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Abstract 
In spite of the many decades of progress in 
database research, surprisingly scientists in the 
life sciences community still struggle with 
inefficient and awkward tools for querying 
biological data sets.  This work highlights a 
specific problem involving searching large 
volumes of protein data sets based on their 
secondary structure.  In this paper we define an 
intuitive query language that can be used to 
express queries on secondary structure and 
develop several algorithms for evaluating these 
queries.  We implement these algorithms both in 
Periscope, a native system that we have built, 
and in a commercial ORDBMS.  We show that 
the choice of algorithms can have a significant 
impact on query performance.  As part of the 
Periscope implementation we have also 
developed a framework for optimizing these 
queries and for accurately estimating the costs of 
the various query evaluation plans.  Our 
performance studies show that the proposed 
techniques are very efficient in the Periscope 
system and can provide scientists with 
interactive secondary structure querying options 
even on large protein data sets. 

1. Introduction 
The recent conclusion of the Human Genome Project has 
served to fuel an already explosive area of research in 
bioinformatics that is involved in deriving meaningful 
knowledge from proteins and DNA sequences.  Even with 
the full human genome sequence now in hand, scientists 
still face the challenges of determining exact gene 

locations and functions, observing interactions between 
proteins in complex molecular machines, and learning the 
structure and function of proteins through protein 
conservation, just to name a few.  The progress of this 
scientific research in the increasingly vital fields of 
functional genomics and proteomics is closely connected 
to the research in the database community in that 
analyzing large volumes of biological data sets involves 
being able to maintain and query large genetic and protein 
databases [19, 27].  If efficient methods are not available 
for retrieving these biological data sets, then 
unfortunately the progress of scientific analysis is 
encumbered by the limitations of the database system. 

This work looks at a specific problem of this nature 
that involves methods for searching protein databases 
based on secondary structure properties.  We will define a 
problem that the scientific community faces regarding 
current protein search techniques and provide a query 
language and a system to efficiently answer these queries. 

1.1 Biological Background 
Proteins have four levels of structural organization, 
primary, secondary, tertiary, and quaternary; the latter 
two are not considered in this work.  The primary 
structure is the linear sequence of amino acids that makes 
up the protein; this is the structure most commonly 
associated with protein identification [24].  The secondary 
structure describes how the linear sequence of amino 
acids folds into a series of three-dimensional structures.  
There are three basic types of folds:  alpha helices (h), 
beta sheets (e), and turns or loops (l).  Because these 
three-dimensional structures determine a protein’s 
function, knowledge of their patterns and alignments can 
provide important insights into evolutionary relationships 
that may not be recognizable through primary structure 
comparisons [22].  Therefore, examining the types, 
lengths, and start positions of its secondary structure folds 
can aid scientists in determining a protein’s function [2]. 

1.2 Scientific Motivation 
The discovery of new proteins or new behaviors of 
existing proteins necessitates complex analysis in order to   
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determine their function and classification.  The main 
technique that scientists use in determining this 
information has two phases.  The first phase involves 
searching known protein databases for proteins that 
“match” the unknown protein.  The second phase involves 
analyzing the functions and classifications of the similar 
proteins in an attempt to infer commonalities with the 
new protein [2].  These phases may be intertwined as the 
analysis of matches may provide interesting results that 
could be further explored using more refined searches. 

The above simplification of the search process glosses 
over the actual definition of protein similarity.  The 
reason for this is that no real definition of protein 
similarity exists; each scientist has a different idea of 
similarity depending on the protein structure and search 
outcome goal.  For example, one scientist may feel that 
matching on primary structure is beneficial, while another 
may be interested in finding secondary structure 
similarities in order to predict biomolecular interactions 
[16].  In addition to these complications, there is a 
plethora of differing opinions even within same-structure 
searches.  One scientist may want results that exactly 
match a small, specific portion of the new protein, while 
another may feel that a more relaxed match over the 
entire sequence is more informative. 

