
A Multi-version Cache Replacement and Prefetching Policy for
Hybrid Data Delivery Environments

André Seifert, Marc H. Scholl

University of Konstanz
P.O. Box D188

D-78457 Konstanz
Germany

{Andre.Seifert, Marc.Scholl}@uni-konstanz.de

Abstract
This paper introduces MICP, a novel multi-
version integrated cache replacement and
prefetching algorithm designed for efficient
cache and transaction management in hybrid data
delivery networks. MICP takes into account the
dynamically and sporadically changing
cost/benefit ratios of cached and/or disseminated
object versions by making cache replacement
and prefetching decisions sensitive to the
objects’ access probabilities, their position in the
broadcast cycle, and their update frequency.
Additionally, to eliminate the issue of a newly
created or outdated, but re-cacheable, object
version replacing a version that may not be re-
acquired from the server, MICP logically divides
the client cache into two variable-sized
partitions, namely the REC and the NON-REC
partitions for maintaining re-cacheable and non-
re-cacheable object versions, respectively.
Besides judiciously selecting replacement
victims, MICP selectively prefetches popular
object versions from the broadcast channel in
order to further improve transaction response
time. A simulation study compares MICP with
one offline and two online cache replacement
and prefetching algorithms. Performance results
for the workloads and system settings considered
demonstrate that MICP improves transaction
throughput rates by about 18.9% compared to the
best performing online algorithm and it performs

only 40.8% worse than an adapted version of the
offline algorithm P.

1. Introduction and Motivation
A mobile hybrid data delivery network is a
communication infrastructure that allows bi-directional
communication between a fixed host, also called Mobile
Support Station, and mobile clients either through a low
bandwidth point-to-point channel or to all active clients
through a high bandwidth broadcast channel. As the name
indicates, hybrid data delivery combines push- and pull-
based data delivery in an efficient way by broadcasting
the data items that are of interest to a large client
population and unicasting less popular data items only
when they are requested by the clients. While a combined
push/pull data delivery mode has many advantages such
as user scalability, bandwidth efficiency, support for
disconnections, etc., it also suffers from two major
disadvantages: First, the client data access latency
depends on the length of the broadcast cycle for data
items that are fetched from the broadcast channel. Second,
since most of the data requests can either be satisfied by
the clients themselves or the broadcast channel, the server
lacks clear knowledge of the client access patterns. While
the latter weakness can be diminished by regularly
sending data usage profiles to the server or the technique
proposed in [SRB97], the former can be relaxed by
designing and deploying an efficient cache replacement
and prefetching policy that is closely coupled with the
transaction manager of the mobile client.

Due to the physical constraints immanent in any
mobile communication environments, such as high
communication latency, low network bandwidth in the
uplink direction, intermittent connections, etc., the
majority of applications executed at mobile clients are of
the read-only type. Since there are typically many more
reads than writes in production database systems
[HSY99a, HSY99b], most of the data contentions among
transactions result from read-write conflicts. An
alternative approach to reduce, but not eliminate, data

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

contention caused by simultaneously running transactions
is to maintain two or multiple versions of database items.
Multi-versioning, also called transient versioning, is
effective in relaxing read-write conflicts that may occur
when read-write and read-only transactions are processed
concurrently. Interference between read-write and read-
only transactions can be diminished by forcing read-only
transactions to read obsolete database items, thus
increasing the level of concurrency. For example, forcing
a read-only transaction Ti to read data granules that were
up-to-date by the time Ti started or sometime before,
allows the transaction scheduler to serialize Ti before all
concurrently active read-write transactions, thereby
improving the performance of the system. However,
diminishing the data contention between read-write
transactions by means of maintaining multiple data
versions is not as effective as for read-only transactions
since read-write transactions typically need to access up-
to-date object versions to provide serializability
guarantees. Therefore, in this paper we concentrate on
multi-versioning as the means of improving the
performance of mobile applications issuing read-only
transactions.

1.1 Multi-version Client Caching

So far, we have indicated that multi-versioning is a
valuable and practicable approach to process read-only
and read-write transactions concurrently. In what follows,
we highlight various issues a mobile cache and prefetch
manager needs to take into account so that key
performance metrics such as throughput is maximized and
abort rate is minimized. In particular, we propose a new
combined caching and prefetching algorithm ideally
suited for mobile clients that use multi-version
concurrency control (MVCC) protocols [SS01] to relax
conflicts between concurrent transactions. Since data
caching is an effective (if not the most effective) and
therefore indispensable way of reducing transaction
response times [CK89], cache replacement policies have
been extensively studied in conventional database
management systems [EH84, OOW93, JS94, JN98,
LKN+99]. Since conventional caching techniques are
inefficient for mobile networks where communication
channels form an intermediate memory level between the
client and the server and where communication quality
varies over space and time, mobile caching policies
[AAF+95, TS97, KL98, XHL+00] have been designed,
that are tailored to the peculiarities and constraints of the
mobile environment. However, to our knowledge, none of
the proposed caching strategies designed either for the
stationary or for the mobile client-server architecture
tackles the problem of managing multi-version client
buffer pools efficiently. Multi-version client caching
differs from mono-version caching by at least two key
observations. First, the cost/benefit ratio of dissimilar
versions of a data item in the client cache may vary over

time depending on the storage behavior of the server, i.e.,
if the server discards an object version useful for the
client, this version’s cost/benefit ratio increases since it
cannot be re-acquired from the server. Second, versions of
different data items may for the same reason have
dissimilar cost/benefit ratios despite being equally likely
to be referenced.

The following example illustrates the aforementioned
peculiarities. Suppose a diskless mobile client executes a
read-only transaction Ti with begin of transaction (BOT)
serializability guarantees [SS01], i.e., Ti is always forced
to observe the most recent object versions that existed by
its starting point. Assume the start timestamp TS of Ti is 1
and the database consists of four objects {A, B, C, D}.
The client cache size is small and may hold only two
object versions. Further, it is up to the client how many
versions of each object it maintains. For space and time
efficiency reasons, the database server holds a restricted
number of versions, namely the last two committed
versions of each data item. Additionally, assume the
client’s access pattern is totally uniform, i.e., each object
is equally likely to be accessed. At the logical time 5
(read-write transaction with commit timestamp 5 has just
terminated) the client cache holds the set of objects {A0,
B0} and the server keeps objects {A1, A3, B0, B1, C0, C4,
D2, D5}. Note that the subscripts assigned to object
versions correspond to the commit timestamp of the
transaction that created the respective version. Now,
suppose the client needs to read a transaction-consistent
version of object C. Since there is no cache-resident
version of object C, the client fetches the missing object
from the server. By the time the object arrives at the
client, the local cache replacement policy needs to select a
replacement victim to free some cache space. In this case,
a judicious cache replacement strategy would evict B0
since it is the only object version that can be re-acquired
from the server, i.e., a cache replacement policy suitable
for a multi-version cache needs to incorporate both
probabilistic information on the likelihood of object
references in the future and data re-acquisition costs.

