SQL Memory Management in Oracle9i

Benoit Dageville

Oracle Corporation
500 Oracle Parway
Redwood Shores, CA 94065
U.S.A

Benoit.Daggille@oracle.com

Abstract

Complex database queries require the use of
memory-intensive operators like sort and hash-
join. Those operators need memory, also referred
to as SQL memory, to process their input data.
For example, a sort operator uses a work area to
perform the in-memory sort of a set of rows. The
amount of memory allocated by these operators
greatly affects their performance. However, there
is only a finite amount of memory available in the
system, shared by all concurrent operators. The
challenge for database systems is to design a fair
and efficient strategy to manage this memory.

Commercial database systems rely on database
administrators (DBA) to supply an optimal set-
ting for configuration parameters that are inter-
nally used to decide how much memory to
allocate to a given database operator. However,
database systems continue to be deployed in new
areas, e.g, e-commerce, and the database applica-
tions are increasingly complex, e.g, to provide
more functionality, and support more users. One
important consequence is that the application
workload is very hard, if not impossible, to pre-
dict. So, expecting a DBA to find an optimal
value for memory configuration parameters is not
realistic. The values can only be optimal for a
limited period of time while the workload is
within the assumed range.

Mohamed Zait

Oracle Corporation
500 Oracle Parway
Redwood Shores, CA 94065
U.S.A

Mohamed.Zait@oracle.com

Ideally, the optimal value should adapt in
response to variations in the application work-
load. Several research projects addressed this
problem in the past, but very few commercial
systems proposed a comprehensive solution to
managing memory used by SQL operators in a
database application with a variable workload.

This paper presents a new model used in
Oracle9i to manage memory for database oper-
ators. This approach is automatic, adaptive and
robust. We will present the architecture of the

memory manager, the internal algorithms, and
a performance study showing its superiority.

1. Introduction

Queries in On-Line Analytical Processing (OLAP)
applications and Decision-Support Systems (DSS) tend
to be very complex: join many tables, and process large
amounts of data. They make heavy use of SQL opera-
tors such as sort and hash join. The sort is used not only
to produce the input rows in sorted order but also as the
basis in other operators, e.g, grouping, duplicate elimi-
nation, rollup, analytic functions, and index creation. In
the rest of the paper, the term “SQL operators” is used to
exclusively refer to memory-intensive operators, e.g.
nestedloops join is excluded.

Those operators need memory space to process their
input data. For example, a sort operator uses a work area
to perform the in-memory sort of a set of rows. Simi-
larly, a hash-join operator uses a work area to build a
hash table on its left input (called build input). Gener-

Permission to copy without fee all or part of this material is granted ally, larger work areas can significantly improve the per-
provided that the copies are not made or distributed for direct com-formance of a particular operator. Ideally, the size of a
mercial advantage, the VLDB copyright notice and the title of the pub- . . :

lication and its date appear, and notice is given that copying is by WOI’!(area is big e”OUQ_h such that it can accommodate
permission of the Very Large Data Base Endowment. To copy otherthe input data and auxiliary memory structures allocated
wise, or to republish, requires a fee and/or special permission from theby the operator. This is referred to as ttechesize of a
Endowment work area. When the size of the work area is smaller

Proceedings of the 28 VLDB Conference, than cache, the response time increases since an extra
Hong Kong, China, 2002

pass is performed over all or part of the input data. This ighe case in OLAP or DSS, where the input data is very
referred to as thene-passize of the work area. When the large. Thus, it is important tproperlysize their work area
work area size is less than the one-pass threshold, multipie order to obtain good response time for the queries, max-
passes over the input data are needed, causing dramaimize the usage of the hardware resources, and be fair in
increase of the operator response time. This is referred tallocating them to competing operators.

as themulti-passsize of the work area. For example, a sort
operation which needs to sort 10GB of data needs a littl
more than 10GB of memory to run in cache mode and a
least 40MB to run in one-pass mode. It will run in multi-
pass mode with less than 40MB.

In most commercial systems the burden has been put on
he DBA to provide an optimal setting for configuration
parameters that are internally used to decide how much
memory to allocate to a given database operator. This is a
challenging task for the DBA because it’s difficult to esti-

Figure 1: Effect of Memory on Sort Performance mate memory utilization for an operator work area, for a
Response Time guery, and the database system. The operator work area
4 size depends on the size of the operator input data. The

memory utilization of a query depends on the operators
scheduling and the number of parallel processes assigned

cache to the query, while the memory utilization in a database
system depends on the current workload. Most probably,
the memory will either end up beingnder-utilized(if the

. | settings are based on pessimistic assumptions about the
l ! ' - workload) orover-allocated(if the DBA makes mistakes
X ¥ " mMemory or under-estimates the workload). Generally, the DBA
minimum(64KB) one-pass tries to avoid over-allocation by assuming the worst work-

load in order to avoid paging (with dramatic degradation in

) performance) or query failure. The challenge for database
Response Time
A systems is to design a fair and efficient strategy to manage
this memory: allocate enough memory to each operation to
minimize response time, but not too much memory so that
other operators can receive their share of memory as well.

Figure 2: Effect of Memory on HashJoin Performance

hybrid with one
partition in memory

X In Oracle9i, we introduced a new memory manager that

dynamically adaptshe memory allocation based on the

operation’sneedand the systerworkload This improves

' | both manageabilityand performance The manageability

A X ® o > is improved by relieving the DBA from his “role” of find-
emory

minimum one-pass cache ing optimal values for memory configuration parameters.

