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Abstract 
This paper introduces MICP, a novel multi-
version integrated cache replacement and 
prefetching algorithm designed for efficient 
cache and transaction management in hybrid data 
delivery networks. MICP takes into account the 
dynamically and sporadically changing 
cost/benefit ratios of cached and/or disseminated 
object versions by making cache replacement 
and prefetching decisions sensitive to the 
objects’ access probabilities, their position in the 
broadcast cycle, and their update frequency. 
Additionally, to eliminate the issue of a newly 
created or outdated, but re-cacheable, object 
version replacing a version that may not be re-
acquired from the server, MICP logically divides 
the client cache into two variable-sized 
partitions, namely the REC and the NON-REC 
partitions for maintaining re-cacheable and non-
re-cacheable object versions, respectively. 
Besides judiciously selecting replacement 
victims, MICP selectively prefetches popular 
object versions from the broadcast channel in 
order to further improve transaction response 
time. A simulation study compares MICP with 
one offline and two online cache replacement 
and prefetching algorithms. Performance results 
for the workloads and system settings considered 
demonstrate that MICP improves transaction 
throughput rates by about 18.9% compared to the 
best performing online algorithm and it performs 

only 40.8% worse than an adapted version of the 
offline algorithm P. 

1. Introduction and Motivation 
A mobile hybrid data delivery network is a 
communication infrastructure that allows bi-directional 
communication between a fixed host, also called Mobile 
Support Station, and mobile clients either through a low 
bandwidth point-to-point channel or to all active clients 
through a high bandwidth broadcast channel. As the name 
indicates, hybrid data delivery combines push- and pull-
based data delivery in an efficient way by broadcasting 
the data items that are of interest to a large client 
population and unicasting less popular data items only 
when they are requested by the clients. While a combined 
push/pull data delivery mode has many advantages such 
as user scalability, bandwidth efficiency, support for 
disconnections, etc., it also suffers from two major 
disadvantages: First, the client data access latency 
depends on the length of the broadcast cycle for data 
items that are fetched from the broadcast channel. Second, 
since most of the data requests can either be satisfied by 
the clients themselves or the broadcast channel, the server 
lacks clear knowledge of the client access patterns. While 
the latter weakness can be diminished by regularly 
sending data usage profiles to the server or the technique 
proposed in [SRB97], the former can be relaxed by 
designing and deploying an efficient cache replacement 
and prefetching policy that is closely coupled with the 
transaction manager of the mobile client. 

Due to the physical constraints immanent in any 
mobile communication environments, such as high 
communication latency, low network bandwidth in the 
uplink direction, intermittent connections, etc., the 
majority of applications executed at mobile clients are of 
the read-only type. Since there are typically many more 
reads than writes in production database systems 
[HSY99a, HSY99b], most of the data contentions among 
transactions result from read-write conflicts. An 
alternative approach to reduce, but not eliminate, data 
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contention caused by simultaneously running transactions 
is to maintain two or multiple versions of database items. 
Multi-versioning, also called transient versioning, is 
effective in relaxing read-write conflicts that may occur 
when read-write and read-only transactions are processed 
concurrently. Interference between read-write and read-
only transactions can be diminished by forcing read-only 
transactions to read obsolete database items, thus 
increasing the level of concurrency. For example, forcing 
a read-only transaction Ti to read data granules that were 
up-to-date by the time Ti started or sometime before, 
allows the transaction scheduler to serialize Ti before all 
concurrently active read-write transactions, thereby 
improving the performance of the system. However, 
diminishing the data contention between read-write 
transactions by means of maintaining multiple data 
versions is not as effective as for read-only transactions 
since read-write transactions typically need to access up-
to-date object versions to provide serializability 
guarantees. Therefore, in this paper we concentrate on 
multi-versioning as the means of improving the 
performance of mobile applications issuing read-only 
transactions.  

1.1   Multi-version Client Caching 

So far, we have indicated that multi-versioning is a 
valuable and practicable approach to process read-only 
and read-write transactions concurrently. In what follows, 
we highlight various issues a mobile cache and prefetch 
manager needs to take into account so that key 
performance metrics such as throughput is maximized and 
abort rate is minimized. In particular, we propose a new 
combined caching and prefetching algorithm ideally 
suited for mobile clients that use multi-version 
concurrency control (MVCC) protocols [SS01] to relax 
conflicts between concurrent transactions. Since data 
caching is an effective (if not the most effective) and 
therefore indispensable way of reducing transaction 
response times [CK89], cache replacement policies have 
been extensively studied in conventional database 
management systems [EH84, OOW93, JS94, JN98, 
LKN+99]. Since conventional caching techniques are 
inefficient for mobile networks where communication 
channels form an intermediate memory level between the 
client and the server and where communication quality 
varies over space and time, mobile caching policies 
[AAF+95, TS97, KL98, XHL+00] have been designed, 
that are tailored to the peculiarities and constraints of the 
mobile environment. However, to our knowledge, none of 
the proposed caching strategies designed either for the 
stationary or for the mobile client-server architecture 
tackles the problem of managing multi-version client 
buffer pools efficiently. Multi-version client caching 
differs from mono-version caching by at least two key 
observations. First, the cost/benefit ratio of dissimilar 
versions of a data item in the client cache may vary over 

time depending on the storage behavior of the server, i.e., 
if the server discards an object version useful for the 
client, this version’s cost/benefit ratio increases since it 
cannot be re-acquired from the server. Second, versions of 
different data items may for the same reason have 
dissimilar cost/benefit ratios despite being equally likely 
to be referenced. 