1.2 Multi-version Client Prefetching

Apart from demand-driven caching and judicious eviction
of object versions from the cache, another technique that
can be used to reduce on-demand fetches is data
prefetching, by which the client optimistically fetches
versions of data items from the server and/or broadcast
channel into the cache in expectation of a later request.
Since prefetching, especially if integrated with caching,
strongly affects transaction response time, various
combined caching and prefetching techniques have been
studied in stationary computing [PZ91, CFK+95, TPG97,
JN98]. Work on prefetching in mobile data broadcasting
environments has been conducted by [AFZ96]. Again, as
for caching, prefetching mechanisms proposed in the
literature are inefficient for mobile data dissemination

applications utilizing MVCC schemes to manage read-
only transactions. The reasons are twofold: First,
algorithms, such as PIX and LIX, proposed for data
prefetching in broadcast environments [AFZ96] are based
on simplified assumptions such as no database updates
and no use or availability of uplink communication
facilities. Second, and more importantly, all previous
prefetching strategies were designed for mono-version
database systems and therefore lack the ability to make
proper prefetching decisions in a multi-version
environment. In contrast, we base our model on more
realistic assumptions and develop a prefetching algorithm
that is multi-version compliant. As prefetching may
unfold its total strength if deeply integrated with data
caching, our prefetching algorithm uses the same
cost/benefit metric for evaluating prefetching candidates
as the cache replacement algorithm. To ensure that the
prefetching algorithm does not hurt, but rather improves
performance, we allow prefetches of only those object
versions that have been recently referenced and whose
cost/benefit ratio exceeds the value of any cached object
version.

1.3 Paper Structure

The paper is structured as follows: Section 2 describes the
model underlying MICP (Multi-version Integrated
Caching and Prefetching algorithm). Section 3 contains a
detailed description of MICP and is concluded by the
introduction of an implementable version of MICP, called
MICP-L. Section 4 reports on detailed experimental
results that show the superiority of our algorithm
compared to previously proposed caching and prefetching
policies and presents the performance gap of MICP
compared to an offline algorithm having full knowledge
of the client access pattern. The paper’s conclusions and
summary are to be found in Section 5.

2. System Design and Assumptions
The primary components of the data delivery architecture
are the database server, the hybrid network, and the
mobile clients. The following subsections depict the
design of the hybrid data delivery network, the
organization and structure of the client and server cache,
and the client cache invalidation and synchronization
scheme.

2.1 Hybrid Data Delivery Model

We have chosen a hybrid data delivery system as the
underlying network architecture for MICP since a hybrid
push/pull scheme has the ability to mask the
disadvantages of one data delivery mode by exploiting the
advantages of the other. Since broadcasting is especially
effective when used for popular data, we assume that the
server broadcasts only such data that is of interest to the
majority of the client population. Our broadcast structure

is logically divided into three segments of varying size: a)
index segment, b) data segment, and c) concurrency
control information segment. Each minor cycle is
supplemented with an index to eliminate the need for the
clients to listen to the broadcast continuously in order to
locate the desired object version on the channel. We
choose (1, m) indexing [IVB97] as the underlying index
allocation method by which the whole index, containing,
among other things, a mapping between the objects
disseminated and the identifiers of the data pages in which
the respective objects appear, is broadcast m times per
major broadcast cycle. The data segment, on the other
hand, solely contains hot-spot data pages. Note that we
assume a flat broadcast disk approach for page
scheduling, i.e., each and every hot data page is only
broadcast once within a major cycle. For data consistency
reasons, we model the broadcast program so that all data
pages disseminated are a consistent snapshot as of the
beginning of each major broadcast cycle. Thus, the
modified or newly created object versions committed after
the beginning of an ongoing major broadcast cycle will
not be included in any data segment. To guarantee cache
consistency despite server updates, each minor broadcast
cycle is preceded with a concurrency control report as
described in Section 2.2.2.

The second core component of the hybrid data
delivery system is the point-to-point channel. A point-to-
point channel may be utilized by the client to request
locally missing or non-scheduled object versions from the
server. Further, clients are allowed to use the back
channel to the server when a required object version is
scheduled for broadcasting, but its expected arrival time is
above the uplink usage threshold [AFZ97] dynamically
set up by the server. This optimization helps clients
improve their response times.

2.2 Client and Server Cache Model

Conventional caching and prefetching strategies are
typically page-based since the optimal unit of transfer
between systems resources are pages with sizes ranging
from 8 KB to 32 KB [GG97]. In mobile data delivery
networks caching and prefetching data on a coarse
granularity such as pages is inefficient due to the physical
constraints and characteristics of the mobile environment.
As mentioned before, the communication in client-server
direction is handicapped by low bandwidth wireless
channels. Choosing page-sized granules to be the unit of
transfer for data uploads would be a waste of bandwidth
compared to sending objects of much smaller size in case
of a low degree of locality. Since a data broadcasting
server typically serves hundreds of thousands of mobile
clients and each client tends to have its own set of
frequently accessed data items, it is not unrealistic to
assume that the physical data organization of the server
may not comply with the individual access pattern of the
clients. Therefore, in order to increase the hit ratio of the

client cache and to save scarce uplink bandwidth
resources, we deploy our caching and prefetching scheme
on an object basis. However, to allow clients to cache
pages as well, we opt for a hybrid client cache consisting
of a small-size page cache and a large-size object cache.
While the page cache is used as working storage memory
to extract and copy requested or prefetched object
versions into the object cache, the object cache’s task is to
efficiently maintain those object versions, i.e., it is used as
data storage memory. Note that our intuition behind such
a cache structure was experimentally confirmed by a
performance study [DMF+90] demonstrating that an
object-based caching architecture is superior to a page-
based one when physical clustering is poor and the
client’s cache size is small relative to the size of the
database, which is typically the case in mobile
environments. We further assume that the broadcast
server also manages its cache by a hybrid of page and
object caching. The structure of the server cache is similar
to the one described in [Ghe95] with the exception that
multiple versions of objects may be maintained for
concurrency control purposes. Again, the use of both
cache types allows us to exploit the benefits of each.
While the page cache is useful for efficiently serving
broadcast requests, installation reads [OS94], etc., the
object cache is attractive for recording object
modifications.

2.2.1 Version Control Model

To implement version tracking, each object version is
assigned a monotonically increasing timestamp that
reflects the logical time when it was created. Whenever a
read-write transaction issues a write operation on an
object X and commits within the major broadcast cycle
MBCi,j, it creates a new version of X, denoted Xi,j, where
the subscripts i and j symbolize the number of the major
broadcast cycle (MBC) and minor broadcast cycle
respectively, that existed by the transaction’s commit
time. Associating timestamps to object versions is
required in order to distinguish between different versions
of the same object and to synchronize read-only
transactions with committed and/or currently active read-
write transactions [SS01]. Since multi-versioning imposes
additional memory and processor overheads on the clients
and the server, we assume that the number of versions
maintained in the involved memory levels is restricted.
For clients it is sufficient to maintain at most two versions
of each database object at any time since we assume that
clients do not execute transactions in parallel. In contrast,
the server may need to maintain every object version in
order to guarantee that any read-only transaction can read
from a transaction-consistent database snapshot. Since
such an approach is impracticable, we assume that the
server maintains a fixed number of versions (see Section
4.5 for a performance experiment on this issue).