) . . The performance is improved by allocating the memory to
Figure 1 (sort) and Figure 2 (hash join) show the responsg, e a1ors to maximize throughput and make the operators

time of the sort and hash-join operators as a function of th%ynamically adapt their memory consumption to respond
memory allocated by the operators. We are interested i'Po changes in the workload

the one-passand cachepoints on both curves. Thene-

passpoint is the start of the area where the operator runs irbection 2 presents an overview of related works in com-
one-pass mode, and tlechepoint corresponds to case Mmercial systems. In Section 3, we give an overview of the
when the work area size is equal to the cache size. The soRracle database system memory model, and in Section 4
curve is flat between these two points because a sort oper#e present the new memory manager for database opera-
tor doesn't benefit from additional memory if it cannot use tors, including the architecture and algorithms. In Section
the cache size. The hash-join curve decreases in a step-like we discuss the memory advisor component. Section 6
shape between the one-pass and cache points. Each s®igsents the results of a performance study that validates
corresponds to an extra build partition that can be kept irtnd shows the superiority of our approach. Section 7 con-
memory. Contrary to the sort, the hash join can benefigludes the paper.

from additional memory between the one-pass and cache

points. 2. Related Work

In On-Line Transaction Processing (OLTP) systems, thdn this section we analyze the approaches to SQL memory
size of input data to SQL operators is generally small,management and classify commercial database systems
thus, they run in cache mode most of the time. This is nobased on the most important features of a memory man-

ager. factors such as the application workload and the input
characteristics of the operation, or is statically
2.1. Approaches to Memory Management derived from configuration parameters set by the

A very simple and common approach is to assign a fixed DBA?

amount of memory to each operator. This amount can be work area size during executioOnce the operator
either a constant internal value or derived from configura- has been started, is it able &olaptits memory con-

tion parameters set by a DBA. This approach is obviously sumption (either to use less or more memory)?
flawed because there is no ideal static configuration. The

DBA will have to know: response to memory pressutdow does the system

respond when demands for memory (either from new

+ The performance characteristics of each operator (.9, operators or existing operators) cannot be satisfied,

sort and hash join performance are different with e g. the total memory used by all operators reaches a
regard to memory usage) and its requirements which |imit (hard or soft)? Does it ask the operators running

depend on the input data size. in the system to reduce their consumption, queue the

« The scheduling and degree of parallelism of operators ~N€W operators, or make the new query fail?
inside each query to estimate how much memory thergple 1 summarizes the characteristics of the memory

query needs. management policy used by each system. The dynamic
« The application workload to estimate the memorynature of the initial work area size is different in
needed at different points in time. SQLServer7 [SQLServer7] and Oracle9i [Oracle9i]. In

]))) SQLServer7 the optimizer produces minimum and maxi-
An improvement on this approach is to give each operatof, ,, estimates for each operator. When the operator is

an amount of memory based on a size estimate of itS iNpWarted, the memory manager grants the operation its max-
data. For example, a sort with a 1GB input will be i, memory if there is enough available memory and its
assigned 10MB of memory, while a sort with a 10GB minimum memory otherwise. In Oracledi, the operation
input will be assigned 100MB. This approach can also be.4, get up to a maximum memory size computed by the

improved to take into account operators scheduling andysiem hased on the current workload. See Section 4.2 to
the degree of parallelism, but is still flawed because: learn how this maximum is computed.

e the size estimates are made by the optimizer and c

; @he initial work area size is static in the other systems. For
be off by orders of magnitude.

example, in DB2 [DB2V7.1] the DBA sets theortheap
e the amount of memory assigned to operators is noparameter to specify the amount of memory to allocate to a
constrained by the workload. sort operator.

A third approach would take into account the currentTable 1: Classification of Commercial Systems
workload by checking the total amount of memory used by — :
existing operators and assign an amount that keeps theDatabase Sys-| Initial Size response
total memory used below a certain threshold. Thig ™ work during to memory

. . . . area size execution pressure
approach is not fair because it penalizes new operators {o

compensate for excesses made by operators already in theraciesi static static none
system.))))
Oracle9i dynamic adaptive adaptive
In the fourth approach, an operator adapts its memory - os71 <tatic <tatic o
usage to respond to the memory demand in the system, sa
that all operators are treated equally. Informix9.3 static static limit ops
. SQLS 7 i tati i
2.2. Commercial Database Systems QLServer dynami¢' | staflc dueueing
. . i i ?
Each one of the commercial database systems considered®%? statie static '

in this analysis implements a unique policy to manage a. using a minimum and maximum thresholds

memory used by the operators. However, based on the dis-

cussion above we identified three criteria that can be use@racle9i is the only system where operators can adapt dur-
to describe and classify those systems. ing their execution. This is very important if we want to
adapt to an increase in the workload and at the same time
make the memory management policy fair to all operators,
fggardless of the time of entry in the system. Other sys-
tems try to compensate for this by allocating a minimum

« initial work area sizels the work area size of an oper-
ator at the beginning of its executiatlynamically
computed by the database system based on dynam

memory for the new operators [DB2V7.1], queue the newcated to SQL work areas, used by sort, hash-join, bitmap-
queries [SQLServer7], or don't accept the new queriesndex merge, and bitmap-index create operators. The total

