
Processing Star Queries on Hierarchically-Clustered

Fact Tables
Nikos Karayannidis1, Aris Tsois1, Timos Sellis1, Roland Pieringer2, Volker Markl4,

Frank Ramsak3,Robert Fenk3, Klaus Elhardt2, Rudolf Bayer5

1 Institute of Communication and Computer Systems and Department of Electrical and Computer
Engineering, National Technical University of Athens, Zographou 15773 Athens, Hellas
{nikos, atsois, timos}@dblab.ece.ntua.gr

2 TransAction Software GmbH Gustav-Heinemann-Ring 109,D-81739 München, Germany
{pieringer, elhardt}@transaction.de

3 Bayerisches Forschungszentrum für Wissensbasierte Systeme, Orleansstraße 34, D- 81667 München,
Germany, {robert.fenk, frank.ramsak}@forwiss.de

4 IBM Almaden Research Center, K55/B1, 650 Harry Road, San Jose, CA 95120-6099, marklv@us.ibm.com
5 Institut für Informatik, TU-München, Orleansstraße 34, D-81667 München, Germany, bayer@in.tum.de

Abstract

Star queries are the most prevalent kind of que-
ries in data warehousing, OLAP and business in-
telligence applications. Thus, there is an impera-
tive need for efficiently processing star queries.
To this end, a new class of fact table organiza-
tions has emerged that exploits path-based surro-
gate keys in order to hierarchically cluster the
fact table data of a star schema [DRSN98,
MRB99, KS01]. In the context of these new or-
ganizations, star query processing changes radi-
cally. In this paper, we present a complete ab-
stract processing plan that captures all the neces-
sary steps in evaluating such queries over hierar-
chically clustered fact tables. Furthermore, we
present optimizations for surrogate key process-
ing and a novel early grouping transformation for
grouping on the dimension hierarchies. Our algo-
rithms have been already implemented in a
commercial relational database management sys-
tem (RDBMS) and the experimental evaluation,
as well as customer feedback, indicates speed-
ups of orders of magnitude for typical star que-
ries in real world applications.

1. Introduction
Data warehousing (DW) has evolved into a major trend in
database technology through the last decade. Furthermore,
the multidimensional paradigm seems to be the undis-
puted winner as a design choice for such databases. Re-
gardless of the underlying physical layer, relational tech-
nology or proprietary multidimensional structures, the
conceptual model adopted is a data warehouse consisting
of facts (or measures) organized into a set of dimensions,
which in turn are organized into levels of different aggre-
gation (i.e., detail) that comprise one or more hierarchies.
In particular, for relational databases, the multidimen-
sional data warehouse consists of one or more star sche-
mata [CD97a].

The information stored in a star schema is in the form
of detailed facts organized by dimension values and can
produce all kinds of invaluable insights with appropriate
querying. The most prevalent kind of query submitted to
such a system is the star query. Star queries impose re-
strictions on the dimension values that are used for select-
ing specific facts; these facts are further grouped and ag-
gregated according to the user demands. The major bot-
tleneck in evaluating such queries has been the join of the
central (and usually very large) fact table with the sur-
rounding dimension tables (also known as a star join). To
cope with this problem various indexing schemes have
been developed [NG95, NQ97, Sar97, CI98, WB98,
Wu99, WOS01]. Also precomputation of aggregation
results has been studied extensively - mainly as a view
maintenance problem - and is used as a means of acceler-
ating query performance in data warehouses [GM95,
Rou98, SDJL96].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

However, the need for doing On-Line Analytical Proc-
essing (OLAP) on the data makes processing of ad hoc
star queries, i.e. queries that are not known in advance,
also a necessity. For this kind of queries the usage of
precomputed aggregation results is extremely limited or
even impossible in some cases. Even when elaborate
indexes are used, due to the arbitrary ordering of the fact
table tuples, there might be as many I/Os as are the tuples
resulting from the fact table. The only alternative one can
have for such queries is a good physical clustering of the
data, and it is exactly for this reason that a new class of
primary organizations for the fact table has emerged
[DRSN98, MRB99, KS01]. These organizations exploit a
special kind of key that is based on the hierarchy paths of
the dimensions, in order to achieve hierarchical clustering
of the facts. This physical clustering results in a reduced
I/O cost for the majority of star queries, which are based
on the dimension hierarchies. Moreover, [MRB99] and
[KS01] exploit a multidimensional index for storing the
tuples. A typical star join is transformed then into a mul-
tidimensional range query, which is very efficiently com-
puted using the underlying multidimensional data struc-
tures.

In this paper, we study the processing of ad hoc star
queries over hierarchically clustered fact tables. We show
that the processing entailed is significantly different from
the ones in previous approaches. In particular, we present
a complete abstract processing plan that covers all the
necessary steps for answering such queries. This plan
directly exploits the benefits of hierarchically clustered
fact tables and opens the road for new optimization chal-
lenges. To this end we propose optimizations for the
processing of surrogate keys, when evaluating dimension
restrictions, and a novel early grouping transformation
that drastically reduces the number of fact table tuples
participating in a sequence of joins with dimension tables.
Our proposals have already been implemented in a com-
mercial RDBMS [TBHC] and have been deployed to cus-
tomers. Finally, we present preliminary measurements
that have been confirmed in real-life applications and
show significant performance gains for typical star que-
ries.

The rest of the paper is organized as follows. In sec-
tion 2 we give an overview of related work. Section 3
describes the general concept of processing star queries
using hierarchical clustering, while section 4 contains
optimizations for the proposed processing plan. Meas-
urement results are presented in section 5. Section 6 reca-
pitulates our work and summarizes the benefits of our
proposal compared to the conventional processing plans
of star queries.

2. Related Work
One of the most important parts of a star query is the
processing of the star join. Star join processing has been
studied extensively and specific solutions have been also

implemented in commercial products. See [CD97b] for an
overview.

The standard query processing algorithm to execute a
star join over n dimensions first evaluates the predicates
on the dimension tables, either on normalized (snowflake)
or de-normalized (star) schema, resulting in a set Ri of ni
tuples of dimension Di. It then builds a cartesian product
of the dimension result tuples (R1 x R2 x … x Rn). The
cardinality of the cartesian product is n1 · n2 ·…· nn for the
n restricted dimensions. With these cartesian product tu-
ples, we perform a direct index access on the composite
index built on the fact table. For non-sparse fact tables
and queries that restrict most dimensions of the composite
index in the order of the index attributes, the access to the
fact tuples is quite fast. The next processing step then
joins the resulting fact tuples with the dimension tables in
order to allow grouping and aggregating.

However, for large sparse fact tables and high dimen-
sionality, such a query processing plan does not work
efficiently enough. The cardinality of the cartesian prod-
uct resulting from the dimension predicates grows very
fast, whereas the number of affected tuples in the fact
table may be relatively small. This is the point where a
call is made for specialized indexing or clustering meth-
ods.