The following example illustrates the aforementioned 
peculiarities. Suppose a diskless mobile client executes a 
read-only transaction Ti with begin of transaction (BOT) 
serializability guarantees [SS01], i.e., Ti is always forced 
to observe the most recent object versions that existed by 
its starting point. Assume the start timestamp TS of Ti is 1 
and the database consists of four objects {A, B, C, D}. 
The client cache size is small and may hold only two 
object versions. Further, it is up to the client how many 
versions of each object it maintains. For space and time 
efficiency reasons, the database server holds a restricted 
number of versions, namely the last two committed 
versions of each data item. Additionally, assume the 
client’s access pattern is totally uniform, i.e., each object 
is equally likely to be accessed. At the logical time 5 
(read-write transaction with commit timestamp 5 has just 
terminated) the client cache holds the set of objects {A0, 
B0} and the server keeps objects {A1, A3, B0, B1, C0, C4, 
D2, D5}. Note that the subscripts assigned to object 
versions correspond to the commit timestamp of the 
transaction that created the respective version. Now, 
suppose the client needs to read a transaction-consistent 
version of object C. Since there is no cache-resident 
version of object C, the client fetches the missing object 
from the server. By the time the object arrives at the 
client, the local cache replacement policy needs to select a 
replacement victim to free some cache space. In this case, 
a judicious cache replacement strategy would evict B0 
since it is the only object version that can be re-acquired 
from the server, i.e., a cache replacement policy suitable 
for a multi-version cache needs to incorporate both 
probabilistic information on the likelihood of object 
references in the future and data re-acquisition costs. 

1.2   Multi-version Client Prefetching 

Apart from demand-driven caching and judicious eviction 
of object versions from the cache, another technique that 
can be used to reduce on-demand fetches is data 
prefetching, by which the client optimistically fetches 
versions of data items from the server and/or broadcast 
channel into the cache in expectation of a later request. 
Since prefetching, especially if integrated with caching, 
strongly affects transaction response time, various 
combined caching and prefetching techniques have been 
studied in stationary computing [PZ91, CFK+95, TPG97, 
JN98]. Work on prefetching in mobile data broadcasting 
environments has been conducted by [AFZ96]. Again, as 
for caching, prefetching mechanisms proposed in the 
literature are inefficient for mobile data dissemination 



 

applications utilizing MVCC schemes to manage read-
only transactions. The reasons are twofold: First, 
algorithms, such as PIX and LIX, proposed for data 
prefetching in broadcast environments [AFZ96] are based 
on simplified assumptions such as no database updates 
and no use or availability of uplink communication 
facilities. Second, and more importantly, all previous 
prefetching strategies were designed for mono-version 
database systems and therefore lack the ability to make 
proper prefetching decisions in a multi-version 
environment. In contrast, we base our model on more 
realistic assumptions and develop a prefetching algorithm 
that is multi-version compliant. As prefetching may 
unfold its total strength if deeply integrated with data 
caching, our prefetching algorithm uses the same 
cost/benefit metric for evaluating prefetching candidates 
as the cache replacement algorithm. To ensure that the 
prefetching algorithm does not hurt, but rather improves 
performance, we allow prefetches of only those object 
versions that have been recently referenced and whose 
cost/benefit ratio exceeds the value of any cached object 
version. 

1.3   Paper Structure 

The paper is structured as follows: Section 2 describes the 
model underlying MICP (Multi-version Integrated 
Caching and Prefetching algorithm). Section 3 contains a 
detailed description of MICP and is concluded by the 
introduction of an implementable version of MICP, called 
MICP-L. Section 4 reports on detailed experimental 
results that show the superiority of our algorithm 
compared to previously proposed caching and prefetching 
policies and presents the performance gap of MICP 
compared to an offline algorithm having full knowledge 
of the client access pattern. The paper’s conclusions and 
summary are to be found in Section 5. 

2.   System Design and Assumptions 
The primary components of the data delivery architecture 
are the database server, the hybrid network, and the 
mobile clients. The following subsections depict the 
design of the hybrid data delivery network, the 
organization and structure of the client and server cache, 
and the client cache invalidation and synchronization 
scheme. 

2.1   Hybrid Data Delivery Model 

We have chosen a hybrid data delivery system as the 
underlying network architecture for MICP since a hybrid 
push/pull scheme has the ability to mask the 
disadvantages of one data delivery mode by exploiting the 
advantages of the other. Since broadcasting is especially 
effective when used for popular data, we assume that the 
server broadcasts only such data that is of interest to the 
majority of the client population. Our broadcast structure 

is logically divided into three segments of varying size: a) 
index segment, b) data segment, and c) concurrency 
control information segment. Each minor cycle is 
supplemented with an index to eliminate the need for the 
clients to listen to the broadcast continuously in order to 
locate the desired object version on the channel. We 
choose (1, m) indexing [IVB97] as the underlying index 
allocation method by which the whole index, containing, 
among other things, a mapping between the objects 
disseminated and the identifiers of the data pages in which 
the respective objects appear, is broadcast m times per 
major broadcast cycle. The data segment, on the other 
hand, solely contains hot-spot data pages. Note that we 
assume a flat broadcast disk approach for page 
scheduling, i.e., each and every hot data page is only 
broadcast once within a major cycle. For data consistency 
reasons, we model the broadcast program so that all data 
pages disseminated are a consistent snapshot as of the 
beginning of each major broadcast cycle. Thus, the 
modified or newly created object versions committed after 
the beginning of an ongoing major broadcast cycle will 
not be included in any data segment. To guarantee cache 
consistency despite server updates, each minor broadcast 
cycle is preceded with a concurrency control report as 
described in Section 2.2.2. 

The second core component of the hybrid data 
delivery system is the point-to-point channel. A point-to-
point channel may be utilized by the client to request 
locally missing or non-scheduled object versions from the 
server. Further, clients are allowed to use the back 
channel to the server when a required object version is 
scheduled for broadcasting, but its expected arrival time is 
above the uplink usage threshold [AFZ97] dynamically 
set up by the server. This optimization helps clients 
improve their response times. 

