
)
nd
ge
ra-
nly
he
i-

n
to
g.

heir
rea
i-
a

r-
r-
a
te

ed

er
xtra

SQL Memory Management in Oracle9i

Benoît Dageville Mohamed Zait

Oracle Corporation Oracle Corporation
500 Oracle Parway 500 Oracle Parway

Redwood Shores, CA 94065 Redwood Shores, CA 94065
U.S.A U.S.A

Benoit.Dageville@oracle.com Mohamed.Zait@oracle.com
Abstract

Complex database queries require the use of
memory-intensive operators like sort and hash-
join. Those operators need memory, also referred
to as SQL memory, to process their input data.
For example, a sort operator uses a work area to
perform the in-memory sort of a set of rows. The
amount of memory allocated by these operators
greatly affects their performance. However, there
is only a finite amount of memory available in the
system, shared by all concurrent operators. The
challenge for database systems is to design a fair
and efficient strategy to manage this memory.

Commercial database systems rely on database
administrators (DBA) to supply an optimal set-
ting for configuration parameters that are inter-
nally used to decide how much memory to
allocate to a given database operator. However,
database systems continue to be deployed in new
areas, e.g, e-commerce, and the database applica-
tions are increasingly complex, e.g, to provide
more functionality, and support more users. One
important consequence is that the application
workload is very hard, if not impossible, to pre-
dict. So, expecting a DBA to find an optimal
value for memory configuration parameters is not
realistic. The values can only be optimal for a
limited period of time while the workload is
within the assumed range.

Ideally, the optimal value should adapt in
response to variations in the application work-
load. Several research projects addressed this
problem in the past, but very few commercial
systems proposed a comprehensive solution to
managing memory used by SQL operators in a
database application with a variable workload.

This paper presents a new model used in
Oracle9i to manage memory for database oper-
ators. This approach is automatic, adaptive and
robust. We will present the architecture of the
memory manager, the internal algorithms, and
a performance study showing its superiority.

1. Introduction

Queries in On-Line Analytical Processing (OLAP
applications and Decision-Support Systems (DSS) te
to be very complex: join many tables, and process lar
amounts of data. They make heavy use of SQL ope
tors such as sort and hash join. The sort is used not o
to produce the input rows in sorted order but also as t
basis in other operators, e.g, grouping, duplicate elim
nation, rollup, analytic functions, and index creation. I
the rest of the paper, the term “SQL operators” is used
exclusively refer to memory-intensive operators, e.
nestedloops join is excluded.

Those operators need memory space to process t
input data. For example, a sort operator uses a work a
to perform the in-memory sort of a set of rows. Sim
larly, a hash-join operator uses a work area to build
hash table on its left input (called build input). Gene
ally, larger work areas can significantly improve the pe
formance of a particular operator. Ideally, the size of
work area is big enough such that it can accommoda
the input data and auxiliary memory structures allocat
by the operator. This is referred to as thecachesize of a
work area. When the size of the work area is small
than cache, the response time increases since an e

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the pub-
lication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy other-
wise, or to republish, requires a fee and/or special permission from the
Endowment

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

ry

x-
r in

on

ch
s a
i-
a
rea
he
rs
ned
e
ly,

the

A
k-
in
se
ge
to
at
ell.

at

s.
to
ors
nd

-
e

n 4
era-
n
6

tes
n-

ory
ms
n-
pass is performed over all or part of the input data. This is
referred to as theone-passsize of the work area. When the
work area size is less than the one-pass threshold, multiple
passes over the input data are needed, causing dramatic
increase of the operator response time. This is referred to
as themulti-passsize of the work area. For example, a sort
operation which needs to sort 10GB of data needs a little
more than 10GB of memory to run in cache mode and at
least 40MB to run in one-pass mode. It will run in multi-
pass mode with less than 40MB.

Figure 1: Effect of Memory on Sort Performance

Figure 2: Effect of Memory on HashJoin Performance

Figure 1 (sort) and Figure 2 (hash join) show the response
time of the sort and hash-join operators as a function of the
memory allocated by the operators. We are interested in
the one-passand cachepoints on both curves. Theone-
passpoint is the start of the area where the operator runs in
one-pass mode, and thecachepoint corresponds to case
when the work area size is equal to the cache size. The sort
curve is flat between these two points because a sort opera-
tor doesn’t benefit from additional memory if it cannot use
the cache size. The hash-join curve decreases in a step-like
shape between the one-pass and cache points. Each step
corresponds to an extra build partition that can be kept in
memory. Contrary to the sort, the hash join can benefit
from additional memory between the one-pass and cache
points.

In On-Line Transaction Processing (OLTP) systems, the
size of input data to SQL operators is generally small,
thus, they run in cache mode most of the time. This is not

the case in OLAP or DSS, where the input data is ve
large. Thus, it is important toproperlysize their work area
in order to obtain good response time for the queries, ma
imize the usage of the hardware resources, and be fai
allocating them to competing operators.