Bitmap indices are often used to speed up the access
to the fact table. The bitmaps corresponding to the differ-
ent dimension values are ANDed or ORed depending on
the selection condition. The resulting bitmap is used to
extract tuples from the fact table [NG95, NQ97]. When
the query selectivity is high, only a few bits in the result
bitmap are set. If there is no particular order among the
fact table tuples, we can expect each bit to access a tuple
in different page. Thus there will be as many I/Os as there
are bits set.

Multidimensional clustering has been discussed in the
field of multidimensional access methods (e.g., [GG97]
and [Sam90]). [ZSL98] addresses the issue of hierarchical
clustering for the one-dimensional case. The importance
of good physical clustering in OLAP has been shown in
[KR98], where packed R-trees are exploited for storing
the results of the data cube operator ([GBLP96]). In
[DRSN98], the benefits of hierarchical clustering for star
queries was observed as a side effect of using a chunked
file organization for enabling caching with chunk as the
caching unit.

Among others, in [MRB99] the UB-tree multidimen-
sional index [Bay97] is used as a primary organization of
the fact table. Surrogate keys based on the dimension hi-
erarchies are exploited and hierarchical clustering of the
fact table is achieved. Consequently star joins are trans-
formed to multidimensional range queries. The combina-
tion of the two mechanisms results in a greatly reduced
I/O cost for star joins.

In [KS01] a physical organization based on a hierar-
chical chunking of the fact table is presented. Fact data
are clustered physically according to the dimensional hi-

erarchies. To achieve this clustering, special path-based
dimension keys are exploited. In particular, these keys
guide the clustering (called chunking) process. Star joins
are transformed to range queries in the multidimensional
and multi-level data space of a cube. The adopted multi-
dimensional structure is a variant of the Grid File
[NHS84].

Several aspects of processing and optimizing star join
queries on hierarchically clustered fact tables are also
presented in [TT01]. The paper considers a star schema
with UB-Tree organized fact tables and dimension tables
stored sorted on a composite surrogate key. For a particu-
lar class of star join queries, the authors investigate the
usage of sort-merge joins and a set of other heuristic op-
timizations.

Based on the significance of the above organizations,
it is clear that there is a need for a general query process-
ing framework that addresses all issues involved in star
query processing over hierarchically clustered fact tables.
We proceed next to present such a framework.

3. Processing Star Queries

3.1 Preliminary Concepts

OLAP data are divided into two main categories. The
measures (or facts) are mainly numeric values, which
correspond to measurements of some value related to an
event at specific points in time (e.g., amount of money
appearing in a line of an invoice at a particular day, or
balance of an account at the end of each day, etc.) and are
expected to change rapidly. The dimension data (or sim-
ply dimensions) are used to characterize the measures and
are considered to be almost static in (or slowly changing
with) time. The dimension values characterize a specific
measure value in the same way that coordinate values
characterize a specific point in a multidimensional space.
Examples of dimensions for a retailing business can be
DATE, PRODUCT, CUSTOMER, LOCATION etc.

Each dimension represents a distinctive property of a
measure. In a relational OLAP (ROLAP) implementation
a dimension is stored into one or more dimension tables
{D1, D2, D3…} each having a set of attributes. In the sim-
plest case, a dimension is represented by only one table
with only one attribute, say h1. Based on the values of h1
one may add additional attributes (h2, h3, …) to the di-
mension table in order to form a classification hierarchy.
In this case the h1 attribute is classified by the h2 attribute,
which is further classified by the h3 attribute, etc. We call
the attributes h1, h2, h3, … hierarchical attributes because
they participate in the definition of the hierarchy. For ex-
ample day, month and year can be a hierarchical classifi-
cation in the DATE dimension. In general, a single dimen-
sion may contain many different hierarchical classifica-
tions that stem from a common grain level (i.e., the most
detailed level). For the purposes of this paper we will as-
sume a single hierarchy for each dimension.

A dimension table may also contain one or more fea-
ture attributes f. A feature attribute is a descriptive attrib-
ute and is semantically different from a hierarchical at-
tribute in that it cannot participate in the dimension hier-
archy. Feature attributes contain additional information
about a number of hierarchical attributes and are always
functionally dependent on one (or more) hierarchical at-
tribute. For example, population could be a feature attrib-
ute dependent on the region attribute of dimension LO-
CATION.

3.2 Database Schema

As mentioned earlier, the dimensions are used to charac-
terize measures, which in turn are stored in fact tables. A
fact table may contain one or more measure attributes and
is always linked (by foreign key attributes) to some di-
mension tables. This logical organization consisting of a
central table (the fact table) and surrounding tables (the
dimension tables) that link to it through 1:N relationships
is known as the star schema [CD97a]. In a typical sce-
nario, the hierarchical attribute representing the most de-
tailed level will be the primary key of the respective di-
mension. Each such attribute will have a corresponding
foreign key in the fact table.

In order to create a fact table that is clustered accord-
ing to the dimension hierarchies we first need to apply a
hierarchical encoding (HE) on each dimension table. We
achieve this by assigning to each dimension table D con-
taining the hierarchical attributes hm, hm-1, …, h1 (hm being
the most aggregated level and h1 the most detailed one) a
surrogate key (sk) attribute that has a unique value for
each tuple. This is something very common in data ware-
housing practice, since surrogate keys provide a level of
independence from the keys of the tables in the source
systems [Kim96]. In our case, surrogate keys are defined
over hm, hm-1, …, h1 and are essentially the means to
achieve hierarchical clustering of the fact table data. We
will refer to these keys as hierarchical surrogate keys
(hsk) or simply h-surrogates.

The main idea is that an h-surrogate value for a spe-
cific dimension table tuple is constructed as a combina-
tion of encoded values of the hierarchical attributes of the
tuple. For example, if h1, h2, h3 are the hierarchical attrib-
utes of a dimension table from the most detailed level to
the most aggregated one, then the h-surrogates for this
dimension table will be represented by the values
oc1(h3)/oc2(h2)/oc3(h1), where the functions oci (i = 1,2,3)
define a numbering scheme for each hierarchy level and
assign some order-code to each hierarchical attribute
value. Obviously the h-surrogate attribute of a dimension
table is a key for this table since it determines all hierar-
chical attributes, which in turn functionally determine all
feature attributes. The h-surrogate should be a system
assigned and maintained attribute, and typically should be
made transparent to the user.

The actual implementation of the hierarchical surro-
gate keys depends heavily on the underlying physical or-
ganization of the fact table. Proposals for physical organi-
zations [MRB99, KS01] exploit such path-based surro-
gate keys in order to achieve hierarchical clustering of the
stored data of a fact table.