2.2   Client and Server Cache Model 

Conventional caching and prefetching strategies are 
typically page-based since the optimal unit of transfer 
between systems resources are pages with sizes ranging 
from 8 KB to 32 KB [GG97]. In mobile data delivery 
networks caching and prefetching data on a coarse 
granularity such as pages is inefficient due to the physical 
constraints and characteristics of the mobile environment. 
As mentioned before, the communication in client-server 
direction is handicapped by low bandwidth wireless 
channels. Choosing page-sized granules to be the unit of 
transfer for data uploads would be a waste of bandwidth 
compared to sending objects of much smaller size in case 
of a low degree of locality. Since a data broadcasting 
server typically serves hundreds of thousands of mobile 
clients and each client tends to have its own set of 
frequently accessed data items, it is not unrealistic to 
assume that the physical data organization of the server 
may not comply with the individual access pattern of the 
clients. Therefore, in order to increase the hit ratio of the 



 

client cache and to save scarce uplink bandwidth 
resources, we deploy our caching and prefetching scheme 
on an object basis. However, to allow clients to cache 
pages as well, we opt for a hybrid client cache consisting 
of a small-size page cache and a large-size object cache. 
While the page cache is used as working storage memory 
to extract and copy requested or prefetched object 
versions into the object cache, the object cache’s task is to 
efficiently maintain those object versions, i.e., it is used as 
data storage memory. Note that our intuition behind such 
a cache structure was experimentally confirmed by a 
performance study [DMF+90] demonstrating that an 
object-based caching architecture is superior to a page-
based one when physical clustering is poor and the 
client’s cache size is small relative to the size of the 
database, which is typically the case in mobile 
environments. We further assume that the broadcast 
server also manages its cache by a hybrid of page and 
object caching. The structure of the server cache is similar 
to the one described in [Ghe95] with the exception that 
multiple versions of objects may be maintained for 
concurrency control purposes. Again, the use of both 
cache types allows us to exploit the benefits of each. 
While the page cache is useful for efficiently serving 
broadcast requests, installation reads [OS94], etc., the 
object cache is attractive for recording object 
modifications. 

2.2.1   Version Control Model 

To implement version tracking, each object version is 
assigned a monotonically increasing timestamp that 
reflects the logical time when it was created. Whenever a 
read-write transaction issues a write operation on an 
object X and commits within the major broadcast cycle 
MBCi,j, it creates a new version of X, denoted Xi,j, where 
the subscripts i and j symbolize the number of the major 
broadcast cycle (MBC) and minor broadcast cycle 
respectively, that existed by the transaction’s commit 
time. Associating timestamps to object versions is 
required in order to distinguish between different versions 
of the same object and to synchronize read-only 
transactions with committed and/or currently active read-
write transactions [SS01]. Since multi-versioning imposes 
additional memory and processor overheads on the clients 
and the server, we assume that the number of versions 
maintained in the involved memory levels is restricted. 
For clients it is sufficient to maintain at most two versions 
of each database object at any time since we assume that 
clients do not execute transactions in parallel. In contrast, 
the server may need to maintain every object version in 
order to guarantee that any read-only transaction can read 
from a transaction-consistent database snapshot. Since 
such an approach is impracticable, we assume that the 
server maintains a fixed number of versions (see Section 
4.5 for a performance experiment on this issue). 

2.2.2   Cache Synchronization Model 

Hoarding, caching, or replicating data in the client cache 
is an important mechanism for improving data 
availability, response time, and reducing the power-
consumption at mobile clients. However, data updates at 
the server make cache consistency a challenge. An 
effective cache synchronization and update strategy is 
needed to ensure consistency and freshness between the 
data cached at the client and the original data at the 
server. Although invalidation messages are space and 
time efficient compared to propagation messages, they 
lack the ability to update the cache with new object 
versions. Due to the inherent tradeoffs between 
propagation and invalidation, we employ a hybrid of the 
two techniques. On the one hand, the broadcast server 
periodically disseminates a concurrency control report, or 
CCR, which is a simple structure that contains, in addition 
to concurrency control information, identifiers and values 
of versions of those objects modified during the last minor 
broadcast cycle [SS01]. Based on those reports, mobile 
clients operating in connected mode can easily update 
their caches at low costs. However, since CCRs contain 
only concurrency control information wrt. the last minor 
broadcast cycle, those reports are useless for cache 
synchronization of recently reconnected clients that had 
missed one or more CCRs. To resolve this problem, we 
assume that the server maintains the update history of the 
last w MBCs as proposed in [BI94]. This history is used 
for client cache invalidation as follows: when a mobile 
client wakes up from a disconnection, it waits for the next 
CCR to appear and checks whether the following equation 
is valid: tCCR,c < tCCR,l + w, where tCCR,c denotes the 
timestamp of the current CCR and tCCR,l represents the 
timestamp of the latest CCR report received by the client. 
If so, a dedicated invalidation report (IR) can be requested 
by the client to invalidate its cache properly. An IR is 
implemented as a list of tuples that contains the same 
elements as a CCR, with the exception that only the 
identifiers of the modified objects are maintained. If the 
client was disconnected for more than w MBCs, the entire 
cache contents has to be discarded upon reconnection. 

3.   New Integrated Algorithm 
The design of MICP consists of two complementary 
algorithms that behave synergistically. The first 
algorithm, responsible for selecting replacement victims, 
is called PCC (Probabilistic Cost-based Caching) and the 
second one dealing with data prefetching is denoted PCP 
(Probabilistic Cost-based Prefetching). While PCC may 
be employed without PCP in order to save scarce CPU 
processing and battery power of mobile devices, PCP’s 
potential can be exploited by coupling it with a cache 
replacement policy that uses the same or similar metric 
for decision making.  