In most commercial systems the burden has been put
the DBA to provide an optimal setting for configuration
parameters that are internally used to decide how mu
memory to allocate to a given database operator. This i
challenging task for the DBA because it’s difficult to est
mate memory utilization for an operator work area, for
query, and the database system. The operator work a
size depends on the size of the operator input data. T
memory utilization of a query depends on the operato
scheduling and the number of parallel processes assig
to the query, while the memory utilization in a databas
system depends on the current workload. Most probab
the memory will either end up beingunder-utilized(if the
settings are based on pessimistic assumptions about
workload) orover-allocated(if the DBA makes mistakes
or under-estimates the workload). Generally, the DB
tries to avoid over-allocation by assuming the worst wor
load in order to avoid paging (with dramatic degradation
performance) or query failure. The challenge for databa
systems is to design a fair and efficient strategy to mana
this memory: allocate enough memory to each operation
minimize response time, but not too much memory so th
other operators can receive their share of memory as w

In Oracle9i, we introduced a new memory manager th
dynamically adaptsthe memory allocation based on the
operation’sneedand the systemworkload. This improves
both manageabilityand performance. The manageability
is improved by relieving the DBA from his “role” of find-
ing optimal values for memory configuration parameter
The performance is improved by allocating the memory
operators to maximize throughput and make the operat
dynamically adapt their memory consumption to respo
to changes in the workload.

Section 2 presents an overview of related works in com
mercial systems. In Section 3, we give an overview of th
Oracle database system memory model, and in Sectio
we present the new memory manager for database op
tors, including the architecture and algorithms. In Sectio
5, we discuss the memory advisor component. Section
presents the results of a performance study that valida
and shows the superiority of our approach. Section 7 co
cludes the paper.

2. Related Work

In this section we analyze the approaches to SQL mem
management and classify commercial database syste
based on the most important features of a memory ma

Response Time

Memory
minimum(64KB) one-pass

cache

Memory
cacheone-passminimum

Response Time

hybrid with one
partition in memory

ut

e

w
d,

s a
g
he

ry
ic

n
i-
is

ax-
its
n
he

to

or

a

ur-

me
rs,
s-

m

ager.

2.1. Approaches to Memory Management

A very simple and common approach is to assign a fixed
amount of memory to each operator. This amount can be
either a constant internal value or derived from configura-
tion parameters set by a DBA. This approach is obviously
flawed because there is no ideal static configuration. The
DBA will have to know:

• The performance characteristics of each operator (e.g,
sort and hash join performance are different with
regard to memory usage) and its requirements which
depend on the input data size.

• The scheduling and degree of parallelism of operators
inside each query to estimate how much memory the
query needs.

• The application workload to estimate the memory
needed at different points in time.

An improvement on this approach is to give each operator
an amount of memory based on a size estimate of its input
data. For example, a sort with a 1GB input will be
assigned 10MB of memory, while a sort with a 10GB
input will be assigned 100MB. This approach can also be
improved to take into account operators scheduling and
the degree of parallelism, but is still flawed because:

• the size estimates are made by the optimizer and can
be off by orders of magnitude.

• the amount of memory assigned to operators is not
constrained by the workload.

A third approach would take into account the current
workload by checking the total amount of memory used by
existing operators and assign an amount that keeps the
total memory used below a certain threshold. This
approach is not fair because it penalizes new operators to
compensate for excesses made by operators already in the
system.

In the fourth approach, an operator adapts its memory
usage to respond to the memory demand in the system, so
that all operators are treated equally.

2.2. Commercial Database Systems

Each one of the commercial database systems considered
in this analysis implements a unique policy to manage
memory used by the operators. However, based on the dis-
cussion above we identified three criteria that can be used
to describe and classify those systems.

• initial work area size. Is the work area size of an oper-
ator at the beginning of its executiondynamically
computed by the database system based on dynamic

factors such as the application workload and the inp
characteristics of the operation, or is itstatically
derived from configuration parameters set by th
DBA?

• work area size during execution. Once the operator
has been started, is it able toadapt its memory con-
sumption (either to use less or more memory)?

• response to memory pressure. How does the system
respond when demands for memory (either from ne
operators or existing operators) cannot be satisfie
e.g. the total memory used by all operators reache
limit (hard or soft)? Does it ask the operators runnin
in the system to reduce their consumption, queue t
new operators, or make the new query fail?

Table 1 summarizes the characteristics of the memo
management policy used by each system. The dynam
nature of the initial work area size is different in
SQLServer7 [SQLServer7] and Oracle9i [Oracle9i]. I
SQLServer7 the optimizer produces minimum and max
mum estimates for each operator. When the operator
started, the memory manager grants the operation its m
imum memory if there is enough available memory and
minimum memory otherwise. In Oracle9i, the operatio
can get up to a maximum memory size computed by t
system based on the current workload. See Section 4.2
learn how this maximum is computed.

The initial work area size is static in the other systems. F
example, in DB2 [DB2V7.1] the DBA sets thesortheap
parameter to specify the amount of memory to allocate to
sort operator.

Table 1: Classification of Commercial Systems

Oracle9i is the only system where operators can adapt d
ing their execution. This is very important if we want to
adapt to an increase in the workload and at the same ti
make the memory management policy fair to all operato
regardless of the time of entry in the system. Other sy
tems try to compensate for this by allocating a minimu

Database Sys-
tem

Initial
work
area size

size
during
execution

response
to memory
pressure

Oracle8i static static none

Oracle9i dynamic adaptive adaptive

DB2/UDB7.1 static static minimum

Informix9.3 static static limit ops

SQLServer7 dynamica

a. using a minimum and maximum thresholds

static queueing

Teradata static static ?

p-
tal

d to

-
ing

ue

on
he
i.e.
tor
al
e
ry

the
in,
h
of

al-

he
et
ed
ing
e-
the
by

-
e,
he
le
memory for the new operators [DB2V7.1], queue the new
queries [SQLServer7], or don’t accept the new queries
[Informix9.3].