[Informix9.3]. PGA memory allocated by each server process attached to
an Oracle instance is referred to as #dggregated PGA
3. Oracle Memory Architecture memory of that instance. The DBA can control the aggre-

gated PGA memory consumed by the instance by setting

Oracle_uses a hybrid memory model based on both sha_re[ﬂe configuration parametepga_aggregate_targetFor
and private memory. The System Global Area (SGA) iSexample, the DBA can set this parameter to the value

the memory region where the Oracle database server, alsQqg- tq limit the overall consumption of PGA memory to
referred to as an Oracle instance, allocates all the shareg} giga-bytes.

data and control structures. Hence, any server process act-
ing on behalf of an Oracle instance can allocate and acce
structures located in SGA. The main SGA data structures
are the buffer cache and the library cache. The formep 1 Overview

holds a copy of the most recently accessed database blocks) .)

while the later is used to cache dictionary metadata ané’GA memory management in Oracle9i is mainly based on
SQL execution plans. Unlike the SGA, the Process Globalh€ feedback loop mechanism depicted in Figure 4. The
Area (PGA) is a private memory region allocated by Ora-left side of the_ figure represgnts active statements, i.e.
cle when a database server process is created. There is obf@ements which are executing. When a SQL operator
PGA memory region per Oracle server process which conStarts, it registers its work area profile using the “local
tains control and data information for that server processeémory manager” services. A work area profile is the
Generally, a big portion of the PGA memory holds cursorOnly interface between a SQL operator and the memory
run-time memory. Figure 3 illustrates the Oracle memoryManager. It is a piece of metadata which describes all the

Automatic PGA Memory Management

model. characteristics of a work area: its type (e.g. sort, hash-join,
) group-by), its current memory requirement to run with

Figure 3: Oracle Memory Model minimum, one-pass and cache memory, the number of
Server Server instances of that work area (effectively the degree of paral-
@ﬁ PGA Qroc@ﬁ PGA lelism of the operator), and finally the amount of PGA

memory currently used by this work area.

Figure 4: Memory Management Feedback Loop

SGA

Active Statements Set of Active Work Areas Profiles
Local

RegisterWorkirea
Memory
aetWorkareaSize Manager

™~
hd

Server Server
Process 8 PGA| """ \Process PGA ¢
Oracle instance
memory bound Global
Memory

Two dynamic configuration parameterdb_cache_size Manager
andshared_pool_sizeontrol the size of each SGA com-
ponent and hence the overall size of the SGA memory. ByThe set of active work area profiles are maintained by the
altering the value of these parameters, the DBA canocal memory manager in shared memory (SGA). This set
dynamically reconfigure the SGA. Oracle providesis always mutating. First, new work area profiles are added
“advice statistics” for both the library cache and the bufferwhen memory intensive SQL operators start processing
cache. These statistics, updated in real-time based on thReir input rows. These profiles are removed when corre-
database workload, are aimed at assisting the DBA isponding operators complete their execution. Second, the
determining the best configuration for the SGA memory.content of each work area profile is frequently updated by
For example, the buffer cache advice statistics predicts thigs corresponding SQL operator to reflect its current mem-
value of the cache hit ratio for various sizes of the bufferory need and consumption. Hence, at any point of time,

cache, selected around its current size. the set of all active work area profiles closely captures the
This paper focuses on the PGA memory managemerﬁ)GA memory need and consumption of the Oracle

since this memory holds the run-time memory of execut-NStance.
ing SQL statements. A large part of that memory is dedi-

The global memory manager is a background daemomemory, leaving only a portion of that memory to SQL
which indirectly determines the size of each active workwork areas. This portion represents most of the PGA
area by publishing a “memory bound” at a regular inter-memory for decision support systems, e.g, up to 90% of
val, generally every three seconds. The memory bound ithe overall PGA memory, while it could be relatively
automatically derived from the number and the charactersmall in pure OLTP systems, e.g. only 10%.

istics of all active work area profiles. It is used to constrain

the size of each work area. Hence, the memory bound i'sl'he target SQL memory has another important function. It

. . .~ also regulates the overall allocation of PGA memory and
high when the overall memory requirement of all active : . .
. . automatically compensates for any shortcoming with the
work areas is low and vice-versa. : .
dynamic memory management mechanism. If the Oracle
The feedback loop is closed by the local memory managedatabase server starts to over-allocate PGA memory, the
It uses the current value of the memory bound and the curvalue computed above is further lowered to act as a coun-
rent profile of a work area to determine the correct amounterpoise. Conversely, if not all the PGA memory is used by
of PGA memory, calle@xpected sizavhich can be allot- the database server, the target is further increased to maxi-
ted to this work area. The expected size is checked periodnize PGA memory utilization and improve performance.
ically by SQL operators which are then responsible toThis explains why the “Memory Target Computation”
adapt their work area size to the specified value. module shown in Figure 5 uses some allocation statistics
for the PGA memory to determine if the value of the SQL
memory target needs to be further increased or decreased.

As mentioned in the above section, the Oracle globalpyer or under allocation of PGA memory can be
memory manager daemon refreshes the global memoryyp|ained by two main factors:

bound periodically. Figure 5 shows the two steps involved
in that process. The first step computes $tgL. memory
target which is derived from the dynamic parameter
“pga_aggregate_targéset by the DBA. In simple terms,
the target SQL memory is the amount of PGA memory
which can only be allotted to active SQL work areas. The
second step translates this global limit into a local limit,
the memory bound. The memory bound is derived from
the SQL memory target and the active set of work area

4.2. Global Memory Bound Computation

operators can be slow to adapt:when the global
memory manager publishes a new value for the
bound, either higher or lower, there is always some
delay before the SQL operators in the system can
fully adapt to the new bound. Indeed, although all
memory intensive operators, like hash-joins or sorts,
have been made highly adaptive to memory changes,
memory cannot be released and acquired instanta-

profiles. The processes that compute those values are dis-
cussed in the sections below.