 

3.1   The Multiversion Cache Replacement Algorithm 

The major goal of any cache replacement policy designed 
either for broadcasting or for unicasting environments is 
to minimize the average response time a user/process 
experiences when requesting data items. Traditional cache 
replacement policies try to achieve this goal by making 
use of two different approaches. The first category 
requires information from the database application. That 
information can be either obtained from the application 
directly or from the query optimizer that processes queries 
of the corresponding application. The second category of 
replacement algorithms bases its decisions on 
observations of past access behavior. The algorithm 
proposed in this paper belongs to the latter group, extends 
the LRFU policy [LKN+99] and borrows from the 2Q 
algorithm [JS94]. Like LRFU, PCC quantifies the 
probability of an object being re-referenced in the future 
by associating with each object a score value that reflects 
the effects of the frequency and recency of past 
references. More precisely, PCC computes a combined 
recency and frequency factor for each object X whenever 
it is referenced by a transaction, according to the 
following formula: 
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where CRFn(X) is the computed value of the combined 
recency and frequency factor of object X over the last n 
references, tc denotes the reference number associated 
with the current time of object reference, tl(X) is the 
reference number assigned to object X when it was last 
accessed, and λ ( 10 ≤≤ λ ) is a kind of “slide controller” 
that allows PCC to weigh the importance of recency and 
frequency information for the replacement selection. Note 
that if λ converges towards 0 PCC behaves more like an 
LFU policy and, contrarily, with λ approaching 1 it acts 
more like an LRU policy.  

In contrast to the LRFU algorithm, PCC bases its 
replacement decisions not only on recency and frequency 
information of historical reference patterns, but 
additionally makes use of three further factors besides the 
future reference probability of objects as expressed by 
CRF. First, in order to reflect the situation that 
instantaneous access costs of data items scheduled for 
broadcasting are non-constant due to the serial nature of 
the broadcast medium, PCC’s replacement decisions are 
sensitive to the actual state and contents of the broadcast 
cycle. More precisely, PCC accounts for the costs of re-
acquiring object versions by evicting those versions that 
have low probabilities of access and low re-acquisition 
costs. To provide a common metric for comparing costs 
of ejecting object versions that can be re-cached from the 
broadcast channel and/or database server, we measure re-
acquisition costs in terms of broadcast units. Since we 
assume that the content and organization of the broadcast 
program does not change significantly between 

consecutive MBCs and the clients are aware of the 
position of each object version in the MBC due to (1, m) 
indexing, determining the number of units till an object 
version re-appears on the channel is straightforward. 
Estimating the costs of re-fetching a requested version 
from the server is more difficult since that value depends 
on parameters such as the current network and server load 
and the effect of caching at the server. To keep our 
caching algorithm as simple as possible, we use the uplink 
usage threshold as a simple guideline for approximating 
data fetch costs. Since the uplink usage threshold provides 
a tuning knob to control the server and network utilization 
and, thus, affects data fetch costs, its dynamically fixed 
value correlates with the data fetch latency a client 
experiences when requesting data items from the server. If 
the threshold is high, the system is expected to operate 
under a high workload and therefore data retrieval costs 
are high as well. In what follows, we denote the re-
acquisition costs of an object version Xi,j at time t by 
RCt(Xi,j). 

A second parameter PCC uses to make replacement 
decisions is the frequency of object updates. As noted 
before, multi-version database systems suffer from high 
processing and storage overheads if the number of 
versions maintained by the server is not restricted. 
However, limiting the number of versions negatively 
affects the likelihood of data requests from the clients 
being satisfied by the server. To account for the 
probability that an object is updated within a major 
broadcast cycle, the server (re-)computes the update 
frequency of an object X at the end of each MBC 
whenever a new version of X has been created in the 
course of the last MBC by the following formula:  
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where α is an aging factor to adapt to changes in access 
patterns by assigning higher weights to recent updates, 
IDc is the monotonically increasing identifier of the 
current MBC, IDl(X) is the identifier of the MBC where 
object X was last updated, UFn(X) is the combined update 
frequency value of the previous n updates of X, and UR  
denotes the average number of updates (update rate) 
within an MBC. 

Last but not least, a replacement policy suitable for 
supporting MVCC protocols needs to take into account 
the server’s storage policy. Besides the update frequency 
of each data item, the version maintenance strategy of the 
server affects the likelihood that an obsolete object 
version can be re-acquired once evicted from the client 
cache. The more versions of an individual object are kept 
by the server, the higher the probability that the server can 
satisfy requests for that object. PCC incorporates the 
versioning policy of the server by means of two 
complementary methods: First, it computes re-acquisition 
costs of in-memory object versions based on their re-fetch 



 

probabilities (see Equation 4 and 5) and second, it takes 
care of non-re-cacheable object versions by placing them 
into a dedicated partition of the client object cache, called 
NON-REC (non-re-cacheable), while re-cacheable object 
versions are maintained in the REC (re-cacheable) part of 
the client cache.  

The reason for cache partitioning is to prevent 
undesirable replacement of non-re-cacheable versions by 
referenced or prefetched re-cacheable object versions. 
With regard to the size of the cache partitions we 
experimentally established that NON-REC should not 
exceed 50% of the overall client cache size and REC 
should hold at least 50% of the objects stored in the 
cache. The justification for those values is as follows: the 
majority of users issuing read-only transactions want to 
observe up-to-date object versions, i.e., they usually 
initiate queries with either BOT or strict forward BOT 
read guarantees [SS01]. The assumption that clients do 
not execute more than one read-only transaction at a time 
and transactions are issued with at least BOT data 
currency requirements implies that at their starting point 
only up-to-date object versions are useful, i.e., NON-REC 
is empty at this stage. As transactions progress, more and 
more useful object versions may become non-re-
cacheable and need to be placed into NON-REC. Since 
the storage space needed to maintain non-re-cacheable 
object versions is not known in advance and depends on 
such factors as transaction length, data currency 
guarantees under which transactions run, data update 
frequency at the server, etc., PCC adapts to this situation 
by changing the size of NON-REC dynamically. That is, 
as demand for storage space in NON-REC arises, PCC 
extends NON-REC by re-allocating object slots from 
REC to NON-REC as long as its size does not exceed 
50% of the overall cache size. Without this bound, the 
system performance could degrade due to insufficient 
cache space reserved for up-to-date or nearly up-to-date 
(re-cacheable) versions. It is important to note that the 
described cache structure is suitable for managing read-
write transactions as well. In this case, the cache manager 
allocates all the available cache space to REC which then 
keeps only up-to-date object versions. 