3. Oracle Memory Architecture

Oracle uses a hybrid memory model based on both shared
and private memory. The System Global Area (SGA) is
the memory region where the Oracle database server, also
referred to as an Oracle instance, allocates all the shared
data and control structures. Hence, any server process act-
ing on behalf of an Oracle instance can allocate and access
structures located in SGA. The main SGA data structures
are the buffer cache and the library cache. The former
holds a copy of the most recently accessed database blocks
while the later is used to cache dictionary metadata and
SQL execution plans. Unlike the SGA, the Process Global
Area (PGA) is a private memory region allocated by Ora-
cle when a database server process is created. There is one
PGA memory region per Oracle server process which con-
tains control and data information for that server process.
Generally, a big portion of the PGA memory holds cursor
run-time memory. Figure 3 illustrates the Oracle memory
model.

Figure 3: Oracle Memory Model

Two dynamic configuration parameters,db_cache_size
andshared_pool_sizecontrol the size of each SGA com-
ponent and hence the overall size of the SGA memory. By
altering the value of these parameters, the DBA can
dynamically reconfigure the SGA. Oracle provides
“advice statistics” for both the library cache and the buffer
cache. These statistics, updated in real-time based on the
database workload, are aimed at assisting the DBA in
determining the best configuration for the SGA memory.
For example, the buffer cache advice statistics predicts the
value of the cache hit ratio for various sizes of the buffer
cache, selected around its current size.

This paper focuses on the PGA memory management
since this memory holds the run-time memory of execut-
ing SQL statements. A large part of that memory is dedi-

cated to SQL work areas, used by sort, hash-join, bitma
index merge, and bitmap-index create operators. The to
PGA memory allocated by each server process attache
an Oracle instance is referred to as theaggregated PGA
memory of that instance. The DBA can control the aggre
gated PGA memory consumed by the instance by sett
the configuration parameterpga_aggregate_target. For
example, the DBA can set this parameter to the val
“10G” to limit the overall consumption of PGA memory to
10 giga-bytes.

4. Automatic PGA Memory Management

4.1. Overview

PGA memory management in Oracle9i is mainly based
the feedback loop mechanism depicted in Figure 4. T
left side of the figure represents active statements,
statements which are executing. When a SQL opera
starts, it registers its work area profile using the “loc
memory manager” services. A work area profile is th
only interface between a SQL operator and the memo
manager. It is a piece of metadata which describes all
characteristics of a work area: its type (e.g. sort, hash-jo
group-by), its current memory requirement to run wit
minimum, one-pass and cache memory, the number
instances of that work area (effectively the degree of par
lelism of the operator), and finally the amount of PGA
memory currently used by this work area.

Figure 4: Memory Management Feedback Loop

The set of active work area profiles are maintained by t
local memory manager in shared memory (SGA). This s
is always mutating. First, new work area profiles are add
when memory intensive SQL operators start process
their input rows. These profiles are removed when corr
sponding operators complete their execution. Second,
content of each work area profile is frequently updated
its corresponding SQL operator to reflect its current mem
ory need and consumption. Hence, at any point of tim
the set of all active work area profiles closely captures t
PGA memory need and consumption of the Orac
instance.

SGA

PGA
Server

Process 1 PGA
Server

Process 2

PGA
Server

Process 3 PGA
Server

Process N...
Oracle instance

Set of Active Work Areas Profiles

WP1

WP4

WP3

WP2

Q1Q1Q3
Sn

Active Statements

RegisterWorkarea

Local
Memory
ManagerGetWorkareaSize

Global
Memory
Manager

memory bound

L
A
of

It
d

he
cle
the
n-
y

axi-
e.
”
ics
L
sed.

e

e
e

an
ll

ts,
es,
ta-
ve
if
l-
s

s
ce,
in
s
t,

y
n
e
l
of
e

ch
in
ter

er
The global memory manager is a background daemon
which indirectly determines the size of each active work
area by publishing a “memory bound” at a regular inter-
val, generally every three seconds. The memory bound is
automatically derived from the number and the character-
istics of all active work area profiles. It is used to constrain
the size of each work area. Hence, the memory bound is
high when the overall memory requirement of all active
work areas is low and vice-versa.

The feedback loop is closed by the local memory manager.
It uses the current value of the memory bound and the cur-
rent profile of a work area to determine the correct amount
of PGA memory, calledexpected size, which can be allot-
ted to this work area. The expected size is checked period-
ically by SQL operators which are then responsible to
adapt their work area size to the specified value.

4.2. Global Memory Bound Computation

As mentioned in the above section, the Oracle global
memory manager daemon refreshes the global memory
bound periodically. Figure 5 shows the two steps involved
in that process. The first step computes theSQL memory
target which is derived from the dynamic parameter
“pga_aggregate_target” set by the DBA. In simple terms,
the target SQL memory is the amount of PGA memory
which can only be allotted to active SQL work areas. The
second step translates this global limit into a local limit,
the memory bound. The memory bound is derived from
the SQL memory target and the active set of work area
profiles. The processes that compute those values are dis-
cussed in the sections below.

Figure 5: Bound Computation Control Flow

4.2.1. SQL Memory Target

The concept of SQL memory target is critical to the proper
functioning of the SQL memory manager. Primarily, the
role of the SQL memory target is to account for other
usages of PGA memory. Indeed, besides SQL, various
components in the database server make use of PGA

memory, leaving only a portion of that memory to SQ
work areas. This portion represents most of the PG
memory for decision support systems, e.g, up to 90%
the overall PGA memory, while it could be relatively
small in pure OLTP systems, e.g. only 10%.