Figure 5: Bound Computation Control Flow

Profiles of Active Workareas

PGA Memory
Usage
Statistics

Memory
Bound

—»

Memory
Target
Computation

Memory
Bound
Computation

pga_aggregate
_target

4.2.1. SQL Memory Target

The concept of SQL memory target is critical to the proper
functioning of the SQL memory manager. Primarily, the
role of the SQL memory target is to account for other,
usages of PGA memory. Indeed, besides SQL, various
components in the database server make use of PG

neously. Moreover, some of these operators have
phases during which releasing memory is difficult if
not impossible. As a result, the system can lag in fol-
lowing the global memory manager directives
expressed via the memory bound.

memory fragmentation: it is sometimes hard for an
operator to precisely know how much memory it is
using since memory can get fragmented. For instance,
when an operator allocates 10MB of PGA memory, in
reality it may be using 11MB. Oracle uses various
techniques to prevent memory fragmentation but,
practically, a small fraction of the allocated memory
directly results from this fragmentation. Hence, an
operator might use slightly more memory than the
limit imposed by the memory bound. The global
memory manager will compensate for these type of
accounting mistakes by automatically reducing the
SQL memory target.

To summarize, the SQL memory target acts like a watch
dog for the auto memory management feature. It varies in
response to changes in the value of the parameter
pga_aggregate_targémade by the DBA, it shrinks or

grows based on the amount of PGA memory used by other

consumers of PGA memory and finally reacts to any oves
or under allocation of PGA memory.

4.2.2. Global Memory Bound

Once the value of the target SQL memory is determined,
the bound can be computed. In simple terms, finding a
proper value for the memory bound is finding the maxi-

mum value for which the sum of the expected work area

rule 4: if the work area is parallel, the expected mem-
ory derived by the above three rules will be multiplied
by the degree of parallelism (DOP). This is because a
parallel operation gets 10, CPU and memory
resources in proportion to its DOP.

rule 5: finally, the expected memory can never exceed
5% of the overall memory target if the operator is run-
ning serial. This amount is increased to 30% for oper-

size of each operator will be less than or equal to the target
SQL memory. We use the term “expected” since there is
no formal guarantee that every active SQL operator will
comply immediately with the new published bound. For-
mally, computing the bound involves finding the maxi-
mum value B which solves the following equation:

ators running parallel. This limit guarantees that a
reasonable number of operators are active in the sys-
tem before we get to a point where most of the PGA
memory is allocated. At that point, a sharp increase in
the workload is less likely since a large number of
operators are running. This smooths the variation in
memory consumption and leaves more time for the
memory manager to react to any variation in the
memory demand.

Equation 1: Property of the Memory Bound
N

Z ExpectedWorkareaSigze WB) < SQL Memory Target

=1 Figure 6 shows how the global memory manager com-

In the above equation, N is the number of work area proputes the expected work area size given six work area pro-
files and WR is the memory profile associated to work files. For example, the first work area profile, \MB used

area number i. Given a work area profile and the boundy a sort which needs 7MB to run one-pass and 27MB to
value, the ExpectedWorkareaSiz&nction returns the run cache. WRis used by a parallel hash-join running
expected size of the work area and monotonicallywith degree 2. It requires 67MB to run cache and 11MB to
increases with the memory bound. It is beyond the scop@un one-pass. Assuming that the SQL memory target is
of this paper to detail the algorithm used by Oracle t0133MB, the global memory manager sets the bound to
compute the memory bound. But it is important to men-20MB. This value of the bound would limits the memory
tion that its complexity is almost linear to the number of consumption of WPto its one-pass memory (i.e. 7MB)
work area profiles. This is critical since the global memorysince WR corresponds to a sort and 20MB is not enough
manager refreshes the bound at a high frequency. to run cache. With a bound set to 20MB, W#ould get

Work area profiles are data structures shared between thg to 40MB, two times the bound since this work area
global memory manager and SQL operators. A profileruns parallel with degree 2.

h_olds .the main (?haracte_r|st|cs of a .SQL work area at %igure 6: Bound Computation for a 133MB target

given instant of time, mainly the minimum, the one-pass
and the cache memory thresholds of the work area. Based
on the work area profile and the bound value, Exgect-
edWorkareaSizéunction determines the size of the work
area using the following simple rules:

Target = 133MB => Bound = 20M
A DOP=4
60MB - ----------- s

* rule 1: the expected size can never be less than thePOMBr---m-mmmmme s e

minimum memory requirement. AOMB L - - oo oo

 rule 2: the expected size can never be more than thesgyg.| - -
cache requirement.

20MB -

Oone-pass
memory

* rule 3: if the bound is between the minimum and the
cache requirement of the work area, the expected sizelOMB - |
will be equal to the memory bound, except if the
operator is a sort. The reason is that, as shown in SecOMB WPy (sort) Why(sort) WR(h) WPy(sort) WR(sort) WRhi)
tion 1, the sort does not benefit from more memory xpected 7MB 8MB 40MB 15MB 44MB 19MB
than the one-pass memory size unless it can run
cache. Hence, if the operator is a sort and the bound is
between one-pass and cache, the sort will get only 3. Drift Management
one-pass memory requirement.