As all of the aforementioned parameters influence 
replacement decisions, it is obvious that there is a need for 
a single combined performance metric to enable 
comparison of those values that would be meaningful for 
the cache manager. To this end, we combine the estimates 
given above into a single performance metric, called 
probabilistic cost/benefit ratio (PCB), which is computed 
for each cache-resident object version Xi,j at eviction time 
t as follows:  

)).(XT)(X(T(X)CRF)(XPCB ji,Missji,Hittji,t +×=  ( 3 ) 

In the above formula, CRFt(X) denotes the re-reference 
probability of object X at time t, THit is the weighted time 
in broadcast units it takes to re-fetch object version Xi,j if 

evicted from the cache, and TMiss represents the weighted 
time required to re-process all completed read operations 
of the active read-only transaction in case it needs to be 
aborted since Xi,j is not any more system-resident and thus 
cannot be accessed. The time to service an object version 
request that hits either the broadcast channel or the server 
memory is the product of the following parameters: 

),(XCR)UF(X)(1)(XT ji,
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ji,Hit
ji,version ×−=   ( 4 ) 

where Nversion(Xi,j) denotes the number of versions of 
object X with commit timestamps equal to or older than 
Xi,j currently kept by the server. Further on, we compute 
TMiss(Xi,j) as a weighted approximation of the amount of 
time, denoted TRep(Xi,j), it would take the client to restore 
the current state of the active read-only transaction for 
which Xi,j is useful in case it has to be aborted due to a 
fetch miss of Xi,j: 
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where TRep(Xi,j) is the sum of the weighted retrieval and 
processing times for the object versions that have to be 
obtained from the broadcast cycle and for those found in 
the client cache (we assume the length of processing a 
client cache hit to be one broadcast tick), and is computed 
as follows: 

.NCHRN)CHR(1L5.0)(XT readreadji,Rep ×+×−×=  ( 6 ) 

In formula 6, L  represents the average length of the 
MBC, CHR  denotes the average client cache hit rate, and 
the expression Nread symbolizes the total number of read 
operations executed so far by the active read-only 
transaction that is forced to read object version Xi,j for 
data consistency reasons if object X is requested by the 
transaction. As formula 6 indicates, we assume that the 
average latency to fetch a non-cache resident object 
version into the client memory takes half a broadcast 
period independent of whether that object appears on the 
broadcast channel or has to be requested through the 
point-to-point channel. We opted for this simplification to 
refrain the algorithm from further complexity inflation. 
The complete PCC algorithm invoked upon a reference to 
an object version can be found in the full version of the 
paper [SS02]. 

3.2   Multi-version Prefetching Algorithm 

While PCC achieves the goal of improving transaction 
response times by caching requested object versions close 
to the database application, PCP tries to further reduce 
fetch latency by pro-actively loading useful object 
versions with high access probability and/or high re-
acquisition costs into the cache in anticipation of their 
future reference. As uncontrolled prefetching without 
reliable information might not improve, but rather harm 
the performance, the greatest challenge of PCP is to 



 

decide when and which object version to prefetch and 
which cache slot to evict when the cache is full. PCP 
tackles those challenges as follows: in order to behave 
synergistically with PCC, PCP bases its prefetching 
decisions on the same performance metric, namely PCB. 
Since calculating PCB values for every object version that 
flows past the client is very expensive, if not unfeasible, 
PCP computes those values only for a small subset of the 
potential prefetching candidates, namely recently 
referenced objects. The reason for choosing this heuristic 
is the assumption that reference sequences exhibit 
temporal locality [Den72]. Temporal locality indicates 
that once an object has been accessed, there is a strong 
probability that the same object (either the same or 
different version) will be accessed again in the near 
future. To decide whether an object has recently been 
referenced clients need to maintain historical information 
on past object references. As will be explained later, we 
assume that clients retain such information for the last r 
distinct object accesses where r depends on the actual 
client cache size. Based on this statistical data, PCP 
selects its prefetch candidates by a simple policy. In order 
for a disseminated object version Xi,j to qualify for 
prefetching, there must exist any recent entry for X in the 
reference history. The exact decision how recent an object 
reference has to be in order for the object to qualify for 
prefetching is left up to the client since the prefetching 
decision process is computationally expensive and has to 
be aligned to the client’s resources. If the object qualifies 
for prefetching, PCP computes Xi,j’s PCB ratio and 
compares the score with the corresponding values of all 
cached data items. If Xi,j’s ratio is greater than the least 
PCB value of all cached versions then Xi,j is prefetched 
and replaces the lowest valuable version. As for the PCC 
algorithm, prefetch candidates compete for the available 
cache space only with those versions that belong to the 
same cache partition. 

Apart from prefetching current and non-current 
versions of recently referenced objects, PCP downloads 
from the broadcast channel all useful versions of data 
items that will be discarded from the server by the end of 
the MBC. The intuition behind this heuristic is to 
minimize the number of transaction aborts caused by 
fetch requests that cannot be satisfied by the server. A 
viable approach to reducing the number of fetch misses is 
to cache those versions at the client before they are 
garbage-collected by the server. To implement this 
approach, mobile clients need information as to whether a 
particular object version is disseminated for the last time 
on the broadcast channel. There are basically two ways 
how clients could receive such information. First and 
most conveniently, the server indicates whether an object 
version is about to be garbage-collected. That information 
could be provided by adding a respective field for each 
object version in the disseminated data pages. On the 
other hand, clients could determine whether an object 
version becomes non-re-cacheable by keeping track of the 

object version history. As the latter approach requires 
clients to have knowledge of the version management 
policy at the server, we opt for the first approach. Again, 
the complete pseudo-code of PCP can be found in [SS02]. 