The target SQL memory has another important function.
also regulates the overall allocation of PGA memory an
automatically compensates for any shortcoming with t
dynamic memory management mechanism. If the Ora
database server starts to over-allocate PGA memory,
value computed above is further lowered to act as a cou
terpoise. Conversely, if not all the PGA memory is used b
the database server, the target is further increased to m
mize PGA memory utilization and improve performanc
This explains why the “Memory Target Computation
module shown in Figure 5 uses some allocation statist
for the PGA memory to determine if the value of the SQ
memory target needs to be further increased or decrea

Over or under allocation of PGA memory can b
explained by two main factors:

• operators can be slow to adapt:when the global
memory manager publishes a new value for th
bound, either higher or lower, there is always som
delay before the SQL operators in the system c
fully adapt to the new bound. Indeed, although a
memory intensive operators, like hash-joins or sor
have been made highly adaptive to memory chang
memory cannot be released and acquired instan
neously. Moreover, some of these operators ha
phases during which releasing memory is difficult
not impossible. As a result, the system can lag in fo
lowing the global memory manager directive
expressed via the memory bound.

• memory fragmentation: it is sometimes hard for an
operator to precisely know how much memory it i
using since memory can get fragmented. For instan
when an operator allocates 10MB of PGA memory,
reality it may be using 11MB. Oracle uses variou
techniques to prevent memory fragmentation bu
practically, a small fraction of the allocated memor
directly results from this fragmentation. Hence, a
operator might use slightly more memory than th
limit imposed by the memory bound. The globa
memory manager will compensate for these type
accounting mistakes by automatically reducing th
SQL memory target.

To summarize, the SQL memory target acts like a wat
dog for the auto memory management feature. It varies
response to changes in the value of the parame
“pga_aggregate_target” made by the DBA, it shrinks or
grows based on the amount of PGA memory used by oth

Memory
Target

Profiles of Active Workareas

WP1

WP4

WP3

WP2

WP5

WP6

Computation

Memory
Bound

Computation

pga_aggregate
_target

SQL Memory
Target

Memory
Bound

PGA Memory
Usage

Statistics

-
d

a
y

d
-
r-
a
ys-
A
in
f
in
e
e

-
ro-

to

to
is
to

y

h

a

ta-
consumers of PGA memory and finally reacts to any over
or under allocation of PGA memory.

4.2.2. Global Memory Bound

Once the value of the target SQL memory is determined,
the bound can be computed. In simple terms, finding a
proper value for the memory bound is finding the maxi-
mum value for which the sum of the expected work area
size of each operator will be less than or equal to the target
SQL memory. We use the term “expected” since there is
no formal guarantee that every active SQL operator will
comply immediately with the new published bound. For-
mally, computing the bound involves finding the maxi-
mum value B which solves the following equation:

Equation 1: Property of the Memory Bound

In the above equation, N is the number of work area pro-
files and WPi is the memory profile associated to work
area number i. Given a work area profile and the bound
value, the ExpectedWorkareaSizefunction returns the
expected size of the work area and monotonically
increases with the memory bound. It is beyond the scope
of this paper to detail the algorithm used by Oracle to
compute the memory bound. But it is important to men-
tion that its complexity is almost linear to the number of
work area profiles. This is critical since the global memory
manager refreshes the bound at a high frequency.

Work area profiles are data structures shared between the
global memory manager and SQL operators. A profile
holds the main characteristics of a SQL work area at a
given instant of time, mainly the minimum, the one-pass
and the cache memory thresholds of the work area. Based
on the work area profile and the bound value, theExpect-
edWorkareaSizefunction determines the size of the work
area using the following simple rules:

• rule 1: the expected size can never be less than the
minimum memory requirement.

• rule 2: the expected size can never be more than the
cache requirement.

• rule 3: if the bound is between the minimum and the
cache requirement of the work area, the expected size
will be equal to the memory bound, except if the
operator is a sort. The reason is that, as shown in Sec-
tion 1, the sort does not benefit from more memory
than the one-pass memory size unless it can run
cache. Hence, if the operator is a sort and the bound is
between one-pass and cache, the sort will get only
one-pass memory requirement.

• rule 4: if the work area is parallel, the expected mem
ory derived by the above three rules will be multiplie
by the degree of parallelism (DOP). This is because
parallel operation gets IO, CPU and memor
resources in proportion to its DOP.

• rule 5: finally, the expected memory can never excee
5% of the overall memory target if the operator is run
ning serial. This amount is increased to 30% for ope
ators running parallel. This limit guarantees that
reasonable number of operators are active in the s
tem before we get to a point where most of the PG
memory is allocated. At that point, a sharp increase
the workload is less likely since a large number o
operators are running. This smooths the variation
memory consumption and leaves more time for th
memory manager to react to any variation in th
memory demand.

Figure 6 shows how the global memory manager com
putes the expected work area size given six work area p
files. For example, the first work area profile, WP1 is used
by a sort which needs 7MB to run one-pass and 27MB
run cache. WP3 is used by a parallel hash-join running
with degree 2. It requires 67MB to run cache and 11MB
run one-pass. Assuming that the SQL memory target
133MB, the global memory manager sets the bound
20MB. This value of the bound would limits the memor
consumption of WP1 to its one-pass memory (i.e. 7MB)
since WP1 corresponds to a sort and 20MB is not enoug
to run cache. With a bound set to 20MB, WP3 would get
up to 40MB, two times the bound since this work are
runs parallel with degree 2.