In this paper we adopt a de-normalized approach for
the design of a dimension, i.e., we represent each dimen-
sion with only one table. The hierarchical attributes (h1,
h2, …,hm), the feature attributes (f1, f2, …, fk) as well as
the hierarchical surrogate key hsk are stored in a unique
dimension table D. De-normalization of the dimension
tables is a common data warehousing practice. It is based
on the rationale that the major overhead in storage space
comes from the fact table and therefore, normalizing the
dimension tables will not exhibit any significant space
savings. On the other hand, de-normalization enhances
performance significantly, since it avoids the consequent
joins between the tables of the same dimension. Although
the alternative of normalized schemata (also known as
snowflake schemata [CD97a]), is also another option, in
this paper we will not address it due to lack of space and
for the sake of simplicity of the presented abstract proc-
essing plan (see section 3.4). However, our ideas are fully
applicable to normalized schemata as well, with the only
difference that extra joins between the several dimension
tables (corresponding to separate hierarchy levels) must
be included in the plan.

d1
d2
...
dN

hsk1
hsk2
...
hskN

m1
m2
...
mk

Fact table

h1
h2
...
hj1
f1
...
fr1
hsk1

D1

h1
h2
...
hj2
f1
...
fr2
hsk2

D2

h1
h2
...
hjN
f1
...
frN
hskN

DN

Figure 1: Star schema with flat dimension tables

The star schema of Figure 1 is a typical star schema
where the dimension tables have been hierarchically en-
coded. This schema consists of N dimensions stored in the
dimension tables D1, …, DN. Each dimension is logically
structured in a hierarchy. The hierarchy elements for di-
mension Di are h1, h2, … hji. Each dimension table Di may
also include a set of feature attributes f1, f2,…,fri that char-
acterize one or more hierarchical attributes. In Figure 1
we depict h1, i.e. the most detailed level in each hierarchy
as the primary key of each dimension table. In Figure 1

we can also see the h-surrogate attribute (hski), which is
an alternate key for each table Di (i = 1,…N).

The fact table contains the measure attributes (m1, m2,
…mk), the reference to the h-surrogate of each dimension
(hsk1, hsk2, …, hskN) and a reference to the most detailed
hierarchical attribute of each dimension (d1, d2, …,dN).
Hence, d1 is a reference to h1 of D1, d2 is a reference to h1
of D2 and so on. All measure values refer to the most de-
tailed level of the hierarchy of each dimension. For an
example of a star schema, the reader is referred to Figure
4 of section 3.5.

In the fact table of Figure 1, we have two alternative
composite keys: (a) (d1, d2, …,dN) that links to the corre-
sponding lowest hierarchical attribute of each dimension
and (b) (hsk1, hsk2, …, hskN) that links to the h-surrogate
attribute. Note that the former is not necessary in order to
achieve hierarchical clustering of the data and thus could
be omitted in order to reduce storage overhead.

In this paper, we use a special physically organized
schema. The fact table is stored hierarchically clustered in
a multidimensional index, i.e., the index attributes of this
clustering index are the h-surrogates.

3.3 Star Queries

OLAP queries typically include restrictions on multiple
dimension tables that trigger restrictions on the (usually
very large) fact table. This is known as a star join. In this
paper, we use the term star query to refer to flat SQL que-
ries, defined over a single star schema, that include a star
join. Star queries represent the majority of OLAP queries.
In particular, we are interested in ad hoc OLAP queries.
With the term “ad hoc” we refer to queries that are not
known in advance and therefore the administrator cannot
optimize the DBMS specifically for these.

In Figure 2, we depict an SQL query template for ad
hoc star queries. The template defines the most complex
query structure supported and uses abstract terms that act
as placeholders. Note that queries conforming to this tem-
plate have a structure that is a subset of the above tem-
plate and instantiate all abstract terms.

Our template will be applied on a schema similar to
the one in Figure 1, which is a typical star schema. Look-
ing at the part containing the join constraints between the
fact table and the dimension tables (JC), we see that it
includes a star join. Apart from the star join, there is a
GROUP BY and HAVING clause (HP). In general any at-
tribute (hierarchical, feature, or measure) can appear in a
GROUP BY clause (GAh, GAf, GAm). However, most que-
ries impose a grouping on a number of hierarchical and/or
feature attributes. Finally, there is an ORDER BY clause
for controlling the order of the presented results (OL).

LOCPREDi(Di) is a local predicate on a dimension
table Di (LP). The characterization “local” is because this
predicate includes restrictions only on Di and not on other
dimension tables or the fact table. This predicate is very
important for the h-surrogate processing phase explained

later, and is used to produce the necessary h-surrogate
specification for accessing the fact table.

Note that the vast majority of OLAP queries contain
an equality restriction on a number of hierarchical attrib-
utes and more commonly on hierarchical attributes that
form a complete path in the hierarchy. E.g., the query
“show me sales for area A in region B for each month of
1999” contains two whole-path restrictions, one for a di-
mension LOCATION and one for a DATE: (a) LOCA-
TION.region = ‘A’ AND LOCATION.area = ‘B’ and (b)
DATE.year = 1999. This is reasonable since the core of
analysis is conducted along the hierarchies. We call this
kind of restrictions hierarchical prefix path (HPP) restric-
tions. Note also that even if we impose a restriction on an
intermediate level hierarchical attribute, we can still have
an HPP restriction, as long as hierarchical attributes func-
tionally determine higher level ones.

SELECT SGA, Aggr
FROM ft, D
WHERE JC AND LP AND MP
GROUP BY GAh, GAf, GAm
HAVING HP
ORDER BY OL
SGA: Selection attribute(s) of dimension table(s)

(Di.hj∈GAh or Di.fj∈GAf) and/or, measure
attribute(s) of the fact table (ft.mi∈GAm).

Aggr: Aggregation function(s) (MIN, MAX, COUNT,
SUM) on measure attribute(s) of the fact table
(ft.mi) and/or, on attribute(s) of the dimension
table(s) (Di.hj or Di.fj; Di∈D).

ft: The fact table.
D: Dimension table(s) involved in the query (D1,

D2, …, DN).
JC: Natural join conditions; joining the fact table ft

with the involved dimension tables Di (Di∈D)
on key-foreign key (ft.di=Di.h1)

LP: A conjunction of local predicates on some of
the involved dimension tables:
LP=LOCPRED1(D1)∧LOCPRED2(D2)∧…
∧LOCPREDk(Dk); D1,D2,…,Dk∈D

MP: Restriction predicate on measure attribute(s) of
the fact table.

GAh: Grouping hierarchical attribute(s) of dimension
table(s) (Di.hk, Di ∈D).

GAf: Grouping feature attribute(s) of dimension
table(s) (Di.fk , Di ∈D).

GAm: Grouping measure attribute(s) of fact table
(ft.mi)

HP: Restriction predicate on grouping attributes
(GAh∪GAf∪GAm) and/or on aggregation
functions.