3.3 Maintaining Historical Reference Information 

It has been noted that MICP takes into account both 
recency and frequency information on data accesses in 
order to select replacement victims. Similar to LRFU, 
MICP maintains CRF values on a per-object basis that 
capture information on both recency and frequency of 
accesses. However, in order for MICP to be effective, 
such values need to be retained in client memory not only 
for cache-resident objects but also for evicted data items. 
The necessity to keep historical information of a 
referenced object even after all versions of this object 
have been evicted from cache was first recognized by 
[OOW93] and was termed “reference retained 
information problem”. This problem arises from the fact 
that in order to gather both recency and frequency 
information, clients need to keep history information on 
recently referenced objects for some time. This is in 
particular required for determining the frequency of object 
references. If CRF values are maintained only for cached 
data items and the size of the client cache is relatively 
small compared to the database size, then there exists a 
danger that MICP might overestimate the recency 
information since frequency information is rarely 
available. On the other hand, storing reference 
information consumes valuable memory space that could 
otherwise be used for storing data objects.  

To limit the memory size allocated for historical 
reference information, [OOW93] suggests storing that 
information only for a limited period of time after the 
reference had been recorded. As reasonable rule of thumb 
for the length of this period they use the Five Minute Rule 
[GG97]. However, applying it in a mobile environment 
may be inappropriate for the following reason: a time-
based approach for keeping reference information ignores 
the available cache size and reference behavior of the 
client. For example, if a client operates in disconnected 
mode due to a lack of network coverage, its processing 
may be interrupted because a data request cannot be 
satisfied by the local cache. In such a situation the client 
needs to wait till reconnection for transaction processing 
to continue. Since disconnections might exceed 5 minutes, 
all the reference information will be lost during such a 
period. On the other hand, if the client cache size is small, 
the reference information must be discarded even sooner 
than 5 minutes after the last reference. To resolve the 
problem of determining a reasonable guideline for 
maintaining CRF values, we conducted a series of 
experiments. We figured out that clients with a cache size 
in the range of 1 to 10% of the database size should 
maintain reference information on all recently referenced 
objects that would fit into a cache if it were about 3 to 5 



 

times as large as its actual size (see Figure 3). Clearly, due 
to its time-independence such a rule avoids the 
aforementioned problem of discarding reference 
information during periods when clients are idle. Second, 
it limits the amount of memory required for storing 
historical information by coupling the retained 
information period to the client cache size. 

3.4   Implementation and Performance Issues 

Due to space restrictions, only some selected topics of 
implementing MICP are discussed. For more relevant 
implementation issues such as storage organization, 
garbage collection, etc., we refer the interested reader to 
the relevant literature [BC92, SS02]. The previous section 
has shown that MICP bases its replacement and 
prefetching decisions on a number of factors combined 
into the PCB ratio. However, this metric is dynamic since 
it changes at every tick of the broadcast. Although in 
theory one could obtain the required values while a page 
is being transmitted, such an approach would be much too 
expensive. To reduce overhead, we propose that the 
estimate of PCB for each cached data item is updated 
either only when a replacement victim is selected or at 
fixed times such as the beginning or the end of a minor 
broadcast cycle. While experimenting with our simulator, 
we noticed that both approaches are capable of 
remarkably reducing processing overhead while providing 
good performance results. However, we favor the latter 
technique since it may allow MICP to compute PCB 
values less frequently. In what follows, we refer to the 
version of MICP that calculates PCB values periodically 
as MICP-L where L stands for “light”. 

4. Performance Evaluation 
We studied and compared the performance of MICP with 
other online and offline caching and prefetching 
algorithms via simulation and not analytically because the 
effects of such parameters as transaction length, client 
cache size or number of versions maintained by the server 
depend on a number of internal and external system 
parameters that cannot be precisely estimated by 
mathematical analysis. The simulator and the workloads 
are based on the model designed for evaluating the 
performance of various isolation levels for read-only 
transactions [SS01], having been extended by MICP as 
well as some other popular caching and prefetching 
algorithms. In the following description of the simulator, 
some details are omitted due to space constraints and can 
be found in the full version of the paper [SS02]. 

4.1   System Model 

The simulation model consists of the following core 
components: a) server, b) client, c) broadcast disk, and d) 
network, which are briefly described below. 

Both multiple mobile clients and a single broadcast 
server are modeled as consisting of a number of 

subcomponents including a processor, volatile (cache) 
and, in case of the server, stable memory (disks), i.e., we 
assume diskless mobile clients. Data is stored on 4 disks 
modeled as a FIFO queue. The unit of data transfer 
between the server and disks is a page of 4 Kbytes and the 
server keeps a total of 250 pages in its stable memory. 
The size of an object is 100 bytes and the database 
consists of a set of 10000 objects. To reflect the 
characteristics of a modern disk drive we experimented 
with the parameters from the Quantum Atlas 10K III disk. 
The client CPU speed is set to 100 MIPS and the server 
CPU speed is 1200 MIPS, which are typical processor 
speeds of today’s mobile and stationary computers. A 
single FIFO input queue is used for processing events 
such as disk I/O or sending a message. All requests are 
charged in terms of (fractions of) broadcast units. The 
client cache size is set to 2% of the database size and the 
server cache size to 20% of the database size. As 
described in Section 2, we model the client cache as a 
hybrid cache. The page-based segment is managed by an 
LRU replacement policy and the object-based segment by 
various online and offline cache replacement strategies 
including MICP-L. Similarly, the server cache is 
partitioned into a page cache and a modified object cache 
(MOB). The page cache is managed using an LRU policy 
and the MOB is managed in a FIFO order. The MOB is 
initially modeled as a single version cache. This 
restriction is later removed to study the effects of 
maintaining multiple versions of objects in the server 
cache. Client cache synchronization and freshness are 
accomplished by inspecting the CCR at the beginning of 
each minor broadcast cycle and by downloading newly 
created object versions whose PCB values are larger than 
those of currently cached object versions.  

The broadcast program has a flat structure. To 
account for the high degree of skewness in data access 
patterns [HSY99a, HSY99b] and to exploit the 
advantages of hybrid data delivery only the latest versions 
of the most popular 20% of the database objects are 
broadcast. Note that we assume that clients regularly 
register at the server to provide their access profiles so 
that the server can generate the clients’ global access 
pattern. Every MBC is subdivided into 5 minor cycles 
each consisting of a data segment with 10 pages, a (1, m) 
index [IVB97], and a concurrency control report.  

