : int, fid : SURFACE).

The system contains rules for rewriting queries that in-
volve representation. The distance rule, for instance, ap-
plies to queries of the form

select c.surface.point, a as fiducial
from CORTEX c
where B(dist2d(c.fid.point, 3))

where o and 3 are two unspecified parts of the query, and
B is a boolean expression. This query is to be transformed
into the query:

select c.surface.point, «
from FIDUCIAL c, SPHERICAL s
where B(dist2d(s.sphere.point, 3))
and s.sphere.point.id == c.fid.point.id

Note that if the as clause is missing, and no other oper-
ations require the fiducial representation, the system will
rewrite the query using the spherical representation as

select s.surface.point, a
from SPHERICAL s
where B(dist2d(s.sphere.point, 3))

In general, unless the as clause is specified, the system will
return the result using the most complex representation
among those used in the rewritten query, where fiducial is
more complex than spherical, and spherical is more com-
plex than flat.

In the present example, due to the presence of the as
keyword, the SELECT part of the query would be trans-
lated into the following;:

select Fiducial.fid.point
from Fiducial, Label
where Fiducial.id = Label.id and
Label.anatomical in
select Label.anatomical
from Label, Spherical
where Spherical.id = Label.id and
dist2D(Spherical.sphere.point,
FlatToSphere(1.5, 2.1)) < 3

The system uses an underlying relational database (Or-
acle 81), augmented with functions to compute the geomet-
ric quantities of interest on the cortex representation. The
mediator is written in Java and takes care of query rewrit-
ing as well as of creating an output representation with the
data retrieved from the database. The output representa-
tion is either an SVG file for display in the interface, or
a file in a standardized, XML based surface format. The
latter solution is used when the data are requested by a
remote site which uses its own interface package.

The query rewriting portion of the mediator is written
in Prolog, and is composed of three paers:

1. an SQL query parser, which takes the original query
(written, in the current implementation, using a sub-
set of SQL) and returns its syntactic tree;

2. a syntactic re-writer, which contains rules for the ma-
nipulation of the syntactic tree,

3. aquery writer which takes the syntactic tree produced
by the re-writer and creates the resulting SQL query
which will then be send to the relational database.

At this time, the cost-based optimizer of Figure 1 is not
fully implemented, so that the rewriting process is purely
rule-based.

4 The Demo

The demo will show the basic functionality of the Gem-
BASE system, using the Oracle database installed at the
San Diego Supercomputer Center. The database has been
extended with data types for representing surfaces, which
also implement all the necessary operations. Surface ob-
jects are specialized in Spherical surface objects and in Flat
surface objects.

Note that syntactc considerations alone are not suffi-
cient for determining the correct translation of a query in
one using representations. For instance, all representations
contain a dist2D method but these methods are differ-
ent semantic interpretation: on the fiducial representation,
the dist2D method computes the distance between two
points on the cortical surface; on the spherical represen-
tation dist2D computes the distance between two points
on the surface of the sphere, obtaining a good approxima-
tion of the true distance, while in the flat map, the method
dist2D computes the distance between two points on the
flat map, which gives no indication as to the real distance
between the points..

Substitutions in queries should be derived from these se-
mantic considerations, rather than from the syntactic con-
sideration of the availability of the function dist2D.

Using this data model, the demo will show examples of
queries and query rewriting, as well as the effect of chang-
ing the rewriting rules on the result of the query. The

query interface runs within a browser while the editor for
the rules (which are written in Prolog), runs as a Java ap-
plication.

5 Acknowledgments

The work presented in this paper was done under the aus-
pices and with the funding of NIH project NCRR RROS8
605, Biomedical Imaging Research Network, which the au-
thors gratefully acknowledge.

References

[1] B.A. Wandell, S. Chial & B.T. Backus, Visualization
and measurement of the cortical surface, J. Cognitive
Neurosci., 12, 739-752, 2000.

[2] B. Fischl, M.I. Sereno & A.M. Dale, Cortical surface-
based analysis, Human Brain Mapping, 8, 272-284,
1999.

[3] R. Goebel, A fast automated method for flattening cor-
tical surfaces, Neuroimage, 11, 684-696, 2000.

[4] D.C. Van Essen, H.A. Drury, D. Hanlon & J. Harwell,
User’s guide to SUREFIT and CARET: cortical seg-
mentation, surface reconstruction and flattening soft-
ware, 2002.

[6] V. Josifovski & T. Risch, Integrating Heteroge-
neous Overlapping Databases through Object-Oriented
Transformations. In Proc. 25th Intl. Conf. On VLDB,
435-446, 1999.