2.2.2 Cache Synchronization Model

Hoarding, caching, or replicating data in the client cache
is an important mechanism for improving data
availability, response time, and reducing the power-
consumption at mobile clients. However, data updates at
the server make cache consistency a challenge. An
effective cache synchronization and update strategy is
needed to ensure consistency and freshness between the
data cached at the client and the original data at the
server. Although invalidation messages are space and
time efficient compared to propagation messages, they
lack the ability to update the cache with new object
versions. Due to the inherent tradeoffs between
propagation and invalidation, we employ a hybrid of the
two techniques. On the one hand, the broadcast server
periodically disseminates a concurrency control report, or
CCR, which is a simple structure that contains, in addition
to concurrency control information, identifiers and values
of versions of those objects modified during the last minor
broadcast cycle [SS01]. Based on those reports, mobile
clients operating in connected mode can easily update
their caches at low costs. However, since CCRs contain
only concurrency control information wrt. the last minor
broadcast cycle, those reports are useless for cache
synchronization of recently reconnected clients that had
missed one or more CCRs. To resolve this problem, we
assume that the server maintains the update history of the
last w MBCs as proposed in [BI94]. This history is used
for client cache invalidation as follows: when a mobile
client wakes up from a disconnection, it waits for the next
CCR to appear and checks whether the following equation
is valid: tCCR,c < tCCR,l + w, where tCCR,c denotes the
timestamp of the current CCR and tCCR,l represents the
timestamp of the latest CCR report received by the client.
If so, a dedicated invalidation report (IR) can be requested
by the client to invalidate its cache properly. An IR is
implemented as a list of tuples that contains the same
elements as a CCR, with the exception that only the
identifiers of the modified objects are maintained. If the
client was disconnected for more than w MBCs, the entire
cache contents has to be discarded upon reconnection.

3. New Integrated Algorithm
The design of MICP consists of two complementary
algorithms that behave synergistically. The first
algorithm, responsible for selecting replacement victims,
is called PCC (Probabilistic Cost-based Caching) and the
second one dealing with data prefetching is denoted PCP
(Probabilistic Cost-based Prefetching). While PCC may
be employed without PCP in order to save scarce CPU
processing and battery power of mobile devices, PCP’s
potential can be exploited by coupling it with a cache
replacement policy that uses the same or similar metric
for decision making.

3.1 The Multiversion Cache Replacement Algorithm

The major goal of any cache replacement policy designed
either for broadcasting or for unicasting environments is
to minimize the average response time a user/process
experiences when requesting data items. Traditional cache
replacement policies try to achieve this goal by making
use of two different approaches. The first category
requires information from the database application. That
information can be either obtained from the application
directly or from the query optimizer that processes queries
of the corresponding application. The second category of
replacement algorithms bases its decisions on
observations of past access behavior. The algorithm
proposed in this paper belongs to the latter group, extends
the LRFU policy [LKN+99] and borrows from the 2Q
algorithm [JS94]. Like LRFU, PCC quantifies the
probability of an object being re-referenced in the future
by associating with each object a score value that reflects
the effects of the frequency and recency of past
references. More precisely, PCC computes a combined
recency and frequency factor for each object X whenever
it is referenced by a transaction, according to the
following formula:

)X(CRF21)X(CRF n
)))X(tt((

1n
lc ×+= −×λ−

+ (1)

where CRFn(X) is the computed value of the combined
recency and frequency factor of object X over the last n
references, tc denotes the reference number associated
with the current time of object reference, tl(X) is the
reference number assigned to object X when it was last
accessed, and λ (10 ≤≤ λ) is a kind of “slide controller”
that allows PCC to weigh the importance of recency and
frequency information for the replacement selection. Note
that if λ converges towards 0 PCC behaves more like an
LFU policy and, contrarily, with λ approaching 1 it acts
more like an LRU policy.

In contrast to the LRFU algorithm, PCC bases its
replacement decisions not only on recency and frequency
information of historical reference patterns, but
additionally makes use of three further factors besides the
future reference probability of objects as expressed by
CRF. First, in order to reflect the situation that
instantaneous access costs of data items scheduled for
broadcasting are non-constant due to the serial nature of
the broadcast medium, PCC’s replacement decisions are
sensitive to the actual state and contents of the broadcast
cycle. More precisely, PCC accounts for the costs of re-
acquiring object versions by evicting those versions that
have low probabilities of access and low re-acquisition
costs. To provide a common metric for comparing costs
of ejecting object versions that can be re-cached from the
broadcast channel and/or database server, we measure re-
acquisition costs in terms of broadcast units. Since we
assume that the content and organization of the broadcast
program does not change significantly between

consecutive MBCs and the clients are aware of the
position of each object version in the MBC due to (1, m)
indexing, determining the number of units till an object
version re-appears on the channel is straightforward.
Estimating the costs of re-fetching a requested version
from the server is more difficult since that value depends
on parameters such as the current network and server load
and the effect of caching at the server. To keep our
caching algorithm as simple as possible, we use the uplink
usage threshold as a simple guideline for approximating
data fetch costs. Since the uplink usage threshold provides
a tuning knob to control the server and network utilization
and, thus, affects data fetch costs, its dynamically fixed
value correlates with the data fetch latency a client
experiences when requesting data items from the server. If
the threshold is high, the system is expected to operate
under a high workload and therefore data retrieval costs
are high as well. In what follows, we denote the re-
acquisition costs of an object version Xi,j at time t by
RCt(Xi,j).

A second parameter PCC uses to make replacement
decisions is the frequency of object updates. As noted
before, multi-version database systems suffer from high
processing and storage overheads if the number of
versions maintained by the server is not restricted.
However, limiting the number of versions negatively
affects the likelihood of data requests from the clients
being satisfied by the server. To account for the
probability that an object is updated within a major
broadcast cycle, the server (re-)computes the update
frequency of an object X at the end of each MBC
whenever a new version of X has been created in the
course of the last MBC by the following formula:

UR
(X))ID(ID

α(X)UFα)(1(X)UF lc
n1n

−
×+×−=+ (2)

where α is an aging factor to adapt to changes in access
patterns by assigning higher weights to recent updates,
IDc is the monotonically increasing identifier of the
current MBC, IDl(X) is the identifier of the MBC where
object X was last updated, UFn(X) is the combined update
frequency value of the previous n updates of X, and UR
denotes the average number of updates (update rate)
within an MBC.