Our modeled network infrastructure consists of three 
communication paths: a) broadcast channel, b) uplink 
channel from the client to the server, and c) downlink 
channel from the server to the client. The network 
parameters of those communication paths are modeled 
after a real system such as Hughes Network System's 
DirecPC [Hug01]. We set the default broadcast bandwidth 
to 12 Mbps and the point-to-point bandwidth to 400 Kbps 
downstream and to 19.2 Kbps upstream. The point-to-
point network is modeled as a FIFO queue and each 
point-to-point channel is dedicated to 5 mobile clients. 
Charged network costs consist of CPU costs for message 



 

processing at the client and server, queuing delay, and 
transfer time. Processor costs include a fixed and a 
variable cost component while the latter depends on the 
message size. With respect to message latency we 
experimented with a fixed RTT end-to-end latency of 300 
ms. To exclude problems arising when clients operate in 
disconnected mode (e.g. consistency checking), we 
assume that clients are always tuned to the broadcast 
stream and do not suffer from intermittent connectivity.  

4.2 Workload Model 

To produce data contention in our simulator, we 
periodically modify data objects at the server by a 
workload generator that simulates the effects of read-write 
transactions being executed at the server. In our selected 
system configuration 100 objects are modified by 20 
transactions during a MBC. Objects read and written by 
read-write transactions are modeled using a Zipf 
distribution with parameter θ=0.80. The ratio of the 
number of write operations versus the number of read 
operations is fixed at 0.2, i.e., only every fifth operation 
issued by the server results in an object modification. 
Read-only transactions are modeled as a sequence of 10 to 
50 read operations and are managed by the MVCC-SFBS 
protocol [SS01]. The access probabilities of client read 
operations follow a Zipf distribution with parameter 
θ=0.95 and θ=0.80. While the θ=0.95 setting is intended 
to stress the system by directing about 90% of all object 
accesses to 10% of the database, the θ=0.80 setting 
models a more realistic medium-contention workload 
(about 75/25). To account for the impact on shared 
resources (network, server) when clients send fetch 
requests to the server, we model our hybrid data delivery 
network in a multi-user environment that services 10 
mobile clients. As noted before, clients run at most one 
read-only transaction at a time and in order to account for 
a transaction think time between consecutive operations 
and transactions, we add a delay between those events. 
Further note that clients are not allowed to request object 
versions from the server if they are scheduled for 
broadcasting. To control the data access behavior of read-
only transactions that were aborted, we use an abort 
variance of 100 percent which means that the restarted 
transaction reads from a different set of objects. 

4.3 Other Replacement Policies Studied 

In order to prove MICP’s superiority, we need to compare 
it with state-of-the-art online cache replacement and 
prefetching policies. We experimented with LRFU since 
it is known to be the best performing page-based cache 
replacement policy [LKN+99]. However, since LRFU 
does not use any form of prefetching, comparing MICP to 
LRFU directly would be unfair. Therefore, we decided to 
incorporate prefetching into the LRFU and denote the 
resulting algorithm as LRFU-P. In order to treat LRFU-P 
as fair as possible with respect to data prefetching, we 

adopt the prefetching heuristic from MICP. That is, we 
select all newly created object versions along with the 
versions of those objects that have been referenced within 
the last 1000 data accesses as prefetch candidates. Out of 
those candidates, LRFU-P prefetches those versions 
whose CRF values are larger than the smallest CRF value 
of all cached object versions. The rest of the algorithm 
works as described in [LKN+99].  

In addition to comparing MICP to LRFU-P, we 
experimented with the W2R algorithm [JN98]. We 
selected the W2R scheme for comparison mainly because 
it is an integrated caching and prefetching algorithm 
similarly to MICP and performance results have shown 
[JN98] that W2R outperforms caching and/or prefetching 
policies such as LRU, 2Q [JS94], and LRU-OBL [Smi85]. 
However, since W2R was designed for conventional page-
based database systems, it has to be adapted to the 
characteristics of a mobile hybrid data delivery 
environment in order to be competitive with MICP. Our 
goal was to re-design W2R in such a way that its original 
design targets and structure are still maintained. In the 
following we refer to the amended version of W2R by 
W2R-B where B stands for broadcast. Like W2R, W2R-B 
partitions the client cache into two rooms called the 
Weighing Room and the Waiting Room. While the 
Weighing Room is managed as an LRU queue, the 
Waiting Room is managed as a FIFO queue. In contrast to 
W2R, W2R-B admits both referenced and prefetched 
object versions into the Weighing Room. However, W2R-
B grants admission to the Weighing Room only to newly 
created object versions, i.e., those listed in the CCR, and 
whose underlying objects have been referenced within the 
last 1000 data accesses. The other modified objects 
contained in CCR and all the prefetch candidates from the 
broadcast channel are kept in the Waiting Room. As 
before, an object version Xi,j becomes a prefetch 
candidate if some version of object X has been recently 
referenced. With regard to the room size we 
experimentally found out that the following settings work 
well for W2R-B: the Weighing Room should be 80% of 
the total cache size and the remaining 20% should be 
dedicated to the Waiting Room.  

Last but not least, we experimented with an offline 
cache replacement algorithm, called P [AAF+95], to 
present the theoretical bounds on the performance of 
MICP. We have chosen P as an offline policy due to its 
straightforward implementation as P determines its 
replacement victims by selecting the object with the 
lowest access probability. Since the client access pattern 
follows a Zipf distribution, the access probability of each 
object is known at any point in time. Like LRFU, P is a 
“pure” caching algorithm. Therefore, we had to extend P 
by incorporating prefetching. To ensure that clients cache 
all useful versions of objects with the highest likelihood 
of access, we added an aggressive prefetching strategy to 
P and called the new algorithm P-P. P-P’s relatively 
simple prefetching strategy is as follows: a newly created 



 

or disseminated object version Xi,j is prefetched from the 
broadcast channel, if Xi,j’s access probability is higher 
than the lowest probability of all cached object versions. 
It should be intuitively clear, that such a policy is 
suboptimal since it neither considers the update and 
caching behavior of the server nor the serial nature of the 
broadcast channel. 