Figure 6: Bound Computation for a 133MB target

4.3. Drift Management

There is a potential issue with the background compu

ExpectedWorkareaSize WPi B,()
i 1=

N

∑ SQL Memory Target≤

60MB

50MB

30MB

20MB

10MB

0MB

40MB

Target = 133MB => Bound = 20M

WP1(sort) WP2(sort) WP3(hj) WP4(sort) WP5(sort) WP6(hj)

Bound

7MB 8MB 40MB 15MB 44MB 19MB

cache memory

one-pass
memory

Expected
Size

DOP=4

DOP=2

n
n,
he
s
ory
he
tal

ry
t
ut

ory
of

nd
er
ly

sh
ble
h
g

un-
ot
ed
tale

to
se
r
t,

ry
he
ry

he
a
he
a-
r-

en
ke
t
ate
e
n
es
e

tion of the memory bound. Indeed, the feedback loop is
executed often but this might not be enough in some cases.
For instance, consider the scenario where many complex
queries are submitted simultaneously when the system is
idle. When these queries are started, the bound is at its
maximum value since there was no load on the system at
the time the bound was last recomputed by the global
memory manager. Hence, using this “stale” memory
bound could cause some severe memory over-allocation
since a lot of memory could be allocated before the mem-
ory bound is finally refreshed to reflect this sharp variation
of the workload.

To tackle this issue, Oracle has also the ability to automat-
ically refresh the bound in a foreground mode, i.e. on
behalf of a running query. This only happens in the very
rare event where a local memory manager detects that the
bound is stale. Oracle maintains the staleness factor of the
memory bound using a global statistic named the memory
“drift”. The drift represents the amount of expected mem-
ory acquired (positive drift) or released (negative drift) by
queries since the memory bound was last recomputed.
Every time the bound is recomputed, the memory manager
resets the drift to 0. When the PGA memory consumption
on the system is close to the maximum limit set by the
DBA, we only accept 10% variation around the SQL
memory target. If the current expected memory, which is
the sum of the SQL memory target and the drift, crosses
this 10% tolerance threshold, the bound is automatically
recomputed in foreground mode.

Figure 7: Foreground computation of memory bound

Figure 7 shows how foreground and background computa-
tion of the memory bound are combined. This example
starts when the bound has just been refreshed by the glo-
bal memory manager. At that point, the SQL memory tar-
get is computed and the drift is reset to 0. From that point
on, any change in the set of work area profiles automati-
cally triggers an update of the drift. For instance, when a

work area profile is added (respectively removed) o
behalf of a SQL operator start (respectively stop) actio
the drift is increased (respectively decreased) by t
expected size of that work area. Similarly, the drift i
updated every time a SQL operator changes the mem
requirement of its associated work area. Generally, t
state of the system is more or less steady and the to
expected memory stays within 10% of the SQL memo
target within two “compute” points. This is exactly wha
happens in the above example, at least the first time. B
the second and the third times, the total expected mem
exceeds this 10% limit, triggering a foreground refresh
the memory bound.

In summary, by combining a background and a foregrou
method to refresh the bound, the SQL memory manag
always maintains a memory bound whose value close
reflects the current workload. The background refre
allows the memory manager to keep up with reasona
variation in the workload. It is the preferred refres
method since it is performed asynchronously to runnin
queries and has therefore no performance impact on r
ning queries. In the very rare event where this is n
enough, a foreground refresh is automatically trigger
and ensures that a work area is not sized using a s
bound.

4.4. Memory Adaptive SQL Operators

In Oracle9i, all SQL operators have been modified
dynamically adjust their memory usage during the cour
of their execution. This capability is critical for the prope
functioning of the automatic PGA memory managemen
because it prevents:

• over-allocation of PGA memory. SQL operators
must rapidly react to any change of the memo
bound value. When the memory manager lowers t
memory bound in response to an increase in memo
pressure, it expects the system to quickly adjust to t
new bound. The SQL memory target provides
mechanism to compensate for sharp variations in t
workload, however, rapid adjustment by SQL oper
tors is also critical to avoid any severe memory ove
allocation.

• sub-optimal memory utilization due to bad mem-
ory requirements estimate. It’s also critical to
ensure optimal performance of SQL operators. Wh
a SQL operator starts its execution, it can only ma
anestimateof its memory requirement since the inpu
data has not yet been processed. This initial estim
is derived by the query optimizer, and is used by th
local manager to derive the work area size it ca
grant. For instance, if a hash-join operator estimat
that its cache memory requirement is 1MB, it will b

Time

SQL Memory
Target

3s 3s3s

compute
bound

compute
bound

compute
bound

compute
bound

+10%

-10%

foreground recompute

drift

rt
he
dy
se

ed
ds
to
g
its

e

d

tion

ber
f
en

o
ce,
to

-
ro-

m
ry
s

ire-
p-
to
n

r
e

granted exactly one megabyte of PGA memory
assuming that the value of the memory bound is high
enough, e.g, 10MB. But the initial estimate is some-
times inaccurate and the actual data size may be much
larger than anticipated, e.g, 2MB. Without adjusting
dynamically its memory requirement while process-
ing the build input, this hash-join will have to spill to
disk after 1MB. Instead, by dynamically increasing its
memory requirement while “discovering” the input
data, the hash-join could be granted more memory
and continue to run cache.

Let us illustrate this feature using a real-life example. Fig-
ure 8 shows the PGA memory consumption during the
execution of a parallel index creation. The index was cre-
ated on a 6 billion rows table, thelineitem table from the
TPC-H benchmark [TPC00]. The create index statement is
executed stand alone on a SUN E10000 with 64 processors
(450Mhz). The create index is mainly a big sort operation.
For the purpose of this experiment, the
pga_aggregate_targetparameter is set such that the over-
all memory used by the create index is limited to 2GB.