OL: An ordered list of attributes.
(OL⊆GAh∪GAf∪GAm)

Figure 2: The ad hoc star query template

Finally, MP is a predicate that contains any con-
straints on measures of the fact table. Those constraints do
not reference any dimension tables. An example would be
to ask for sales figures that exceed a certain value thresh-
old.

3.4 Abstract Processing Plan

In this section we will describe the major processing steps
entailed when we want to answer star queries over a hier-
archically clustered fact table.
Step 1 – Identifying relevant fact table data: The proc-
essing begins with the evaluation of the restrictions on the
individual dimension tables, i.e., the evaluation of the
local predicates (section 3.3). This step performed on a
hierarchically encoded dimension table will result in a set
of h-surrogates that will be used in order to access the
corresponding fact table data. Due to the hierarchical na-
ture of the h-surrogate this set can be represented by a
number of h-surrogate intervals called the h-surrogate
specification. Using the notation of [KS01] an interval
can for example have the form v3/v2/∗, where v3, v2 are
specific values of the h3 and h2 hierarchical attributes of
the dimension in question. The symbol ‘∗’ means all val-
ues of the h1 attribute in the dimension tuples that have h3
= v3 and h2 = v2. In the case of a DATE dimension, the h-
surrogate specification could be 1999/January/* to allow
for any day in this month. We will show in the next sec-
tion that this step can be performed very efficiently. We
will use the term range to denote the h-surrogate specifi-
cation arising from the evaluation of the restriction on a
single dimension.

Once the h-surrogate specifications are determined for
all dimensions, the evaluation of the star join follows. In
hierarchically clustered fact tables this translates to one or
more simple range queries on the underlying multidimen-
sional structure that is used to store the fact table data.
Moreover, since data are physically clustered according to
the hierarchies and the ranges originate from hierarchical
restrictions, this will result in a very efficient evaluation
of the range selection ([MRB99]).
Step 2 – Computing necessary joins: The tuples result-
ing from the fact table contain the h-surrogates, the meas-
ures and the dimension table primary keys. At this stage,
there might be a need for joining these tuples with a num-
ber of dimension tables in order to retrieve certain hierar-
chical and/or feature attributes that the user wants to have
in the final result and might also be needed for the group-
ing operation. We call these joins residual joins.
Step 3 – Performing grouping and ordering: Finally,
the resulting tuples may be grouped and aggregated and
the groups further filtered and ordered for delivering the
result to the user.

The abstract processing plan comprising of the above
phases is illustrated in Figure 3 and can be used to answer
the single block queries described in section 3.3. This
plan is abstract in the sense that it does not determine spe-

cific algorithms for each processing step: it just defines
the processing that needs to be done. That is why it is
expressed in terms of abstract operators (or logical op-
erators), which in turn can be mapped to a number of
alternative physical operators that correspond to specific
implementations.

FT

MD_Range_Access

Order_By

Di

Dj

...

Create_Range

Create_Range

Di

Dj

Main Execution Phase

h-surrogate processing

...

Residual_Join

Residual_Join

Group_Select

Figure 3: The abstract processing plan

The plan can be logically divided in two main process-
ing phases: the hierarchical surrogate key processing
(HSKP) phase which corresponds to Step 1 mentioned
earlier, and the main execution phase (MEP) correspond-
ing to the other two steps. Next we describe the operators
appearing in the abstract processing plan of Figure 3.

Create_Range is responsible for evaluating the local
predicate (LP in Figure 2) on each dimension table. This
evaluation will result in an h-surrogate specification (set
of ranges) for each dimension. All these together define
one (or more, disjoint) hype-rectangle(s) in the multidi-
mensional space of the fact table. In the next section we
will present some implementation hints that allow for the
efficient processing for this operation.

MD_Range_Access receives as input the h-surrogate
specifications from the Create_Range operators and per-
forms a set of range queries on the underlying multidi-
mensional structure that holds the fact table data. Apart
from the selection of data points that fall into the desired
ranges, this operator can perform further filtering based
on predicates on the measure values (MP) and projection
(without duplicate elimination) of fact table attributes.

Residual_Join is a join on a key-foreign key equality
condition among a dimension table and the tuples origi-
nating from the MD_Range_Access operator. This way,
each incoming fact table record is joined with at most one
dimension table record. The join is performed in order to

enrich the fact table records with the required dimension
table attributes. These attributes might be required in the
SELECT, GROUP BY, HAVING and ORDER BY clauses.

Group_Select performs grouping and aggregation on
the resulting tuples and evaluates any restrictions appear-
ing in the HAVING clause. Finally, Order_By simply sorts
the tuples in the required output order.

Note that not all operators in the abstract plan may be
needed for the execution of a particular query. The plan
represents the most complex abstract plan that might be
required to answer a supported query. For example, if the
result records are not required in a specific order then the
final Order_By operator will not be applied. Also, many
queries will not restrict all available dimensions nor will
require feature or hierarchical attributes from all dimen-
sion tables. This means that only a restricted number of
Create_Range and Residual_Join operators may be used.
In the simplest possible query (SELECT * FROM ft)
only the MD_Range_Access operator is needed.

3.5 Example

In this section we first describe an example schema of a
simplified data warehouse. Then we present an abstract
processing plan for an example query on this data ware-
house.

customer_id
product_id
store_id
day

cust_hsk
prod_hsk
loc_hsk
date_hsk

sales

SALES_FACT

customer_id
profession
name
address
hsk

CUSTOMER

store_id
area
region
polulation
hsk

LOCATION

item_id
class
category
brand
hsk

PRODUCT

day
month
year
hsk

DATE

Figure 4: The schema of the data warehouse

The data warehouse stores sales transactions recorded
per item, store, customer and date. It contains one fact
table SALES_FACT, which is defined over the dimen-
sions: PRODUCT, CUSTOMER, DATE and LOCATION
with the obvious meanings. The single measure of
SALES_FACT is sales representing the sales value for an
item bought by a customer at a store at a specific day. The
schema of the fact table is shown in Figure 4 and the di-
mension hierarchies are depicted in Figure 5.

The dimension DATE is organized in three levels:
Day-Month-Year. Hence, it has three hierarchical attrib-
utes (day, month, year).

The dimension CUSTOMER is organized in only two
levels: Customer-Profession. For each customer the di-
mension table contains an ID, a name, an address and a
profession. The dimension has two hierarchical attributes
(customer_id, profession) and two feature attributes

(name, address). The LOCATION dimension is organized
into three levels: Store-Area-Region. Stores are grouped
into geographical areas and the areas are grouped into
regions. For each area, the population is stored as feature
attribute. The dimension has three hierarchical attributes
(store_id, area, region) and one feature attribute (popula-
tion) that is assigned to the Area level.