Last but not least, a replacement policy suitable for
supporting MVCC protocols needs to take into account
the server’s storage policy. Besides the update frequency
of each data item, the version maintenance strategy of the
server affects the likelihood that an obsolete object
version can be re-acquired once evicted from the client
cache. The more versions of an individual object are kept
by the server, the higher the probability that the server can
satisfy requests for that object. PCC incorporates the
versioning policy of the server by means of two
complementary methods: First, it computes re-acquisition
costs of in-memory object versions based on their re-fetch

probabilities (see Equation 4 and 5) and second, it takes
care of non-re-cacheable object versions by placing them
into a dedicated partition of the client object cache, called
NON-REC (non-re-cacheable), while re-cacheable object
versions are maintained in the REC (re-cacheable) part of
the client cache.

The reason for cache partitioning is to prevent
undesirable replacement of non-re-cacheable versions by
referenced or prefetched re-cacheable object versions.
With regard to the size of the cache partitions we
experimentally established that NON-REC should not
exceed 50% of the overall client cache size and REC
should hold at least 50% of the objects stored in the
cache. The justification for those values is as follows: the
majority of users issuing read-only transactions want to
observe up-to-date object versions, i.e., they usually
initiate queries with either BOT or strict forward BOT
read guarantees [SS01]. The assumption that clients do
not execute more than one read-only transaction at a time
and transactions are issued with at least BOT data
currency requirements implies that at their starting point
only up-to-date object versions are useful, i.e., NON-REC
is empty at this stage. As transactions progress, more and
more useful object versions may become non-re-
cacheable and need to be placed into NON-REC. Since
the storage space needed to maintain non-re-cacheable
object versions is not known in advance and depends on
such factors as transaction length, data currency
guarantees under which transactions run, data update
frequency at the server, etc., PCC adapts to this situation
by changing the size of NON-REC dynamically. That is,
as demand for storage space in NON-REC arises, PCC
extends NON-REC by re-allocating object slots from
REC to NON-REC as long as its size does not exceed
50% of the overall cache size. Without this bound, the
system performance could degrade due to insufficient
cache space reserved for up-to-date or nearly up-to-date
(re-cacheable) versions. It is important to note that the
described cache structure is suitable for managing read-
write transactions as well. In this case, the cache manager
allocates all the available cache space to REC which then
keeps only up-to-date object versions.

As all of the aforementioned parameters influence
replacement decisions, it is obvious that there is a need for
a single combined performance metric to enable
comparison of those values that would be meaningful for
the cache manager. To this end, we combine the estimates
given above into a single performance metric, called
probabilistic cost/benefit ratio (PCB), which is computed
for each cache-resident object version Xi,j at eviction time
t as follows:

)).(XT)(X(T(X)CRF)(XPCB ji,Missji,Hittji,t +×= (3)

In the above formula, CRFt(X) denotes the re-reference
probability of object X at time t, THit is the weighted time
in broadcast units it takes to re-fetch object version Xi,j if

evicted from the cache, and TMiss represents the weighted
time required to re-process all completed read operations
of the active read-only transaction in case it needs to be
aborted since Xi,j is not any more system-resident and thus
cannot be accessed. The time to service an object version
request that hits either the broadcast channel or the server
memory is the product of the following parameters:

),(XCR)UF(X)(1)(XT ji,
)(XN

ji,Hit
ji,version ×−= (4)

where Nversion(Xi,j) denotes the number of versions of
object X with commit timestamps equal to or older than
Xi,j currently kept by the server. Further on, we compute
TMiss(Xi,j) as a weighted approximation of the amount of
time, denoted TRep(Xi,j), it would take the client to restore
the current state of the active read-only transaction for
which Xi,j is useful in case it has to be aborted due to a
fetch miss of Xi,j:

),X(TUF(X))(XT j,ipRe
)(XN

ji,Miss
ji,version ×= (5)

where TRep(Xi,j) is the sum of the weighted retrieval and
processing times for the object versions that have to be
obtained from the broadcast cycle and for those found in
the client cache (we assume the length of processing a
client cache hit to be one broadcast tick), and is computed
as follows:

.NCHRN)CHR(1L5.0)(XT readreadji,Rep ×+×−×= (6)

In formula 6, L represents the average length of the
MBC, CHR denotes the average client cache hit rate, and
the expression Nread symbolizes the total number of read
operations executed so far by the active read-only
transaction that is forced to read object version Xi,j for
data consistency reasons if object X is requested by the
transaction. As formula 6 indicates, we assume that the
average latency to fetch a non-cache resident object
version into the client memory takes half a broadcast
period independent of whether that object appears on the
broadcast channel or has to be requested through the
point-to-point channel. We opted for this simplification to
refrain the algorithm from further complexity inflation.
The complete PCC algorithm invoked upon a reference to
an object version can be found in the full version of the
paper [SS02].

3.2 Multi-version Prefetching Algorithm

While PCC achieves the goal of improving transaction
response times by caching requested object versions close
to the database application, PCP tries to further reduce
fetch latency by pro-actively loading useful object
versions with high access probability and/or high re-
acquisition costs into the cache in anticipation of their
future reference. As uncontrolled prefetching without
reliable information might not improve, but rather harm
the performance, the greatest challenge of PCP is to

decide when and which object version to prefetch and
which cache slot to evict when the cache is full. PCP
tackles those challenges as follows: in order to behave
synergistically with PCC, PCP bases its prefetching
decisions on the same performance metric, namely PCB.
Since calculating PCB values for every object version that
flows past the client is very expensive, if not unfeasible,
PCP computes those values only for a small subset of the
potential prefetching candidates, namely recently
referenced objects. The reason for choosing this heuristic
is the assumption that reference sequences exhibit
temporal locality [Den72]. Temporal locality indicates
that once an object has been accessed, there is a strong
probability that the same object (either the same or
different version) will be accessed again in the near
future. To decide whether an object has recently been
referenced clients need to maintain historical information
on past object references. As will be explained later, we
assume that clients retain such information for the last r
distinct object accesses where r depends on the actual
client cache size. Based on this statistical data, PCP
selects its prefetch candidates by a simple policy. In order
for a disseminated object version Xi,j to qualify for
prefetching, there must exist any recent entry for X in the
reference history. The exact decision how recent an object
reference has to be in order for the object to qualify for
prefetching is left up to the client since the prefetching
decision process is computationally expensive and has to
be aligned to the client’s resources. If the object qualifies
for prefetching, PCP computes Xi,j’s PCB ratio and
compares the score with the corresponding values of all
cached data items. If Xi,j’s ratio is greater than the least
PCB value of all cached versions then Xi,j is prefetched
and replaces the lowest valuable version. As for the PCC
algorithm, prefetch candidates compete for the available
cache space only with those versions that belong to the
same cache partition.