4.4 Basic Experimental Results 

In this section we compare the performance of MICP-L to 
that of the above introduced online and offline cache 
replacement and prefetching policies under the baseline 
setting of our simulator. We later vary those parameters in 
order to observe the changes in the relative performance 
differences between the policies under different system 
settings and workload conditions. We point out that all 
subsequently presented performance results lie within a 
90% confidence level with a relative error of ±5%. We 
now study the impact of the read-only transaction length 
on the performance metrics when MICP and other 
policies are used for client cache management. Figure 1 
shows experimental results of increasing the read-only 
transaction length from 10 to 50 observed objects. An 
exponential decrease in the throughput rate is observed 
when transaction length is increased. More importantly, 
Figure 1(a) shows that the MICP-L outperforms LRFU-P, 
on average, by 18.9% and W2R-B by 80.4%. Further, but 
not shown in the graph, the throughput degradation 
caused by computing PCB values periodically (20 times 
per MBC) rather than every time when replacement 
victims are selected is insignificant since MICP 
outperforms MICP-L by only 2.8% on average. When 
comparing the relative performance differences between 
MICP-L and other online policies under the 0.95 
workload to those under the 0.80 workload, it is 
interesting to note that the performance advantage of 
MICP-L declines when the client access pattern becomes 
less skewed. The reason is related to the degradation in 
the client cache effectiveness experienced when client 
accesses are more uniform in nature and due to a 
weakening in the predictability of the future reference 
patterns by inspecting the past reference string. In this 
situation the impact of the client caching policy on the 
overall system performance is smaller, and therefore the 
throughput gap between the investigated online policies 
narrows. With regard to the client cache hit rate we also 
estimate MICP-L’s superiority compared to other online 
policies. For example, MICP-L’s cache hit rate is, on 
average, 5.8% higher than that of LRFU-P. At the first 
glance, a relatively big performance gap might be 
surprising since both policies select replacement victims 
(at least partially) on CRF value basis. Thus, one would 
expect client cache hit rates of both policies to be fairly 
close to each other. But since MICP-L tries to minimize 
broadcast retrieval latencies by replacing popular object 
versions that soon re-appear on the broadcast channel 

with other less popular versions, which, if not cached, 
incur high re-acquisition costs when requested, MICP’s 
hit rate is expected to be slightly lower than LRFU-P. 
However, as both MICP-L and LRFU-P incorporate 
prefetching, the performance gain from preloading objects 
into the cache is higher for MICP-L since it keeps more 
object versions in the client cache that are of potential 
utility for the active read-only transaction, while LRFU-P, 
on the contrary, maintains more up-to-date versions 
potentially useful for future transactions. 
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performance improvement can be achieved by further 
increasing the version retain boundary. As shown in 
Figure 2, the performance gap of MICP-L relative to 
LRFU-P and W2R-B narrows when the maximum number 
of versions maintained by the server increases. For 
example, for the 0.95 workload the throughput 
performance degrades between MICP-L and LRFU-P 
from 21.5% to only 2.5% as the maximum number of 
versions maintained by the server increases. The reason is 
that under a multi-version storage strategy potentially 
more non-current object version requests from long-
running read-only transactions can be satisfied by the 
server. As a result, fewer read-only transactions have to 
be aborted because the versions they request had been 
garbage-collected.  
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where HS denotes the total number of CRF values 
maintained at the client and CS is the client cache size 
available for storing data items. As shown in Figure 3, we 
measured MICP-L’s performance for various HCR and 
cache size values. The results show, that MICP-L reaches 
its performance peak if clients maintain CRF values of all 
those recently referenced objects that would fit into the 
client cache if it were 3 to 5 times larger than its actual 
size. Beyond that point, i.e., when HCR is larger than 5, 
MICP-L’s throughput slightly degrades. The reason for 
this degradation is related to an increase in the number of 
prefetches caused by MICP-L’s prefetching heuristic that 
allows clients to download useful object versions into 
their local memory if their corresponding object has been 
referenced within the retained information period. As a 
result of those additional prefetches, object versions 
useful for the active read-only transaction may be 
replaced by up-to-date object versions which are of 
potential use for future transactions. This slightly hurts the 
cache hit rate and hence the throughput performance. 
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Figure 3: Performance of MICP-L under various cache 
sizes when HCR is varied 

5.   Conclusion 
We have presented the design and implementation of a 
new integrated cache replacement and prefetching 
algorithm called MICP. MICP has been evolved to 
efficiently support the data requirements of read-only 
transactions in a mobile hybrid data delivery 
environment. In contrast to many other cache replacement 
and prefetching policies, MICP not only relies on future 
reference probabilities when selecting replacement 
victims and for prefetching data objects, but additionally 
uses information about the contents and the structure of 
the broadcast channel, the data update frequency, and the 
server storage management. MICP combines those 
statistical factors into a single metric, called PCB, in order 
to provide a common basis for decision making and to 
achieve the goal of maximizing the transactional 
throughput. Further, in order to reduce the number of 
transaction aborts caused by the eviction of useful, but 
obsolete, object versions from the server, MICP divides 
the client cache into two variable-sized cache partitions 
and maintains non-re-cacheable object versions in a 



 

dedicated part of the cache called NON-REC. We 
evaluated the performance of MICP experimentally using 
simulation configurations and workloads observed in a 
real system and compared it with the performance of other 
state-of-the-art online and offline cache replacement and 
prefetching algorithms. The obtained results show that the 
implementable approximation of MICP, called MICP-L, 
improves the throughput rate, on average, by 18.9% when 
compared to LRFU-P, which is the second best 
performing online algorithm after MICP-L. Further, our 
experiments revealed that the performance degradation of 
MICP-L relative to MICP is modest 2.8% (not graphically 
shown). 
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