Year

Month

Day

DATE

Category

Class

Item

PRODUCT

Region

Area

Store

LOCATION

Profession

Customer

CUSTOMER
Figure 5: The dimension hierarchies of the example

Finally, the PRODUCT dimension is organized into
three levels: Item-Class-Category. Items are grouped into
product classes and those classes are grouped into catego-
ries. For example, one category could be “air condition”.
Also, the attribute brand characterizing each item is a
feature attribute.

Let us now define an example query on the above
schema: We want to see the sum of sales by area and
month for areas with population more than 1 million, for
the months of the year 1999 and for products that belong
to the category “air condition”. The corresponding SQL
expression of this query is given next, while the abstract
processing plan for this query is shown in Figure 6.

SELECT L.area, D.month, SUM(F.sales)
FROM SALES_FACT F, LOCATION L, DATE D,
PRODUCT P
WHERE F.day = D.day AND F.store_id =
L.store_id AND F.product_id = P.item_id AND
D.year = 1999 AND L.population>1000000 AND
P.category = “air condition”
GROUP BY L.area, D.month

Having described the framework for query processing
of OLAP queries, we move next to discuss various opti-
mization issues that arise.

4. Optimization Issues
In this section we will focus on particular parts of the ab-
stract processing plan presented previously. In particular,
our interest will be centered on the hierarchical surrogate
key processing phase and the grouping processing step.
We propose some processing hints for the former and a
transformation of the abstract plan for the latter that can
lead to better processing plans.

4.1 Optimization of the h-surrogate processing phase

Hierarchical surrogate keys play a dominating role in the
processing of star queries over hierarchically clustered
multidimensional data with hierarchies. We have already
presented an abstract processing plan for our target que-

ries. In this plan, we have seen that the very first operation
that needs to be executed is the access to dimension tables
and the extraction of appropriate h-surrogate ranges (Cre-
ate_Range in Figure 3).

SALES_FACT

LOCATION

DATE

Create_Range
(year=1999)

Create_Range
(category =

 „air condition“)

DATE

PRODUCT

Main Execution Phase

h-surrogate processing

Create_Range
(population >

1000000)

LOCATION

Residual_Join
(day)

MD_Range_Access

Group_Select
(area, month)

Residual_Join
(store_id)

Figure 6: The abstract processing plan for the example

query

For the vast majority of dimension restrictions, the
Create_Range operator can be implemented very effi-
ciently. If we consider hierarchical prefix path (HPP) re-
strictions (see section 3.3), then the first matching tuple
on each dimension suffices in order to retrieve the appro-
priate h-surrogate value that will generate the ranges. For
example, if we have the restriction PRODUCT.category =
“air condition” AND PRODUCT.class = “A”, then essen-
tially what we want is all the leaves of the subtree with
root “air condition”/“A”/ defined in the tree instantiating
the hierarchy of dimension PRODUCT. Therefore, if we
retrieve the h-surrogate value corresponding to the first
tuple that qualifies and truncate the part from the right
that corresponds to level Item, then this will be the same
for all matching tuples. Next we can use this truncated h-
surrogate value in order to create a range.

Moreover, if we have stored more information on the
correlations between the attributes of a dimension, apart
from the definition of the hierarchy, then we can benefit
from the above processing scheme, even for non hierar-
chical prefix path restrictions. Suppose we have a hierar-
chy hm, hm-1,…, h1 on a dimension and we have a restric-
tion of the form: hk = c1 AND hp = c2 AND … hi = ci,
where hk, hp,…,hi do not form a prefix of (hm,…,h1) and hi
is the most detailed of the referenced attributes. If we
know that hi functionally determines hj, for all j > i, then
we can still apply the above strategy. For example, for the
restriction DATE.month = “AUG99”, we know that the
month attribute determines the year attribute and thus

only the first tuple that has this value for month suffices
for our processing needs. Similar observations hold for
the restrictions on the feature attributes as well.

A very simple but also quite drastic optimization strat-
egy for the processing of the Create_Range operator,
would be the use of a composite (B-tree) index, for each
dimension table Di, defined over the attributes hm, hm-

1,…,h1, hski. This index’s purpose would be twofold: (a)
it could be used to speedup the retrieval of Di tuples,
when a hierarchical prefix path restriction appears in a
local predicate for Di and (b) it could also be used as a
table that stores the mapping between hierarchical prefix
paths and h-surrogate values. The former use is the classic
exploitation of an index, while the latter gives us the op-
portunity to use this index solely to evaluate all predicates
that contain restrictions on hierarchical attributes only
(and not on feature attributes), without accessing Di, re-
gardless of the existence, or not, of a hierarchical prefix
match. Even if we do not have a match with the search-
key of the index and we have to fully scan the index, this
will be obviously more efficient than scanning the dimen-
sion table Di. Naturally, smaller tuples of the index will
deliver us the required h-surrogate values with much less
I/O cost than if we had to read the Di tuples.

Another issue worth mentioning is that in some cases,
local predicates on dimensions can result in a number of
distinct h-surrogate values not forming a set of intervals.
This inevitably will result in a large number of range que-
ries. However, very often this evaluation produces a set of
h-surrogate values that belong to the same “family” in the
hierarchy and thus can be merged into a single interval,
reducing this way the total number of intervals created.
For example, a local predicate on the LOCATION dimen-
sion with a restriction population > 1000000, could result
to two areas that can be expressed by two intervals. The
restriction, however, may qualify a large number of hier-
archy paths with a corresponding number of distinct h-
surrogates. A clever h-surrogate processing phase can
detect such cases and reduce the number of intervals by
merging h-surrogates of the same area. This would gener-
ate two intervals instead of a large number.

4.2 Grouping on Surrogates

According to the abstract plan, the fact table tuples re-
trieved by the MD_Range_Access operator are joined with
a number of dimension tables. Then, the Group_Select
operator groups the joined tuples and computes the re-
quired aggregates. Although the join operations are on
key - foreign key equalities they can be quite expensive to
perform. This is due to the large number of involved tu-
ples from both the fact and dimension tables. The large
number of tuples leads also to an expensive grouping and
aggregation operation. Our experience from experimental
tests and from real world OLAP applications indicates
that a significant part of the query processing time is spent
in the joining and grouping steps.

In order to optimize these steps one can perform vari-
ous transformations like the ones described in [YL95,
CS94, GHQ95, LJ01] and [LMS94]. Among these, the
transformation that seems to improve the plan in most of
the cases is the Eager-GroupBy transformation [YL95].
This transformation pushes the grouping operator bellow
one or more join operators. This way the join is per-
formed on a much smaller number of tuples while the
grouping operation is performed on smaller size tuples.