Apart from prefetching current and non-current
versions of recently referenced objects, PCP downloads
from the broadcast channel all useful versions of data
items that will be discarded from the server by the end of
the MBC. The intuition behind this heuristic is to
minimize the number of transaction aborts caused by
fetch requests that cannot be satisfied by the server. A
viable approach to reducing the number of fetch misses is
to cache those versions at the client before they are
garbage-collected by the server. To implement this
approach, mobile clients need information as to whether a
particular object version is disseminated for the last time
on the broadcast channel. There are basically two ways
how clients could receive such information. First and
most conveniently, the server indicates whether an object
version is about to be garbage-collected. That information
could be provided by adding a respective field for each
object version in the disseminated data pages. On the
other hand, clients could determine whether an object
version becomes non-re-cacheable by keeping track of the

object version history. As the latter approach requires
clients to have knowledge of the version management
policy at the server, we opt for the first approach. Again,
the complete pseudo-code of PCP can be found in [SS02].

3.3 Maintaining Historical Reference Information

It has been noted that MICP takes into account both
recency and frequency information on data accesses in
order to select replacement victims. Similar to LRFU,
MICP maintains CRF values on a per-object basis that
capture information on both recency and frequency of
accesses. However, in order for MICP to be effective,
such values need to be retained in client memory not only
for cache-resident objects but also for evicted data items.
The necessity to keep historical information of a
referenced object even after all versions of this object
have been evicted from cache was first recognized by
[OOW93] and was termed “reference retained
information problem”. This problem arises from the fact
that in order to gather both recency and frequency
information, clients need to keep history information on
recently referenced objects for some time. This is in
particular required for determining the frequency of object
references. If CRF values are maintained only for cached
data items and the size of the client cache is relatively
small compared to the database size, then there exists a
danger that MICP might overestimate the recency
information since frequency information is rarely
available. On the other hand, storing reference
information consumes valuable memory space that could
otherwise be used for storing data objects.

To limit the memory size allocated for historical
reference information, [OOW93] suggests storing that
information only for a limited period of time after the
reference had been recorded. As reasonable rule of thumb
for the length of this period they use the Five Minute Rule
[GG97]. However, applying it in a mobile environment
may be inappropriate for the following reason: a time-
based approach for keeping reference information ignores
the available cache size and reference behavior of the
client. For example, if a client operates in disconnected
mode due to a lack of network coverage, its processing
may be interrupted because a data request cannot be
satisfied by the local cache. In such a situation the client
needs to wait till reconnection for transaction processing
to continue. Since disconnections might exceed 5 minutes,
all the reference information will be lost during such a
period. On the other hand, if the client cache size is small,
the reference information must be discarded even sooner
than 5 minutes after the last reference. To resolve the
problem of determining a reasonable guideline for
maintaining CRF values, we conducted a series of
experiments. We figured out that clients with a cache size
in the range of 1 to 10% of the database size should
maintain reference information on all recently referenced
objects that would fit into a cache if it were about 3 to 5

times as large as its actual size (see Figure 3). Clearly, due
to its time-independence such a rule avoids the
aforementioned problem of discarding reference
information during periods when clients are idle. Second,
it limits the amount of memory required for storing
historical information by coupling the retained
information period to the client cache size.

3.4 Implementation and Performance Issues

Due to space restrictions, only some selected topics of
implementing MICP are discussed. For more relevant
implementation issues such as storage organization,
garbage collection, etc., we refer the interested reader to
the relevant literature [BC92, SS02]. The previous section
has shown that MICP bases its replacement and
prefetching decisions on a number of factors combined
into the PCB ratio. However, this metric is dynamic since
it changes at every tick of the broadcast. Although in
theory one could obtain the required values while a page
is being transmitted, such an approach would be much too
expensive. To reduce overhead, we propose that the
estimate of PCB for each cached data item is updated
either only when a replacement victim is selected or at
fixed times such as the beginning or the end of a minor
broadcast cycle. While experimenting with our simulator,
we noticed that both approaches are capable of
remarkably reducing processing overhead while providing
good performance results. However, we favor the latter
technique since it may allow MICP to compute PCB
values less frequently. In what follows, we refer to the
version of MICP that calculates PCB values periodically
as MICP-L where L stands for “light”.

4. Performance Evaluation
We studied and compared the performance of MICP with
other online and offline caching and prefetching
algorithms via simulation and not analytically because the
effects of such parameters as transaction length, client
cache size or number of versions maintained by the server
depend on a number of internal and external system
parameters that cannot be precisely estimated by
mathematical analysis. The simulator and the workloads
are based on the model designed for evaluating the
performance of various isolation levels for read-only
transactions [SS01], having been extended by MICP as
well as some other popular caching and prefetching
algorithms. In the following description of the simulator,
some details are omitted due to space constraints and can
be found in the full version of the paper [SS02].

4.1 System Model

The simulation model consists of the following core
components: a) server, b) client, c) broadcast disk, and d)
network, which are briefly described below.

Both multiple mobile clients and a single broadcast
server are modeled as consisting of a number of

subcomponents including a processor, volatile (cache)
and, in case of the server, stable memory (disks), i.e., we
assume diskless mobile clients. Data is stored on 4 disks
modeled as a FIFO queue. The unit of data transfer
between the server and disks is a page of 4 Kbytes and the
server keeps a total of 250 pages in its stable memory.
The size of an object is 100 bytes and the database
consists of a set of 10000 objects. To reflect the
characteristics of a modern disk drive we experimented
with the parameters from the Quantum Atlas 10K III disk.
The client CPU speed is set to 100 MIPS and the server
CPU speed is 1200 MIPS, which are typical processor
speeds of today’s mobile and stationary computers. A
single FIFO input queue is used for processing events
such as disk I/O or sending a message. All requests are
charged in terms of (fractions of) broadcast units. The
client cache size is set to 2% of the database size and the
server cache size to 20% of the database size. As
described in Section 2, we model the client cache as a
hybrid cache. The page-based segment is managed by an
LRU replacement policy and the object-based segment by
various online and offline cache replacement strategies
including MICP-L. Similarly, the server cache is
partitioned into a page cache and a modified object cache
(MOB). The page cache is managed using an LRU policy
and the MOB is managed in a FIFO order. The MOB is
initially modeled as a single version cache. This
restriction is later removed to study the effects of
maintaining multiple versions of objects in the server
cache. Client cache synchronization and freshness are
accomplished by inspecting the CCR at the beginning of
each minor broadcast cycle and by downloading newly
created object versions whose PCB values are larger than
those of currently cached object versions.

The broadcast program has a flat structure. To
account for the high degree of skewness in data access
patterns [HSY99a, HSY99b] and to exploit the
advantages of hybrid data delivery only the latest versions
of the most popular 20% of the database objects are
broadcast. Note that we assume that clients regularly
register at the server to provide their access profiles so
that the server can generate the clients’ global access
pattern. Every MBC is subdivided into 5 minor cycles
each consisting of a data segment with 10 pages, a (1, m)
index [IVB97], and a concurrency control report.