4

There is a potential issue with the background computa-

tion of the memory bound. Indeed, the feedback loop isvork area profile is added (respectively removed) on
executed often but this might not be enough in some casebehalf of a SQL operator start (respectively stop) action,
For instance, consider the scenario where many complethe drift is increased (respectively decreased) by the
queries are submitted simultaneously when the system isxpected size of that work area. Similarly, the drift is
idle. When these queries are started, the bound is at itspdated every time a SQL operator changes the memory
maximum value since there was no load on the system aequirement of its associated work area. Generally, the
the time the bound was last recomputed by the globaktate of the system is more or less steady and the total
memory manager. Hence, using this “stale” memoryexpected memory stays within 10% of the SQL memory
bound could cause some severe memory over-allocatiotarget within two “compute” points. This is exactly what
since a lot of memory could be allocated before the memhappens in the above example, at least the first time. But
ory bound is finally refreshed to reflect this sharp variationthe second and the third times, the total expected memory
of the workload. exceeds this 10% limit, triggering a foreground refresh of

To tackle this issue, Oracle has also the ability to automa the memory bound.

ically refresh the bound in a foreground mode, i.e. onln summary, by combining a background and a foreground
behalf of a running query. This only happens in the verymethod to refresh the bound, the SQL memory manager
rare event where a local memory manager detects that thlways maintains a memory bound whose value closely
bound is stale. Oracle maintains the staleness factor of theeflects the current workload. The background refresh
memory bound using a global statistic named the memorgllows the memory manager to keep up with reasonable
“drift”. The drift represents the amount of expected mem-variation in the workload. It is the preferred refresh
ory acquired (positive drift) or released (negative drift) by method since it is performed asynchronously to running
queries since the memory bound was last recomputedjueries and has therefore no performance impact on run-
Every time the bound is recomputed, the memory manageming queries. In the very rare event where this is not
resets the drift to 0. When the PGA memory consumptiorenough, a foreground refresh is automatically triggered
on the system is close to the maximum limit set by theand ensures that a work area is not sized using a stale
DBA, we only accept 10% variation around the SQL bound.

memory target. If the current expected memory, which is

the sum of the SQL memory target and the drift, crosseé-4- Memory Adaptive SQL Operators

this 10% tolerance threshold, the bound is automatically, Oracle9i, all SQL operators have been modified to

recomputed in foreground mode. dynamically adjust their memory usage during the course

Figure 7: Foreground computation of memory bound of their execution. This capability is critical for the proper
functioning of the automatic PGA memory management,

because it prevents:

SQL Memory
Target e over-allocation of PGA memory. SQL operators

foreground recompute

must rapidly react to any change of the memory
bound value. When the memory manager lowers the
memory bound in response to an increase in memory
pressure, it expects the system to quickly adjust to the
new bound. The SQL memory target provides a
mechanism to compensate for sharp variations in the
workload, however, rapid adjustment by SQL opera-
tors is also critical to avoid any severe memory over-
> allocation.

+10%

-10%

— S S he— 33—

4 4 4 4 » sub-optimal memory utilization due to bad mem-
compute compute compute compute ory requirements estimate. It's also critical to
bound bound bound bound

ensure optimal performance of SQL operators. When
a SQL operator starts its execution, it can only make
anestimateof its memory requirement since the input
data has not yet been processed. This initial estimate
is derived by the query optimizer, and is used by the
local manager to derive the work area size it can
grant. For instance, if a hash-join operator estimates
that its cache memory requirement is 1MB, it will be

Figure 7 shows how foreground and background computa-
tion of the memory bound are combined. This example
starts when the bound has just been refreshed by the glo-
bal memory manager. At that point, the SQL memaory tar-
get is computed and the drift is reset to 0. From that point
on, any change in the set of work area profiles automati-
cally triggers an update of the drift. For instance, when a

granted exactly one megabyte of PGA memorynism. During the first 10 seconds of its execution, the sort

assuming that the value of the memory bound is highattempts to run cache by repetitively adjusting its cache
enough, e.g, 10MB. But the initial estimate is some-memory requirement based on the size of the input already
times inaccurate and the actual data size may be mugbrocessed. This action automatically triggers an increase
larger than anticipated, e.g, 2MB. Without adjusting of its work area size. When the overall memory consumed
dynamically its memory requirement while process- hits the 2GB limit, the cache memaory requirement exceeds
ing the build input, this hash-join will have to spill to the value of the memory bound and the sort has to spill to
disk after 1MB. Instead, by dynamically increasing its disk. At that point, it resizes its work area and runs using

memory requirement while “discovering” the input one-pass memory. From that point on, the sort estimate its
data, the hash-join could be granted more memoryne-pass memory requirement agd¥lyass 2 X (Ryone*

and continue to run cache. Rief) X S, where Bgneis the actual number of sorted runs

Let us illustrate this feature using a real-life example. Fig-already produced on disk, and is initialized to 1 when the
ure 8 shows the PGA memory consumption during thesort spills its first run to disk. R is the remaining number
execution of a parallel index creation. The index was cre-of runs to produce and S is the 10 size which will be used
ated on a 6 billion rows table, tHmeitemtable from the to merge these runs,dg is computed to achieve minimum
TPC-H benchmark [TPCOQ]. The create index statement isnemory requirement such that:

executed stand alone on a SUN E10000 with 64 processors Rie = 1o /M @
(450Mhz). The create index is mainly a big sort operation. left = Tleft” one-pass