The interesting observation in our case is that we can
exploit the existence of h-surrogates in the fact table tu-
ples and perform a new kind of transformation initially
described in [Elh01]. This, so called pre-grouping trans-
formation, allows the grouping of fact table tuples before
all join operations leading to a significant reduction of
both the join and grouping effort. Furthermore, in particu-
lar cases the transformation can remove completely one or
more join operations.

Let us now illustrate our transformation with an ex-
ample query on the schema of section 3.5. Assume we
want to have a report with the professions of all customers
and the average sales value for each such profession. In
our schema each customer has only one profession. The
original plan would join the fact table with the CUS-
TOMER dimension table and group the result with respect
to the profession attribute. For each group the query
would report the profession and the average sales value of
the group.

Using the pre-grouping transformation we can modify
the plan and perform the grouping before the join. In or-
der to do that we use the h-surrogate attribute of the fact
table that corresponds to the CUSTOMER dimension
(cust_hsk). In our example the structure of cust_hsk is:
profession/customer_id. Using only the profession part of
cust_hsk we can group the fact table tuples before joining
them. The advantages of this transformation are obvious
for both the grouping and join operations. Figure 7 illus-
trates the original and the transformed plan of our exam-
ple query.

One might think that the transformed plan in Figure
7(b) need not contain at all the join with the CUSTOMER
table. However, the join is maintained because the h-
surrogates are implemented as an encoding of the path
they represent. Recall that h-surrogates do not store the
path value using the actual values of the hierarchical at-
tributes. However, if for some reason the query of our
example did not require in the output the actual values of
the attribute profession then the transformed plan would
skip completely the join with the CUSTOMER dimension
table. This demonstrates that pre-grouping not only
speeds-up the evaluation of the grouping and join opera-
tions but can also remove join operations from the plan.

CUSTOMER

Residual_Join
(hsk.profession)

MD_Range_Access

Group_Select
(customer_hsk.profession)

Group_Select
(hsk.profession,

profession)

SALES_FACT

CUSTOMER

Residual_Join
(customer_id)

MD_Range_Access

Group_Select
(profession)

(a): original plan

(b): transformed plan

SALES_FACT

Figure 7: The pre-grouping transformation

We argue that the pre-grouping transformation cannot
be implemented using only the Eager-GroupBy or other
similar transformations. As described in detail in [Tso02],
pre-grouping can be considered to be a complex transfor-
mation that combines a novel transformation, called Sur-
rogate-Join, with the Eager-GroupBy and other basic al-
gebraic transformations. The Surrogate-Join transforma-
tion is applicable to joins on key-foreign key equality
when a limited number of attributes are projected after the
join. The transformation, when applicable, modifies the
join condition making it an equality predicate on a differ-
ent pair of attributes while adding two grouping opera-
tions, one for each input source of the join.

In order to perform this transformation it is required
that attributes in one of the input sources of the join must
be (known to be) functionally related to attributes in the
other source. The usage of functional dependencies and
the modification of the join condition make Surrogate-
Join essentially different from any previously defined
transformation for grouping operations. The star schema
and abstract plan that we adopt are particularly suitable
for the application of the pre-grouping transformation
since h-surrogates are functionally related to the hierar-
chical attributes of the dimension tables and all residual
join operations are performed on key-foreign key equality
conditions. In the next section we use the pre-grouping
transformation as part of the general optimization algo-
rithm applied on the Main Execution Phase.

4.3 Optimization of the Main Execution Phase

In this section we give an overview of a heuristic algo-
rithm used to optimize the Main Execution Phase (MEP)
of an abstract plan. The algorithm uses only the syntactic
properties of the query and its main contribution is the
application of the pre-grouping transformation. Although
a cost-based optimizer could achieve further optimiza-
tions the experimental measurements (see section 5) re-

port significant speed-ups when using the proposed heu-
ristic algorithm.

The algorithm assumes the existence of an original ab-
stract plan where a Residual_Join operation exists for
each dimension appearing in the FROM part of the query. It
then follows 4 steps:

• In the first step the redundant Residual_Join opera-
tors are identified and removed.

• In the second step the pre-grouping transformation
is applied and a new Group_Select operator may be
added. All affected operators are modified as
needed.

• In the third step some Residual_Join operators may
be pulled up above the original Group_Select op-
erator in order to perform grouping as soon as pos-
sible.

• Finally, step 4 may eliminate the original
Group_Select operator if this operator is redundant.

Details of the algorithm are in the Appendix.

5. Performance Evaluation
The technology introduced in this paper is fully imple-
mented in the commercial relational DBMS TransBase
HyperCube [TBHC]. This section presents preliminary
measurement results that evaluate the performance of the
proposed techniques.

The measurements are performed on a two processor
PC Pentium III, 750 MHz, with 256 MB RAM and 30 GB
IDE hard disk.

The DW schema consists of a fact table with three di-
mensions CUSTOMER, PRODUCT and DATE and 3
measures: quantity, value and unit_price. The data used
come from a large electronic retailer in Hellas. The CUS-
TOMER dimension contains 1,4 million records, PROD-
UCT consists of 27.000 products and the DATE dimen-
sion covers 7 years on day granularity. 15.543.380 re-
cords are stored in the fact table, amounting to 1,5 GB.

The query workload consisted of 220 ad hoc star que-
ries from a real-world application. We classified the que-
ries into three groups according to their selectivity on the
fact table (i.e., number of tuples retrieved from the fact
table):
• [0.0-0.1]: 0% to 0.1% of fact table, i.e., 0 to about

15K records
• [0.1-1.0]: 0.1% to 1% of fact table, i.e., 15K to 160K

records
• [1.0-5.0]: 1.0% to 5.0% of fact table, i.e., 160K to

780K records
The goal of the performance evaluation was to meas-

ure three alternative execution plans:
(a) the conventional star join plan (STAR),
(b) the abstract execution plan as described in section 3

(called AEP) and
(c) the enhanced version taking the pre-grouping optimi-

zations of section 4 into account (called OPT).

FT Sel. % [0.0-0.1] [0.1-1.0] [1.0-5.0]

 STAR AEP OPT STAR AEP OPT STAR AEP OPT

MIN 0 0 0 65 2 2 274 11 6

MAX 30 6 3 290 9 6 1219 47 27

MEDIAN 1 1 1 182 8 5 477 23 13

STD-DEV 4.9 1.2 0.5 75.6 3.1 1.6 346.0 14.1 7.9

Table 1: Response time (in sec) for the three techniques for the three query classes

STAR uses secondary indexes that are created on the
dimension keys of the fact table. The restrictions on the
dimension tables are evaluated and the resulting dimen-
sion keys are used for index intersection on the fact table.
The resulting records are joined with the dimension ta-
bles, in order to perform grouping and get the final result.
This is the typical processing of star queries in commer-
cial DBMSs (e.g., star transformation in Oracle [Ora01]).
This processing has two major steps: the index intersec-
tion and the tuple materialization. While the index inter-
section has largely been optimized (e.g., with bitmap in-
dexes [NQ97]) the materialization of results is still the
bottleneck of non-clustering indexes. Consequently, we
neglect the index intersection time for STAR and just
measure the time for fact record materialization, residual
joins and grouping. For AEP and OPT the complete proc-
essing including index access is measured, therefore fa-
voring STAR.