Our modeled network infrastructure consists of three
communication paths: a) broadcast channel, b) uplink
channel from the client to the server, and c) downlink
channel from the server to the client. The network
parameters of those communication paths are modeled
after a real system such as Hughes Network System's
DirecPC [Hug01]. We set the default broadcast bandwidth
to 12 Mbps and the point-to-point bandwidth to 400 Kbps
downstream and to 19.2 Kbps upstream. The point-to-
point network is modeled as a FIFO queue and each
point-to-point channel is dedicated to 5 mobile clients.
Charged network costs consist of CPU costs for message

processing at the client and server, queuing delay, and
transfer time. Processor costs include a fixed and a
variable cost component while the latter depends on the
message size. With respect to message latency we
experimented with a fixed RTT end-to-end latency of 300
ms. To exclude problems arising when clients operate in
disconnected mode (e.g. consistency checking), we
assume that clients are always tuned to the broadcast
stream and do not suffer from intermittent connectivity.

4.2 Workload Model

To produce data contention in our simulator, we
periodically modify data objects at the server by a
workload generator that simulates the effects of read-write
transactions being executed at the server. In our selected
system configuration 100 objects are modified by 20
transactions during a MBC. Objects read and written by
read-write transactions are modeled using a Zipf
distribution with parameter θ=0.80. The ratio of the
number of write operations versus the number of read
operations is fixed at 0.2, i.e., only every fifth operation
issued by the server results in an object modification.
Read-only transactions are modeled as a sequence of 10 to
50 read operations and are managed by the MVCC-SFBS
protocol [SS01]. The access probabilities of client read
operations follow a Zipf distribution with parameter
θ=0.95 and θ=0.80. While the θ=0.95 setting is intended
to stress the system by directing about 90% of all object
accesses to 10% of the database, the θ=0.80 setting
models a more realistic medium-contention workload
(about 75/25). To account for the impact on shared
resources (network, server) when clients send fetch
requests to the server, we model our hybrid data delivery
network in a multi-user environment that services 10
mobile clients. As noted before, clients run at most one
read-only transaction at a time and in order to account for
a transaction think time between consecutive operations
and transactions, we add a delay between those events.
Further note that clients are not allowed to request object
versions from the server if they are scheduled for
broadcasting. To control the data access behavior of read-
only transactions that were aborted, we use an abort
variance of 100 percent which means that the restarted
transaction reads from a different set of objects.

4.3 Other Replacement Policies Studied

In order to prove MICP’s superiority, we need to compare
it with state-of-the-art online cache replacement and
prefetching policies. We experimented with LRFU since
it is known to be the best performing page-based cache
replacement policy [LKN+99]. However, since LRFU
does not use any form of prefetching, comparing MICP to
LRFU directly would be unfair. Therefore, we decided to
incorporate prefetching into the LRFU and denote the
resulting algorithm as LRFU-P. In order to treat LRFU-P
as fair as possible with respect to data prefetching, we

adopt the prefetching heuristic from MICP. That is, we
select all newly created object versions along with the
versions of those objects that have been referenced within
the last 1000 data accesses as prefetch candidates. Out of
those candidates, LRFU-P prefetches those versions
whose CRF values are larger than the smallest CRF value
of all cached object versions. The rest of the algorithm
works as described in [LKN+99].

In addition to comparing MICP to LRFU-P, we
experimented with the W2R algorithm [JN98]. We
selected the W2R scheme for comparison mainly because
it is an integrated caching and prefetching algorithm
similarly to MICP and performance results have shown
[JN98] that W2R outperforms caching and/or prefetching
policies such as LRU, 2Q [JS94], and LRU-OBL [Smi85].
However, since W2R was designed for conventional page-
based database systems, it has to be adapted to the
characteristics of a mobile hybrid data delivery
environment in order to be competitive with MICP. Our
goal was to re-design W2R in such a way that its original
design targets and structure are still maintained. In the
following we refer to the amended version of W2R by
W2R-B where B stands for broadcast. Like W2R, W2R-B
partitions the client cache into two rooms called the
Weighing Room and the Waiting Room. While the
Weighing Room is managed as an LRU queue, the
Waiting Room is managed as a FIFO queue. In contrast to
W2R, W2R-B admits both referenced and prefetched
object versions into the Weighing Room. However, W2R-
B grants admission to the Weighing Room only to newly
created object versions, i.e., those listed in the CCR, and
whose underlying objects have been referenced within the
last 1000 data accesses. The other modified objects
contained in CCR and all the prefetch candidates from the
broadcast channel are kept in the Waiting Room. As
before, an object version Xi,j becomes a prefetch
candidate if some version of object X has been recently
referenced. With regard to the room size we
experimentally found out that the following settings work
well for W2R-B: the Weighing Room should be 80% of
the total cache size and the remaining 20% should be
dedicated to the Waiting Room.

Last but not least, we experimented with an offline
cache replacement algorithm, called P [AAF+95], to
present the theoretical bounds on the performance of
MICP. We have chosen P as an offline policy due to its
straightforward implementation as P determines its
replacement victims by selecting the object with the
lowest access probability. Since the client access pattern
follows a Zipf distribution, the access probability of each
object is known at any point in time. Like LRFU, P is a
“pure” caching algorithm. Therefore, we had to extend P
by incorporating prefetching. To ensure that clients cache
all useful versions of objects with the highest likelihood
of access, we added an aggressive prefetching strategy to
P and called the new algorithm P-P. P-P’s relatively
simple prefetching strategy is as follows: a newly created

or disseminated object version Xi,j is prefetched from the
broadcast channel, if Xi,j’s access probability is higher
than the lowest probability of all cached object versions.
It should be intuitively clear, that such a policy is
suboptimal since it neither considers the update and
caching behavior of the server nor the serial nature of the
broadcast channel.

4.4 Basic Experimental Results

In this section we compare the performance of MICP-L to
that of the above introduced online and offline cache
replacement and prefetching policies under the baseline
setting of our simulator. We later vary those parameters in
order to observe the changes in the relative performance
differences between the policies under different system
settings and workload conditions. We point out that all
subsequently presented performance results lie within a
90% confidence level with a relative error of ±5%. We
now study the impact of the read-only transaction length
on the performance metrics when MICP and other
policies are used for client cache management. Figure 1
shows experimental results of increasing the read-only
transaction length from 10 to 50 observed objects. An
exponential decrease in the throughput rate is observed
when transaction length is increased. More importantly,
Figure 1(a) shows that the MICP-L outperforms LRFU-P,
on average, by 18.9% and W2R-B by 80.4%. Further, but
not shown in the graph, the throughput degradation
caused by computing PCB values periodically (20 times
per MBC) rather than every time when replacement
victims are selected is insignificant since MICP
outperforms MICP-L by only 2.8% on average. When
comparing the relative performance differences between
MICP-L and other online policies under the 0.95
workload to those under the 0.80 workload, it is
interesting to note that the performance advantage of
MICP-L declines when the client access pattern becomes
less skewed. The reason is related to the degradation in
the client cache effectiveness experienced when client
accesses are more uniform in nature and due to a
weakening in the predictability of the future reference
patterns by inspecting the past reference string. In this
situation the impact of the client caching policy on the
overall system performance is smaller, and therefore the
throughput gap between the investigated online policies
narrows. With regard to the client cache hit rate we also
estimate MICP-L’s superiority compared to other online
policies. For example, MICP-L’s cache hit rate is, on
average, 5.8% higher than that of LRFU-P. At the first
glance, a relatively big performance gap might be
surprising since both policies select replacement victims
(at least partially) on CRF value basis. Thus, one would
expect client cache hit rates of both policies to be fairly
close to each other. But since MICP-L tries to minimize
broadcast retrieval latencies by replacing popular object
versions that soon re-appear on the broadcast channel