For the purpose of this experiment, the Mone-pass = 2 X (Rdone * Rieft) X S (b)

pga_aggregate_targgiarameter is set such that the over-|, equation (a), k¢ is the size of the input which remains
all memory used by the create index is limited to 2GB. to be consumed. Let}, denotes the size of the input

Figure 8: Example of Adaptive Sort already processed andgliy, the estimated input size.
Memory (MB) Hence, we haveidi = lestim - lcur From the above equa-
A ilodisk usesmallerios S@tmerge tions (a) and (b), we can derive a second-degree equation
2000- |- K- = =L =i - — - — — — A —— based on Ryg:
§I /I | | Bﬁ
1800——”——@ -———

Equation 2: Estimation of R
1600~

|
—- O merge 7~ 5i
L _ (N _ 2 left
1400 N,Q I|eft Rdone+A Rdone+ S

2 — —
1200- 1 LA Riett * Raondlleft— 25 = OU Rieft = 2

e 1 A I A A et S The above equation is used to compute the ideal number
800-1y -~ e e Rieft Such that the sort will use the minimum amount of
1 memory to run one-pass. The one-pass memory is then
400-f---a----1----—---r---71- derived from this number, i.e. e pass= 2 X (Ryone +
| |
l
1

200-f---4--—-"-\"-"—-"-"~"—"-"7---7-_ Riet) X S. Once the sort spills to disk, there is no point to
l

|
0 . , , , use more memory than the one-pass requirement hence,
0 500 1000 1500 2000 2500 from that point on, the sort sets its cache requirement to
the one-pass requirement.

This example shows clearly how the sort dynamically L . .
adjusts, as input rows are processed, its memory require- one-paséS dlrect.ly proportlon.al to the factor S which rep-
ment and therefore its overall memory consumption. Thd€Sents the 10 size used during the merge phase that pro-
sort algorithm used in Oracle9i is highly adaptive. Initially, duces the final sorted result. The sort algorithm
it assumes that the input data is tiny, no more than 64kpautomatically adjusts S based on the amount of memory
Then it starts processing its input and keeps track of th@vailable at run-time. On one hand, performing large 10s
actual input size as it discovers it. When the actual inpuf€-9- 256KB) will improve 10 performance but on the
size becomes larger than the current estimated input siz8ther hand it could cause the one-pass memory require-
the sort operator reconfigures its memory by increasing thg'€nt to be larger than the memory bound. When this hap-
estimated input size by a constant factor (e.g. 20%). BaseBeNS: the sort automatically lowers the value of S down to

on this new estimate, the sorts recomputes its memor§t Minimum limit. If this is not enough, the sort operation
requirement and updates its work area profile. will start running multi-pass.

The create index example illustrates perfectly this mechafigure 8 illustrates very well the above explanation. After
spilling its first run, the sort releases a lot of memory since

the one-pass memory requirement is small compared tBigure 9: Displaying v$pga_target_advice
the cache requirement. As the sort discovers that the input current seting optimal seting
data is larger than anticipateqgfy, is increased and the

one-pass requirement is adjusted using the above formula. 8o- J&5 -+ < o -2l D L e
This explains why the memory consumed by the sort
slowly increases until it reaches again the 2GB limit, at
600 seconds in the run. At that point, the sort operator
knows that merging all runs which have been already pro-
duced would require more than 2GB of memory, unless : e
the 10 size (factor S in the above formula) is decreased. e
This adjustment is performed and the execution is -
resumed. Since smaller 10s will be used, the one-pass

memory requirement is lowered again and explains the
second drop in memory consumption. After that, once .
again, the memory consumption slowly increases as thdNe curve shows how the PGA “cache hit percentage”
estimated input size is augmented, up to the point wher8'etric improves as the \{alue of the copflguratlon parame-
the input data is fully consumed. Merging the runs cant€r Pga_aggregate_targencreases. This “cache hit per-

Cache Hit Percentage

1 £.5 I2 2.5 3 3.5 4
pga_aggregate_target (GB)

then start (merge phase is missing from the graph). centage” metric reflects the average percentage of SQL
work areas which are able to run cache, weighted by their
5 PGA Advice Statistics cache requirement. Hence, this metric is impacted both by

the number and the size of the set of work areas which are
Oracle9i has many manageability features to assist thable to run cache. The maximum value is 100% and is
DBA in tuning the performance of an Oracle instance.reached when every work area runs cache.
Properly sizing the PGA memory via the configuration
parameterpga_aggregate targeis a key aspect of that
tuning process. In Oracle9i Release 2, Oracle helps th
DBA in that task by providing two advice performance
views, v$pga_target_adviceand v$pga_target_advice
histogram By examining these two views, the DBA no
longer needs to use an empirical approach to the tunin
process. Instead, he/she can use the content of these vie
to determine how key PGA statistics will be impacted by
changing the value ofpga_aggregate_targetin both examplepga_aggregate_targethould at least be set to
views, values opga_aggregate_targeised for the predic- 375MB.
tion are derived from fractions and multiples of the currentBeyond the over-allocation zone, the value of the PGA
value of that parameter, to assess possible higher anghche hit percentage increases rapidly. This is due to an
lower values. increase in the number of work areas which run cache or