Figure 8: Example of Adaptive Sort

This example shows clearly how the sort dynamically
adjusts, as input rows are processed, its memory require-
ment and therefore its overall memory consumption. The
sort algorithm used in Oracle9i is highly adaptive. Initially,
it assumes that the input data is tiny, no more than 64KB.
Then it starts processing its input and keeps track of the
actual input size as it discovers it. When the actual input
size becomes larger than the current estimated input size,
the sort operator reconfigures its memory by increasing the
estimated input size by a constant factor (e.g. 20%). Based
on this new estimate, the sorts recomputes its memory
requirement and updates its work area profile.

The create index example illustrates perfectly this mecha-

nism. During the first 10 seconds of its execution, the so
attempts to run cache by repetitively adjusting its cac
memory requirement based on the size of the input alrea
processed. This action automatically triggers an increa
of its work area size. When the overall memory consum
hits the 2GB limit, the cache memory requirement excee
the value of the memory bound and the sort has to spill
disk. At that point, it resizes its work area and runs usin
one-pass memory. From that point on, the sort estimate
one-pass memory requirement as Mone-pass= 2 x (Rdone+
Rleft) x S, where Rdoneis the actual number of sorted runs
already produced on disk, and is initialized to 1 when th
sort spills its first run to disk. Rleft is the remaining number
of runs to produce and S is the IO size which will be use
to merge these runs. Rleft is computed to achieve minimum
memory requirement such that:

Rleft = Ileft/Mone-pass (a)

Mone-pass = 2 x (Rdone + Rleft) x S (b)

In equation (a), Ileft is the size of the input which remains
to be consumed. Let Icur denotes the size of the input
already processed and Iestim the estimated input size.
Hence, we have: Ileft = Iestim - Icur. From the above equa-
tions (a) and (b), we can derive a second-degree equa
based on Rleft:

Equation 2: Estimation of Rleft

The above equation is used to compute the ideal num
Rleft such that the sort will use the minimum amount o
memory to run one-pass. The one-pass memory is th
derived from this number, i.e. Mone-pass= 2 x (Rdone +
Rleft) x S. Once the sort spills to disk, there is no point t
use more memory than the one-pass requirement hen
from that point on, the sort sets its cache requirement
the one-pass requirement.

Mone-passis directly proportional to the factor S which rep
resents the IO size used during the merge phase that p
duces the final sorted result. The sort algorith
automatically adjusts S based on the amount of memo
available at run-time. On one hand, performing large IO
(e.g. 256KB) will improve IO performance but on the
other hand it could cause the one-pass memory requ
ment to be larger than the memory bound. When this ha
pens, the sort automatically lowers the value of S down
a minimum limit. If this is not enough, the sort operatio
will start running multi-pass.

Figure 8 illustrates very well the above explanation. Afte
spilling its first run, the sort releases a lot of memory sinc

spill to disk

1
pa

ss
 (

la
rg

e
IO

)

1 pass (smaller IO
) merge

2000

1800

1600

1400

1200

1000

800

600

400

200

0
0 500 1000 1500 2000 2500

Memory (MB)

use smaller IOs start merge

Time (s)

Rleft
2 RdoneRleft

I left
2S

-----------–+ 0 Rleft⇒
Rdone– Rdone

2
2I left

S
---------------++

2
---= =

e”
e-

QL
eir
by
are
is

ne

f

nd
it
ue

A
an
or
xe-
is
e-
as
he

to
ht

n

lly

l

ed
the one-pass memory requirement is small compared to
the cache requirement. As the sort discovers that the input
data is larger than anticipated, Iestim is increased and the
one-pass requirement is adjusted using the above formula.
This explains why the memory consumed by the sort
slowly increases until it reaches again the 2GB limit, at
600 seconds in the run. At that point, the sort operator
knows that merging all runs which have been already pro-
duced would require more than 2GB of memory, unless
the IO size (factor S in the above formula) is decreased.
This adjustment is performed and the execution is
resumed. Since smaller IOs will be used, the one-pass
memory requirement is lowered again and explains the
second drop in memory consumption. After that, once
again, the memory consumption slowly increases as the
estimated input size is augmented, up to the point where
the input data is fully consumed. Merging the runs can
then start (merge phase is missing from the graph).

5. PGA Advice Statistics

Oracle9i has many manageability features to assist the
DBA in tuning the performance of an Oracle instance.
Properly sizing the PGA memory via the configuration
parameterpga_aggregate_targetis a key aspect of that
tuning process. In Oracle9i Release 2, Oracle helps the
DBA in that task by providing two advice performance
views, v$pga_target_adviceand v$pga_target_advice_
histogram. By examining these two views, the DBA no
longer needs to use an empirical approach to the tuning
process. Instead, he/she can use the content of these views
to determine how key PGA statistics will be impacted by
changing the value ofpga_aggregate_target. In both
views, values ofpga_aggregate_targetused for the predic-
tion are derived from fractions and multiples of the current
value of that parameter, to assess possible higher and
lower values.

Oracle generates PGA advice performance views by
recording the workload history and then simulating this
history for different values ofpga_aggregate_target. The
simulation process is performed continuously in the back-
ground by the global memory manager. Figure 9 shows as
an example the content of thev$pga_target_advice
obtained after running several concurrent query streams
against a small TPC-H database (30GB scale factor).

Figure 9: Displaying v$pga_target_advice

The curve shows how the PGA “cache hit percentag
metric improves as the value of the configuration param
ter pga_aggregate_targetincreases. This “cache hit per-
centage” metric reflects the average percentage of S
work areas which are able to run cache, weighted by th
cache requirement. Hence, this metric is impacted both
the number and the size of the set of work areas which
able to run cache. The maximum value is 100% and
reached when every work area runs cache.