with other less popular versions, which, if not cached,
incur high re-acquisition costs when requested, MICP’s
hit rate is expected to be slightly lower than LRFU-P.
However, as both MICP-L and LRFU-P incorporate
prefetching, the performance gain from preloading objects
into the cache is higher for MICP-L since it keeps more
object versions in the client cache that are of potential
utility for the active read-only transaction, while LRFU-P,
on the contrary, maintains more up-to-date versions
potentially useful for future transactions.

P-P (0.95)
MICP-L (0.95)
LRFU-P (0.95)
W2R-B (0.95)

P-P (0.80)
MICP-L (0.80)
LRFU-P (0.80)
W2R-B (0.80)

0

1

2

3

4

5

6

7

8

10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t /

 S
ec

on
d

Transaction Length

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

10 15 20 25 30 35 40 45 50

C
ac

he
 H

it
R

at
e

Transaction Length (
a)

Figure 1: Performance of M
P-P, and W2R-P under vario

4.5 Additional Experimen

This section discusses t
experiments conducted to d
counterparts perform under
reference information and n
by the server. As before, we
0.95 and the 0.80 workload.

Effects of the Version Man
Server on the Performance

To study the effect of ke
modified object at the se
varying the version storag
noted before, in order to sav
maintains modified objects
setting of the simulator, th
mono-version object cache,
versions of recently modifie
now remove that restrictio
maintain up to 10 versions
the MOB is organized as a
20% of the database size, su
will only be maintained
frequently updated databa
expected, the system perform
number of non-current obje
server. However, it is intere
throughput performance l
maintains more than 4 non-
modified object. Beyond
(b)

ICP-L compared to LRFU-P,
us read-only transaction sizes

ts

he results of some other
etermine how MICP-L and its
 varying number of historical
umber of versions maintained
 report the results for both the

agement Policy of the
 of MICP-L

eping multiple versions per
rver, we experimented with
e strategy of the MOB. As
e installation reads the server
in the MOB. In the baseline
e MOB was organized as a

 i.e., only the most up-to-date
d objects are maintained. We
n by allowing the server to
 of each object. However, as
 FIFO queue and limited to
ch a high number of versions
for a small portion of the
se objects. As intuitively
ance increases with growing

ct versions maintained at the
sting to note, that the gain in
evels off when the server
current versions of a recently

this point, no significant

Cache Size 100 (0.95)
Cache Size 200 (0.95)
Cache Size 300 (0.95)
Cache Size 500 (0.95)
Cache Size 1000 (0.95)
Cache Size 100 (0.80)
Cache Size 200 (0.80)
Cache Size 300 (0.80)
Cache Size 500 (0.80)
Cache Size 1000 (0.80)1.5

2

2.5

3

3.5

4
ou

gh
pu

t /
 S

ec
on

d

performance improvement can be achieved by further
increasing the version retain boundary. As shown in
Figure 2, the performance gap of MICP-L relative to
LRFU-P and W2R-B narrows when the maximum number
of versions maintained by the server increases. For
example, for the 0.95 workload the throughput
performance degrades between MICP-L and LRFU-P
from 21.5% to only 2.5% as the maximum number of
versions maintained by the server increases. The reason is
that under a multi-version storage strategy potentially
more non-current object version requests from long-
running read-only transactions can be satisfied by the
server. As a result, fewer read-only transactions have to
be aborted because the versions they request had been
garbage-collected.

P-P (0.95)
MICP-L (0.95)
LRFU-P (0.95)
W2R-B (0.95)

P-P (0.80)
MICP-L (0.80)
LRFU-P (0.80)
W2R-B (0.80)

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t /

 S
ec

on
d

Maximum Number of Versions in the MOB

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

C
ac

he
 H

it
R

at
e

Maximum Number of Versions in the MOB

CS
HSHCR = (7)

where HS denotes the total number of CRF values
maintained at the client and CS is the client cache size
available for storing data items. As shown in Figure 3, we
measured MICP-L’s performance for various HCR and
cache size values. The results show, that MICP-L reaches
its performance peak if clients maintain CRF values of all
those recently referenced objects that would fit into the
client cache if it were 3 to 5 times larger than its actual
size. Beyond that point, i.e., when HCR is larger than 5,
MICP-L’s throughput slightly degrades. The reason for
this degradation is related to an increase in the number of
prefetches caused by MICP-L’s prefetching heuristic that
allows clients to download useful object versions into
their local memory if their corresponding object has been
referenced within the retained information period. As a
result of those additional prefetches, object versions
useful for the active read-only transaction may be
replaced by up-to-date object versions which are of
potential use for future transactions. This slightly hurts the
cache hit rate and hence the throughput performance.

 (
a)

Figure 2: Performance of
competitors with varying num
maintained by the server

Further, it is worth noticing
slightly better than the MI
conditions are satisfied: Firs
overwriting obsolete object
versions of each particular ob
Second, the client access pa
nature (80/>20). The reason
MICP-L under such a system
the PCB values on which M
prefetching decisions.

Effects of the History Size o
MICP-L

MICP-L requires historical
reference behavior of the cli
predictions about its future
collect this information, obje
to be maintained in the clie
eviction from the cache.
history information in form o
client cache, we wanted to d
estimating the amount of re
need to maintain in order t
performance. To this end, w
size ratio (HCR) defined as:
(b)
0

0.5

1

1 2 3 4 5 6 7

T
hr

HCR

MICP-L compared to its
ber of non-current versions

, that the LRFU-P performs
CP-L if the following two
t, the server does not start
 versions until at least 2
ject are stored in the MOB.

ttern is not very skewed in
 why LRFU-P outperforms
 setting is the inaccuracy of
ICP-L bases its caching and

n the Performance of

 information on the past
ent in order to make precise
access pattern. In order to
cts’ reference history needs
nt memory even after their
Since keeping superfluous
f CRF values wastes scarce

etermine a rule of thumb for
ference information clients
o achieve good throughput
e use the history size/cache