Oracle generates PGA advice performance views b)pntg-pasi?nd adec.retase n thﬁ number %fgnolg&ggsstﬁxe—
recording the workload history and then simulating thiscutONs. Al SOme point, Somewnere aroun In this

history for different values opga_aggregate_targehe example, there is_, an inflection in the curve which corre-
simulation process is performed continuously in the back—Sponds to the point where most (probably all) work areas

ground by the global memory manager. Figure 9 shows a%in run attworsl;[one-pass. After E)h'f’ Tflelcnon, the cachte
an example the content of the$pga target advice It percentage keeps increasing ut at a lower pace up 1o
g1e point where it starts to taper off and shows only slight

Improvement whermpga_aggregate_targes increased. In
the above example, this happens when
pga_aggregate_targeteaches 3GB. At that point, the
cache hit percentage is 83% and only improves marginally
(2%) with one extra giga-byte of PGA memory.

The shaded zone in the graph is the “over allocation” zone

g/hich indicates thapga_aggregate_targes insufficient

to meet the minimum PGA memory needs. If

pga_aggregate_targets set within the over-allocation

zone, the memory manager will over-allocate memory and
ctual PGA memory consumed will be more than the limit

t by the DBA. It is therefore meaningless to set a value
of pga_aggregate_targen that zone. In this particular

against a small TPC-H database (30GB scale factor).

In this particular example, 3GB is probably the optimal
value for the initialization parameter
pga_aggregate_targeBased on this advice statistic and
the maximum amount of memory which can be dedicated

to the PGA memory, the DBA can decide to change thesents the other extreme: memory starts to be over-allocated

setting ofpga_aggregate_target with 6 or more users causing the system to thrash very
quickly. At 20 users, almost 5GB of memory will be used
6. Performance Evaluation while the system is configured with only 2GB of physical

i)) memory. Automatic memory management is obviously
In this section, we validate our approach to SQL memoryysing a much better job: it maximizes memory utilization

management introduced in Oracledi. The performancgpiie keeping it always on target (i.e. 1.5GB), irespective

evaluation is not comprehensive because the intention is¢ the number of users. It means that when few users are

not to prove that the some algorithms are better than oths e each of them will be able to use much more memory

ers. The results should mostly be viewed as an illustratiogy, o in the manual mode. and when many users are active
of what to expect from our approach. they will not thrash the system like in Manual-15.

6.1. Manual versus Automatic Figure 10: Automatic versus Manual (Memory Used)

The first performance evaluation compares manual mem- s, .| '
ory management (e.g. Oracle8i) against the Oracle9i auto- 45 -
matic memory management. As explained above, when 40 -
the SQL memory is manually managed, the DBA specifies § 3° -
the maximum work area size for each type of operator. z zg)
Since the workload is always changing, either the specified & ,, .
values are too high and the memory will be over-allocated 15 -

emory

or too low and the memory will be under-utilized. In this 1.0 -

evaluation, we would like to illustrate those two cases and °5° : . : :
compare them to the performance when the memory is 5 10 15 20
automatically managed. Number of Users

The performance evaluation was conducted on a SUNFigure 11 shows the average response time of the query for
E4000 with 10 processors (167Mhz) and 2GB of mainthe above three measurements. The results conform to the
memory using a 30GB TPC-H database [TPCO0Q]. For thigredictions: with one user, the average response time is the
experiment, we used a variant of the TPC-H query 9 whichhighest for Manual-5 (51 minutes) since this user cannot
is executed using a degree of parallelism of 10. This queryse all the available memory. The response time gets better
was executed several times by each database user and fite Manual-15 (26 minutes) since this user uses more
average response time was recorded. This test was pamemory than Manual-5. The best result (11 minutes) is
formed using a varying number of users, from 1 to 20.obtained with automatic memory management since that
Three different settings were used: manual memory mansingle user can use up to 1GB of memory. When more
agement with a hash and sort area size set to 5SMB (Mandsers are executing, the response time for Manual-15
ual-5), manual memory management using 15MBshoots up dramatically when the number of active users
(Manual-15) and automatic memory management withreaches 6 because the system runs out of physical memory
pga_aggregate_targgiarameter set to 1.5GB, i.e, 3/4 of and has to page. In all cases, the automatic memory man-
the 2GB memory in the system. ager has superior performance since it manages memory

Figure 10 shows the PGA memory consumption for thesebetter'

three cases. As expected, for both manual settings, thieigure 11: Automatic versus Manual (Response Time)
memory consumption increases linearly with the number . Manual (15MB)

of users, about 100MB per user in the Manual-5MB case igg N T
and 250MB per user in the Manual-15 case. Observe that_ ,,, .| PR P R .-
the memory consumed per user is not directly related to € sso -} - - - - Ao e P .

the 5MB or 15MB setting. This is because the query is a Ea 300 -f - s
complex parallel query where one work area is used per § 250 - - - - - P A , 77 Manual(5MB)
parallel server process and multiple SQL operators are § 2%° [~~~ Y AR (1.5GB)
active simultaneously. T R e e
For Manual-5, the PGA memory is not fully utilized and o= T T T .
remains below what the system can handle up to the point 1 5 10 15 20

where 16 users are running. So, most of the time, users Number of Users
could have used more memory. The Manual-15 run repreg o variable Workload

In this experiment we analyze how the memory managepasses thgga_aggregate_targdimit. Immediately, the
responds to variations in the database workload. We var$QL memory target is lowered.

the workload by changing the n_umber of queries _runmng':igure 13: Memory Consumption

concurrently and the complexity of those queries. To

achieve this we created two TPC-H schemas using differ-

ent scale factors: 100G and 1TB. We then defined two 11 .
classes of users: thieght user class which runs on the
100GB schema and theavyuser class which runs on the
1TB schema. Users in both classes continuously submit g
queries selected randomly from the set of 22 TPC-H que- %
ries. To really stress the memory manager, the number of &
users in both classes is varied over time. In summary, the 8
workload varies along three dimensions: mixed type of <
users, variable query complexity with a wide range of
memory need, and varying number of users over time.