The shaded zone in the graph is the “over allocation” zo
which indicates thatpga_aggregate_targetis insufficient
to meet the minimum PGA memory needs. I
pga_aggregate_targetis set within the over-allocation
zone, the memory manager will over-allocate memory a
actual PGA memory consumed will be more than the lim
set by the DBA. It is therefore meaningless to set a val
of pga_aggregate_targetin that zone. In this particular
examplepga_aggregate_targetshould at least be set to
375MB.

Beyond the over-allocation zone, the value of the PG
cache hit percentage increases rapidly. This is due to
increase in the number of work areas which run cache
one-pass and a decrease in the number of multi-pass e
cutions. At some point, somewhere around 500MB in th
example, there is an inflection in the curve which corr
sponds to the point where most (probably all) work are
can run at worst one-pass. After this inflection, the cac
hit percentage keeps increasing but at a lower pace up
the point where it starts to taper off and shows only slig
improvement whenpga_aggregate_targetis increased. In
the above example, this happens whe
pga_aggregate_targetreaches 3GB. At that point, the
cache hit percentage is 83% and only improves margina
(2%) with one extra giga-byte of PGA memory.

In this particular example, 3GB is probably the optima
value for the initialization parameter
pga_aggregate_target. Based on this advice statistic and
the maximum amount of memory which can be dedicat

pga_aggregate_target (GB)

C
ac

he
 H

it
Pe

rc
en

ta
ge

80

70

60

50

40

30

20

10

0

current seting optimal seting

0 0.5 1 1.5 2 2.5 3 3.5 4

ted
ry

d
l
ly
n
e

are
ry
tive

for
the
the
ot
tter
re
is
at
re
15
rs
ory
an-
ory
to the PGA memory, the DBA can decide to change the
setting ofpga_aggregate_target.

6. Performance Evaluation

In this section, we validate our approach to SQL memory
management introduced in Oracle9i. The performance
evaluation is not comprehensive because the intention is
not to prove that the some algorithms are better than oth-
ers. The results should mostly be viewed as an illustration
of what to expect from our approach.

6.1. Manual versus Automatic

The first performance evaluation compares manual mem-
ory management (e.g. Oracle8i) against the Oracle9i auto-
matic memory management. As explained above, when
the SQL memory is manually managed, the DBA specifies
the maximum work area size for each type of operator.
Since the workload is always changing, either the specified
values are too high and the memory will be over-allocated
or too low and the memory will be under-utilized. In this
evaluation, we would like to illustrate those two cases and
compare them to the performance when the memory is
automatically managed.

The performance evaluation was conducted on a SUN
E4000 with 10 processors (167Mhz) and 2GB of main
memory using a 30GB TPC-H database [TPC00]. For this
experiment, we used a variant of the TPC-H query 9 which
is executed using a degree of parallelism of 10. This query
was executed several times by each database user and its
average response time was recorded. This test was per-
formed using a varying number of users, from 1 to 20.
Three different settings were used: manual memory man-
agement with a hash and sort area size set to 5MB (Man-
ual-5), manual memory management using 15MB
(Manual-15) and automatic memory management with
pga_aggregate_targetparameter set to 1.5GB, i.e, 3/4 of
the 2GB memory in the system.

Figure 10 shows the PGA memory consumption for these
three cases. As expected, for both manual settings, the
memory consumption increases linearly with the number
of users, about 100MB per user in the Manual-5MB case
and 250MB per user in the Manual-15 case. Observe that
the memory consumed per user is not directly related to
the 5MB or 15MB setting. This is because the query is a
complex parallel query where one work area is used per
parallel server process and multiple SQL operators are
active simultaneously.

For Manual-5, the PGA memory is not fully utilized and
remains below what the system can handle up to the point
where 16 users are running. So, most of the time, users
could have used more memory. The Manual-15 run repre-

sents the other extreme: memory starts to be over-alloca
with 6 or more users causing the system to thrash ve
quickly. At 20 users, almost 5GB of memory will be use
while the system is configured with only 2GB of physica
memory. Automatic memory management is obvious
doing a much better job: it maximizes memory utilizatio
while keeping it always on target (i.e. 1.5GB), irrespectiv
of the number of users. It means that when few users
active each of them will be able to use much more memo
than in the manual mode, and when many users are ac
they will not thrash the system like in Manual-15.

Figure 10: Automatic versus Manual (Memory Used)

Figure 11 shows the average response time of the query
the above three measurements. The results conform to
predictions: with one user, the average response time is
highest for Manual-5 (51 minutes) since this user cann
use all the available memory. The response time gets be
for Manual-15 (26 minutes) since this user uses mo
memory than Manual-5. The best result (11 minutes)
obtained with automatic memory management since th
single user can use up to 1GB of memory. When mo
users are executing, the response time for Manual-
shoots up dramatically when the number of active use
reaches 6 because the system runs out of physical mem
and has to page. In all cases, the automatic memory m
ager has superior performance since it manages mem
better.

Figure 11: Automatic versus Manual (Response Time)

6.2. Variable Workload

M
em

or
y

(G
B)

Number of Users

1 5 10 15 20

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Automatic(1.5GB)

Manual (15MB)

Manual (5MB)

R
es

po
ns

ep
 Tim

e
(m

in
)

Number of Users

1 5 10 15 20

500

450

400

350

300

250

200

150

100

50

Manual (15MB)

Manual (5MB)

Auto (1.5GB)

ly

n-
ase
he
ly
the
ry,
re-
he
L
o-
of
In this experiment we analyze how the memory manager
responds to variations in the database workload. We vary
the workload by changing the number of queries running
concurrently and the complexity of those queries. To
achieve this we created two TPC-H schemas using differ-
ent scale factors: 100G and 1TB. We then defined two
classes of users: thelight user class which runs on the
100GB schema and theheavyuser class which runs on the
1TB schema. Users in both classes continuously submit
queries selected randomly from the set of 22 TPC-H que-
ries. To really stress the memory manager, the number of
users in both classes is varied over time. In summary, the
workload varies along three dimensions: mixed type of
users, variable query complexity with a wide range of
memory need, and varying number of users over time.