Figure 3: Performance of MICP-L under various cache
sizes when HCR is varied

5. Conclusion
We have presented the design and implementation of a
new integrated cache replacement and prefetching
algorithm called MICP. MICP has been evolved to
efficiently support the data requirements of read-only
transactions in a mobile hybrid data delivery
environment. In contrast to many other cache replacement
and prefetching policies, MICP not only relies on future
reference probabilities when selecting replacement
victims and for prefetching data objects, but additionally
uses information about the contents and the structure of
the broadcast channel, the data update frequency, and the
server storage management. MICP combines those
statistical factors into a single metric, called PCB, in order
to provide a common basis for decision making and to
achieve the goal of maximizing the transactional
throughput. Further, in order to reduce the number of
transaction aborts caused by the eviction of useful, but
obsolete, object versions from the server, MICP divides
the client cache into two variable-sized cache partitions
and maintains non-re-cacheable object versions in a

dedicated part of the cache called NON-REC. We
evaluated the performance of MICP experimentally using
simulation configurations and workloads observed in a
real system and compared it with the performance of other
state-of-the-art online and offline cache replacement and
prefetching algorithms. The obtained results show that the
implementable approximation of MICP, called MICP-L,
improves the throughput rate, on average, by 18.9% when
compared to LRFU-P, which is the second best
performing online algorithm after MICP-L. Further, our
experiments revealed that the performance degradation of
MICP-L relative to MICP is modest 2.8% (not graphically
shown).

References
[AAF+95] S. Acharya, R. Alonso, M. Franklin, S. Zdonik.
Broadcast Disks: Data Management for Asymmetric
Communications Environments. SIGMOD Conference
1995, pages 199-210.
[AFZ96] S. Acharya, M. Franklin, S. Zdonik. Prefetching
from a broadcast disk. ICDE 1996, pages 276-285.
[AFZ97] S. Acharya, M. Franklin, S. Zdonik. Balancing
Push and Pull for data broadcast. SIGMOD Conference
1997, pages 183-194.
[BC92] P. M. Bober, M. J. Carey. On Mixing Queries and
Transactions via Multiversion Locking. ICDE 1992.
[BI94] D. Barbará, T. Imielinski. Sleepers and
Workaholics: Caching Strategies in Mobile
Environments. SIGMOD Conference 1994, pages 1-12.
[CFK+95] P. Cao, E. W. Felten, A. Karlin, K. Li. A Study
of Integrated Prefetching and Caching Strategies. ACM
SIGMETRICS 1995, pages 188-197.
[CK89] E. Chang, R. Katz. Exploiting Inheritance and
Structure Semantics for Effective Clustering and
Buffering in an Object-Oriented DBMS. SIGMOD
Conference 1989, pages 348-357.
[Den72] P. J. Denning. On Modeling Program Behaviour.
In Proceedings Spring Joint Computer Conference, pages
937-944, Arlington, VA., 1972.
[DMF+90] D. J. DeWitt, D. Maier, P. Futtersack, F.
Velez. A study of three alternative workstation-server
architectures for object-oriented database systems. VLDB
1990, pages 107-121.
[EH84] W. Effelsberg, T. Haerder. Principles of database
buffer management. ACM TODS 9(4), pages 560-595,
Dec. 1984.
[Ghe95] S. Ghemawat. The Modified Object Buffer: A
Storage Management Technique for Object-Oriented
Databases. Tech. Report MIT/LCS/TR-666, Sep. 1995.
[GG97] J. Gray, G. Graefe. The Five-Minute Rule Ten
Years Later, and Other Computer Storage Rules of
Thumb. SIGMOD Record 26(4), pages 63-68, 1997.
[HSY99a] W. W. Hsu, A. J. Smith, H. C. Young.
Analysis of the Characteristics of Production Database
Workloads and Comparison with the TPC Benchmarks,
Tech. Report, CSD-99-1070, UC Berkeley, 1999.

[HSY99b] W. W. Hsu, A. J. Smith, H. C. Young. I/O
Reference Behavior of Production Database Workloads
and the TPC Benchmarks – An Analysis at the Logical
Level, Tech. Report, CSD-99-1071, UC Berkeley, 1999.
[Hug01] Hughes Network Systems. DirecPC Home Page.
http://www.direcpc.com, Jan, 2001.
[IVB97] T. Imielinski, S. Viswanathan, B. R. Badrinanth.
Data on Air: Organization and Access. IEEE TKDE, 9(3):
pages 353-372, May/June 1997.
[JN98] H. S. Jeon, S. H. Noh. A Database Disk Buffer
Management Algorithm Based on Prefetching.
Proceedings of ACM CIKM, Bethesda, Maryland, USA,
pages 167-174, Nov. 3-7, 1998.
[JS94] T. Johnson, D. Shasha. 2Q. A low overhead high
performance buffer management replacement algorithm.
VLDB 1994, pages 439-450.
[KL98] S. Khanna, V. Liberatore. On broadcast disk
paging. ACM STOCS 1998, pages 634-643.
[LKN+99] D. Lee, J.-H. Kim, S. H. Noh, S. L. Min, J.
Choi, Y. Cho, C. S. Kim. On the Existence of a Spectrum
of Policies that subsumes the Least Recently Used (LRU)
and Least Frequently Used (LFU) Policies. ACM
SIGMETRICS 1999, pages 134-143.
[OOW93] E. J. O'Neil, P. E. O'Neil, G. Weikum. The
LRU-K page replacement algorithm for database disk
buffering. SIGMOD Conference 1993, pages 297-306.
[OS94] J. O'Toole, L. Shrira. Opportunistic Log: Efficient
Installation Reads in a Reliable Object Server. OSDI,
Nov. 1994.
[PZ91] M. Palmer, S.B. Zdonik. Fido: A Cache That
Learns to Fetch. VLDB 1991, pages 255-264.
[Smi85] A. J. Smith. Disk Cache-Miss Ratio Analysis
Design Considerations. ACM TOCS, 3(2), pages 161-
203, August 1985.
[SRB97] K. Stathatos, N. Roussopoulos, J. S. Baras:
Adaptive Data Broadcast in Hybrid Networks. VLDB
1997, pages 326-335.
[SS01] A. Seifert, M. H. Scholl. Processing Read-only
Transactions in Hybrid Data Delivery Environments with
Consistency and Currency Guarantees, Tech. Report No.
163, University of Konstanz, Dec. 2001.
[SS02] A. Seifert, M. H. Scholl. A Transaction-Conscious
Multi-version Cache Replacement and Prefetching Policy
for Hybrid Data Delivery Environments, Tech. Report
No. 165, University of Konstanz, Feb. 2002.
[TPG97] A. Tomkins, R.H. Patterson, G. Gibson.
Informed multiprocess prefetching and caching. ACM
SIGMETRICS 1997.
[TS97] L. Tassiulas, C. J. Su. Optimal Memory
Management Strategies For a Mobile User in a Broadcast
Data Delivery System. IEEE J-SAC, 15(7), pages 1226-
1238, Sep. 1997.
[XHL+00] J. Xu, Q. Hu, D. L. Lee, W.-C. Lee. SAIU: An
Efficient Cache Replacement Policy for Wireless On-
demand Broadcasts. ACM CIKM 2000, pages 46-53.