Table 1 shows the response time analysis (in seconds)
for the three alternative processing plans. As the three
classes contain queries with different result set size and
thus different response times we use the maximum,
minimum, median time and the standard deviation to ana-
lyze the performance.

Our results show that the standard STAR processing is
outperformed by our approaches. However, for small que-
ries, i.e., the class [0.0-0.1], the speedup is below an order
of magnitude. In general, for small result sets, the advan-
tage of clustering over non-clustering is not that large.
The picture changes drastically, when we consider larger
queries (classes [0.1-1.0] and [1.0-5.0]), which are more
typical for OLAP applications. The hierarchical clustering
of AEP leads to an average speedup compared to STAR
of 24 and with the additional optimization of pre-grouping
an additional factor of about two is gained.

Note also that STAR has a very high deviation in the
response times for queries within one class. This is mainly
for two reasons: (a) STAR performance deteriorates very
fast as the fact table selectivity is increased and (b) since
the fact table is not stored clustered the number of per-
formed I/Os may differ significantly from one query to
another. On the other hand, the deviation for AEP and
OPT remains low, showing a much more stable behavior.

6. Summary and Conclusions
In this paper, we have focused on the processing of the
most common type of query in data warehouse and OLAP

environments: the star query. For realistic database sizes a
star query may take from a couple of minutes to a few
hours to execute, depending on the complexity of the
query and the number of tuples retrieved from the fact
table. The need for fast answers to ad hoc star queries is a
real-world problem for all contemporary business intelli-
gence applications.

One of the most promising techniques for efficiently
evaluating such queries is the use of fact table organiza-
tions that store data clustered according to the dimension
hierarchies. A special hierarchical encoding is imposed
on the data and star joins are transformed to multidimen-
sional range queries on the underlying multidimensional
structures. The conventional star query evaluation plan
changes radically and new processing steps are required.
To this end, we have introduced an abstract execution
plan (AEP) where we describe all the necessary process-
ing steps for the evaluation of star queries over hierarchi-
cally clustered fact tables. Furthermore, we have identi-
fied ways to minimize the processing effort entailed in the
evaluation of dimension restrictions and the extraction of
h-surrogate ranges. In addition, we have presented a novel
early grouping transformation that dramatically reduces
the overhead of both residual joining and grouping.

Our experimental evaluation has showed an average
speed-up of more than 20 compared to a conventional
plan and more than 40 for the optimized AEP plan, for
queries that retrieved more than 0.1% of the fact table
tuples. In summary, the major contribution of this paper is
that it sets a processing framework for evaluating star
queries over hierarchically clustered fact table organiza-
tions. The significance of our proposal is amplified by the
fact that it has already been incorporated in a commercial
RDBMS and our experimental evaluation results have
been confirmed in real-life applications. It is important to
point out that this processing framework may also apply
to clustering and query processing of other hierarchically
structured data, such as XML documents. We plan to fur-
ther investigate this possibility in the future. In addition,
our current work includes extensive experimental evalua-
tion of the optimization techniques as well the develop-
ment of further optimizations, such as alternative methods
for reducing the number of h-surrogate ranges and conse-
quently the number of range queries evaluated over the
fact table.

7. Acknowledgements
This work has been partially funded by the European Un-
ion's Information Society Technologies Programme (IST)
under project EDITH (IST-1999-20722).

8. Bibliography
[Bay97] R. Bayer. The universal B-Tree for multi-

dimensional Indexing: General Concepts. WWCA
’97. Tsukuba, Japan, LNCS, Springer Verlag,
March, 1997.

[CD97a] S. Chaudhuri, U. Dayal: An Overview of Data
Warehousing and OLAP Technology. SIGMOD
Record 26(1): 65-74 (1997)

[CD97b] S. Chaudhuri, U. Dayal: Data Warehousing and
OLAP for Decision Support (Tutorial). SIGMOD
Conference 1997: 507-508

[CI98] C. Y. Chan, Y. E. Ioannidis: Bitmap Index Design
and Evaluation. SIGMOD Conference 1998: 355-
366

[CS94] S. Chaudhuri, K. Shim: Including Group-By in
Query Optimization. VLDB 1994: 354-366

[DRNS98] P. Deshpande, K. Ramasamy, A. Shukla, J. F.
Naughton: Caching Multidimensional Queries
Using Chunks. SIGMOD Conference 1998: 259-
270

[Elh01] K. Elhardt: MHC Processing with TransBase Op-
erator Trees. Technical Report, TransAction Soft-
ware GmbH 2001.

[GBLP96] J. Gray, A. Bosworth, A. Layman, H. Pirahesh:
Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Total.
ICDE 1996: 152-159

[GG97] V. Gaede and O. Günther. Multidimensional Access
Methods. ACM Computing Surveys 30(2), 1997.

[GHQ95] A. Gupta, V. Harinarayan, D. Quass: Aggregate-
Query Processing in Data Warehousing Environ-
ments. VLDB Conference 1995: 358-369

[GLS01] C. A. Galindo-Legaria, M. Joshi: Orthogonal Opti-
mization of Subqueries and Aggregation. SIGMOD
Conference 2001

[GM95] A. Gupta, I. S. Mumick: Maintenance of Material-
ized Views: Problems, Techniques, and Applica-
tions. Data Engineering Bulletin 18(2): 3-18 (1995)

[Kim96] R. Kimball. The Data Warehouse Toolkit. John
Wiley & Sons, New York. 1996.

[KR98] Y. Kotidis, N. Roussopoulos: An Alternative Stor-
age Organization for ROLAP Aggregate Views
Based on Cubetrees. SIGMOD Conference 1998:
249-258

[KS01] N. Karayannidis, and T. Sellis, “SISYPHUS: A
Chunk-Based Storage Manager for OLAP Cubes”,
Proceedings of the 3rd International Workshop on
Design and Management of Data Warehouses
(DMDW'2001), Interlaken, Switzerland, June 2001

[LMS94] A. Y. Levy, I. S. Mumick, Y. Sagiv: Query Optimi-
zation by Predicate Move-Around. VLDB Confer-
ence 1994: 96-107

[MRB99] V. Markl, F. Ramsak, R. Bayern: Improving OLAP
Performance by Multidimensional Hierarchical
Clustering. Proc. of the Intl. Database Engineering
and Applications Symposium, pp. 165-177, 1999.