Total PGA Allocated

~
[
Q
=
fl

The number of users from each class is shown in Figure
12 with less users for the heavy class. The workload runs
for 10 hours. For example, at 4 hours in the run, there are igure 1 illustrates how the bound is continuously
heavy users and 24 light users running simultaneouslyadjusted to respond to the workload variation.

Users of both classes are running in parallel and the com-

bined degree of parallelism for the instance is limited toFigure 1: Dynamic Bound Adjustment

384 via the adaptive degree of parallelism feature. For the

Time (h)

entire run, the value opga_aggregate_targeis set to . 188-
m -

10GB. % 80
Figure 12: User Load Profile E ;8-
- o -Iight_le?s-s (:1_00(33) % 50 .

m 40

22 .
20.
18 .
16 .
14 .

30 .
20 .
10 .
0

Time (h)

Number of Concurrent Users

Heavy “class (111B)

i. 7. Conclusion and Future

2. : T R feoees - In this paper we showed the importance of memory man-

0 e > - - = - agement and its impact on the performance of a database
Time (hour) system. First, we showed the relationship between the

work area size and the performance of two commonly
Figure 13 shows how the PGA memory consumption andused operators, sort and hash join. Then we discussed the
the SQL memory target varies over time. The PGA allo-different approaches to the management of SQL memory,
cated varies within a tight range and never exceeds 5.5%nd exposed their benefits and drawbacks. Later, we pre-
of the target at any time. This excess memory allocation isented the memory model in Oracle9i. We showed the
expected to happen as operators takes time to adjust. Thisternal details, architecture and algorithms, of the SQL
is acceptable since the excess is short-lived and considememory manager and the SQL memory advisor compo-
ing that the load contains a high ratio of long running nents. Finally, we validated our approach through a set of
operators with high memory need. Figure 13 highlightsperformance experiments.
how the SQL memory target immediately reacts when
PGA memory is over-allocated and acts as a counter bal-
ance to the PGA memory allocated, i.e, it moves in the
opposite direction to regulate the amount of memory that
can be allocated to SQL operators. For example, at 5 hours
in the run, the PGA memory allocated increases and

References

[DB2v7.1]
DB2 UDB V7.1 Performance Tuning Guide,
December 2000

[Informix9.3]
Performance Guide for Informix Dynamic
Server, Version 9.3, August 2001

[Oracle9]
Oracle9i Database Performance Guide and
Reference, July 2001

[Oracle8]
Oracle8i Designing and Tuning for Performance,
December 1999

[SQLServer
Microsoft SQL Server 7.0 Storage Engine
Capacity Planning Tips, March 1999

[Teradatav2R4)1

Teradata RDBMS, Utilities - Volume 1, V2R4.1,
June 2001

[TPcod

Transaction Processing Council, TPC-H Rev.
1.2.1 specification, 2001

	Abstract
	1. Introduction
	Figure 1: Effect of Memory on Sort Performance
	Figure 2: Effect of Memory on HashJoin Performance

	2. Related Work
	2.1. Approaches to Memory Management
	2.2. Commercial Database Systems

	Table 1: Classification of Commercial Systems
	3. Oracle Memory Architecture
	Figure 3: Oracle Memory Model

	4. Automatic PGA Memory Management
	4.1. Overview
	Figure 4: Memory Management Feedback Loop
	4.2. Global Memory Bound Computation

	Figure 5: Bound Computation Control Flow
	4.2.1. SQL Memory Target
	4.2.2. Global Memory Bound

	Equation 1: Property of the Memory Bound
	Figure 6: Bound Computation for a 133MB target
	4.3. Drift Management

	Figure 7: Foreground computation of memory bound
	4.4. Memory Adaptive SQL Operators

	Figure 8: Example of Adaptive Sort

	Equation 2: Estimation of Rleft
	5. PGA Advice Statistics
	Figure 9: Displaying v$pga_target_advice

	6. Performance Evaluation
	6.1. Manual versus Automatic
	Figure 10: Automatic versus Manual (Memory Used)
	Figure 11: Automatic versus Manual (Response Time)
	6.2. Variable Workload

	Figure 12: User Load Profile
	Figure 13: Memory Consumption

	Figure 1: Dynamic Bound Adjustment
	7. Conclusion and Future
	[TeradataV2R4.1]
	[TPC00]

	SQL Memory Management in Oracle9i
	Benoît Dageville Mohamed Zait
	Oracle Corporation Oracle Corporation
	500 Oracle Parway 500 Oracle Parway
	Redwood Shores, CA 94065 Redwood Shores, CA 94065
	U.S.A U.S.A
	Benoit.Dageville@oracle.com Mohamed.Zait@oracle.com