The number of users from each class is shown in Figure
12 with less users for the heavy class. The workload runs
for 10 hours. For example, at 4 hours in the run, there are 3
heavy users and 24 light users running simultaneously.
Users of both classes are running in parallel and the com-
bined degree of parallelism for the instance is limited to
384 via the adaptive degree of parallelism feature. For the
entire run, the value ofpga_aggregate_targetis set to
10GB.

Figure 12: User Load Profile

Figure 13 shows how the PGA memory consumption and
the SQL memory target varies over time. The PGA allo-
cated varies within a tight range and never exceeds 5.5%
of the target at any time. This excess memory allocation is
expected to happen as operators takes time to adjust. This
is acceptable since the excess is short-lived and consider-
ing that the load contains a high ratio of long running
operators with high memory need. Figure 13 highlights
how the SQL memory target immediately reacts when
PGA memory is over-allocated and acts as a counter bal-
ance to the PGA memory allocated, i.e, it moves in the
opposite direction to regulate the amount of memory that
can be allocated to SQL operators. For example, at 5 hours
in the run, the PGA memory allocated increases and

passes thepga_aggregate_targetlimit. Immediately, the
SQL memory target is lowered.

Figure 13: Memory Consumption

Figure 1 illustrates how the bound is continuous
adjusted to respond to the workload variation.

Figure 1: Dynamic Bound Adjustment

7. Conclusion and Future

In this paper we showed the importance of memory ma
agement and its impact on the performance of a datab
system. First, we showed the relationship between t
work area size and the performance of two common
used operators, sort and hash join. Then we discussed
different approaches to the management of SQL memo
and exposed their benefits and drawbacks. Later, we p
sented the memory model in Oracle9i. We showed t
internal details, architecture and algorithms, of the SQ
memory manager and the SQL memory advisor comp
nents. Finally, we validated our approach through a set
performance experiments.

Time (hour)

N
um

be
r

of
 C

on
cu

rr
en

t U
se

rs

24

22

20

18

16

14

12

10

8

6

4

2

0
0 2 4 6 8 10

light_class (100GB)

heavy_class (1TB)

Time (h)

A
llo

ca
te

d
M

em
or

y
(G

B
)

11

10

9

8

7

6

5

4

3

2

1

0
0 2 4 6 8 10

Total PGA Allocated

SQL Memory Target

Time (h)

B
ou

nd
 V

al
ue

 (
M

B
)

100

90

80

70

60

50

40

30

20

10

0
0 2 4 6 8 10

References
[DB2V7.1]

DB2 UDB V7.1 Performance Tuning Guide,

December 2000.

[Informix9.3]
Performance Guide for Informix Dynamic

Server, Version 9.3, August 2001.

[Oracle9i]
Oracle9i Database Performance Guide and

Reference, July 2001.

[Oracle8i]
Oracle8i Designing and Tuning for Performance,

December 1999.

[SQLServer7]
Microsoft SQL Server 7.0 Storage Engine

Capacity Planning Tips, March 1999.

[TeradataV2R4.1]
Teradata RDBMS, Utilities - Volume 1, V2R4.1,

June 2001.

[TPC00]
Transaction Processing Council, TPC-H Rev.
1.2.1 specification, 2001

	Abstract
	1. Introduction
	Figure 1: Effect of Memory on Sort Performance
	Figure 2: Effect of Memory on HashJoin Performance

	2. Related Work
	2.1. Approaches to Memory Management
	2.2. Commercial Database Systems

	Table 1: Classification of Commercial Systems
	3. Oracle Memory Architecture
	Figure 3: Oracle Memory Model

	4. Automatic PGA Memory Management
	4.1. Overview
	Figure 4: Memory Management Feedback Loop
	4.2. Global Memory Bound Computation

	Figure 5: Bound Computation Control Flow
	4.2.1. SQL Memory Target
	4.2.2. Global Memory Bound

	Equation 1: Property of the Memory Bound
	Figure 6: Bound Computation for a 133MB target
	4.3. Drift Management

	Figure 7: Foreground computation of memory bound
	4.4. Memory Adaptive SQL Operators

	Figure 8: Example of Adaptive Sort

	Equation 2: Estimation of Rleft
	5. PGA Advice Statistics
	Figure 9: Displaying v$pga_target_advice

	6. Performance Evaluation
	6.1. Manual versus Automatic
	Figure 10: Automatic versus Manual (Memory Used)
	Figure 11: Automatic versus Manual (Response Time)
	6.2. Variable Workload

	Figure 12: User Load Profile
	Figure 13: Memory Consumption

	Figure 1: Dynamic Bound Adjustment
	7. Conclusion and Future
	[TeradataV2R4.1]
	[TPC00]

	SQL Memory Management in Oracle9i
	Benoît Dageville Mohamed Zait
	Oracle Corporation Oracle Corporation
	500 Oracle Parway 500 Oracle Parway
	Redwood Shores, CA 94065 Redwood Shores, CA 94065
	U.S.A U.S.A
	Benoit.Dageville@oracle.com Mohamed.Zait@oracle.com