[NG95] P. E. O'Neil, G. Graefe: Multi-Table Joins Through
Bitmapped Join Indices. SIGMOD Record 24(3): 8-
11 (1995)

[NHS84] J. Nievergelt, H. Hinterberger, K. C. Sevcik: The
Grid File: An Adaptable, Symmetric Multikey File
Structure. TODS 9(1): 38-71 (1984)

[NQ97] P. E. O'Neil, D. Quass: Improved Query Perform-
ance with Variant Indexes. SIGMOD Conference
1997: 38-49

[Ora01] Oracle 8i Documentation, 2001.
[Rou98] N. Roussopoulos: Materialized Views and Data

Warehouses. SIGMOD Record 27(1): 21-26 (1998)
[Sam90] H. Samet. The Design and Analysis of Spatial Data

Structures. Addison Wesley, 1990
[Sar97] S. Sarawagi: Indexing OLAP Data. Data Engineer-

ing Bulletin 20(1): 36-43 (1997)
[SDJL96] D. Srivastava, S. Dar, H. V. Jagadish, A. Y. Levy:

Answering Queries with Aggregation Using Views.
VLDB Conference 1996: 318-329

[TBHC] The TransBase HyperCube relational database
system, available at: http://www.transaction.de/

[Tso02] A. Tsois: Decomposing pre-grouping: the Surro-
gate-Join transformation. Technical Report, KDBS
Lab, NTUA, TR-2002-01.

[TT01] D. Theodoratos, A. Tsois: Heuristic Optimization of
OLAP Queries in Multidimensionally Hierarchi-
cally Clustered Databases. DOLAP 2001.

[WB98] M.C. Wu, A. P. Buchmann: Encoded Bitmap Index-
ing for Data Warehouses. ICDE 1998: 220-230

[WOS01] K.Wu, E. J. Otoo, A. Shoshani: A Performance
Comparison of bitmap indexes. CIKM 2001: 559-
561

[Wu99] Ming-Chuan Wu: Query Optimization for Selec-
tions Using Bitmaps. SIGMOD Conference 1999:
227-238

[YL94] W. P. Yan, P-Å. Larson: Performing Group-By
before Join. ICDE 1994: 89-100

[YL95] W. P. Yan, P.-Å. Larson: Eager Aggregation and
Lazy Aggregation. VLDB Conference 1995

[ZSL98] C. Zou, B. Salzberg, and R. Ladin: Back to the
Future: Dynamic Hierarchical Clustering. Proc. Of
ICDE, 1998, pp. 578-587.

APPENDIX: Heuristic Algorithm

In order to present the details of the algorithm, we will
use the following definitions:

Hlevel: The Hlevel of a hierarchy attribute hk in a dimen-
sion table is defined to be k. The Hlevel of a feature at-
tribute f of a dimension is k, if f is known to be function-
ally dependent on hk, 1 otherwise.
Grouping Order: Let g1, …, gk be the set of grouping
attributes of the GROUP BY clause which belong to di-
mension Di. For dimension Di, the grouping order GO(Di)
is defined to be the minimum Hlevel(gi) for 1 ≤ i ≤ k.
Aggregation Order: Let a1, …, ak be the set of aggrega-
tion attributes in the SELECT (Aggr) or HAVING (HP)
clause that belong to dimension Di. The aggregation or-
der AO(Di) for Di is defined to be the minimum Hlevel(ai)
for 1 ≤ i ≤ k.
Dimension Order: The dimension order DO(Di) for Di is
defined to be the minimum among AO(Di) and GO(Di). If
AO(Di) and GO(Di) are not defined then DO(Di)=∞.

Given the above definitions we proceed to give the de-

tails of the heuristic optimization algorithm. The algo-
rithm assumes that each hierarchical attribute hk function-
ally determines all higher level hierarchical attributes of
the dimension: hk+1, hk+2, …

Algorithm HO
1) Eliminate redundant joins:

If the attributes of a dimension table Di are used nei-
ther in the SELECT (SGA, Aggr) part of the query nor
in the HAVING (HP) or ORDER BY (OL) part, and no
feature attributes of Di appear in the list of grouping
attributes (GAf) then the Residual_Join operator for Di
is removed from the plan.

2) Introduce the new Group_Select operator:
Compute the total order of the query:
TO=max(DO(Di)) where Di in D. If TO>1, add a new
Group_Select operator (nGS) just above the
MD_Range_Access operator. The details of adding
this new operator are as follows:
2a) The new operator nGS will group on the prefix
part of h-surrogates (hski) truncated bellow the DO(Di)
level. For each aggregation function of the original
Group_Select operator (oGS) that operates on a meas-
ure attribute Xk=Aggrk(ft.mk), the nGS operator con-
tains the aggregation nXk=Aggrk(ft.mk). Furthermore,
if AO(Di) is defined for some dimension, then an addi-
tional aggregation is added to the nGS; the role of this
aggregation is to count the number of tuples in each
group: CNT=COUNT(*). Finally, nGS contains an
aggregation Rdi=MIN(di) for each dimension Di that
participates in a Residual_Join operator.

2b) For each aggregation attribute Rdi of nGS we mod-
ify the join condition of the Residual_Join operator for
the corresponding dimension Di. The condition be-
comes: Rdi=Di.h1.
2c) Modify the list of grouping attributes of the origi-
nal Group_Select operator in the following way: each
grouping attribute Di.hk in GAh is replaced by the h-
surrogate attribute hski truncated bellow level k.
2d) Modify the aggregation terms of oGS so that each
term oldTerm is replaced by a term newTerm accord-
ing to the following table:

oldTerm newTerm
Xk=Aggrk(ft.mk) Xk=Aggrk(nXk)
COUNT(ft.mk) SUM(nXk)
SUM(Di.ak) SUM(CNT*Di.ak)
COUNT(*) SUM(CNT)
COUNT(Di.hk) SUM(CNT)
COUNT(Di.fk) SUM(CNT⊗Di.fk)

In the above table the expression function CNT⊗Di.fk
returns 0 when fk is NULL and CNT otherwise. Also,
Di.ak is any attribute of Di.

3) Pull up Residual_Join operators:
If a dimension Di has GO(Di)>AO(Di) or there is a fea-
ture attribute of Di in the list of grouping attributes
(GAf) or an attribute of Di is used in the HAVING
predicate (HP), then the Residual_Join operator for
this dimension remains bellow the original
Group_Select (oGS) operator. All other Residual_Join
operators are pulled up, after oGS.

4) Eliminate the original Group_Select operator:
If nGS has been added to the plan and there is no Re-
sidual_Join operator after nGS and before the original
Group_Select operator (oGS), then oGS is not needed
and is removed. The selection predicate (HP) of oGS
is moved into nGS and the terms nXk=Aggrk(ft.mk) are
renamed to Xk=Aggrk(ft.mk).

	STD-DEV