What is urgently needed is a set of tools that are both 
flexible with regards to posing queries and efficient with 
regards to evaluating queries on protein structures.  
Whereas there are a number of public domain tools, such 
as BLAST, for querying genetic data and the primary 
structure of proteins [1, 3, 4, 27, 28], to the best of our 
knowledge there are no tools available for querying on the 
secondary structure of proteins.  This work addresses this 
void and focuses on developing a declarative and efficient 
search tool based on secondary structure that will enable 
scientists to encode their own definition of secondary 
structure similarity. 

Another motivation for this work stems from the 
desire for more efficient search tools.  For example, the 
BLAST [1, 3, 4, 28] queries submitted to their web site 
can take hours or days to return.  This is a combination of 
two factors:  high server loads caused by multiple 
concurrent users, and the efficiency of the query 
evaluation algorithm.  The server load bottleneck can be 
alleviated by downloading the BLAST code and running 
it on a local server.  This solution is inadequate, however, 
as most of the query evaluation algorithms employ 
sequential scans to answer a query [13].  This translates 
into long response times, which are unacceptable 
considering that often scientists want to pose queries 
interactively to systematically validate or invalidate a 
number of hypotheses.  As the set of hypotheses is 
typically altered based on previous query answers, long 
query response times may dramatically slow down the 
rate of progress of their research.  Therefore a major goal 
of our secondary structure search tool is to employ very 
efficient query evaluation techniques. 

1.3 Contributions and Paper Organization 
This paper makes the following contributions.  We define 
a simple and intuitive query language for posing 
secondary structure queries based on segmentation.  We 
identify various algorithms for efficiently evaluating these 
queries and show that depending on the query and 
segment selectivities, the choice of the algorithm can have 
a dramatic impact on the performance of the query.   

We develop a query optimization framework to allow 
an optimizer to choose the optimal query plan based on 
the incoming query and data characteristics.  As the 
accuracy of any query optimizer is dependent on the 
accuracy of its statistics, for this application we need to 
accurately estimate both the segment and overall result 
selectivities.  We develop histograms for estimating these 
selectivities and demonstrate that these histograms are 
very accurate and take only a small amount of space to 
represent.     

Finally, we implement our techniques in Periscope, a 
native DBMS that we have developed for querying 
biological data sets, as well as a commercial object-
relational database management system (ORDBMS).  
Periscope allows us to test algorithms that we cannot test 
using the commercial system; and using actual data sets, 
we are able to experimentally demonstrate Periscope’s 
effectiveness.  We believe that Periscope is extremely 
efficient and will be a valuable addition to the arsenal of 
search tools that are needed for life sciences research. 

The remainder of the paper is organized as follows:  in 
Section 2 we describe the protein format that we use.  
Section 3 describes our query language.  Our methods for 
evaluating queries are discussed in Section 4, while 
Section 5 describes the framework for a query optimizer 
and our estimation techniques.  Section 6 contains 
experimental results, and Section 7 discusses future work 
and concludes the paper. 

2. Protein Format 
The first task to accomplish is to establish the protein 
format we will use in our system.  This format is largely 
dependent on the prediction tool that is used to generate 
the secondary structure of proteins in our database.  For 
the majority of known proteins, their secondary structure 
is a predicated measure; only a few hundred proteins 
actually have known secondary structures.  In order to 
obtain the secondary structure for a given protein, 
therefore, it is necessary to enter its primary structure into 
a prediction tool that will return the protein’s predicted 
secondary structure.  Most available prediction tools are 
between 60% and 70% accurate.   

The tool used to predict the secondary structure 
information for the proteins in our database is Predator 
[10].  Predator is a secondary structure prediction tool 
based on recognition of potentially hydrogen-bonded 
residues in a single amino acid sequence; it is 65% 
accurate.  We chose this particular tool because we were 



 

 

able to download the code and run it locally on our own 
machine rather than submitting the database proteins one-
by-one to their site.  However, our techniques will work 
with other protein prediction tools as well. 

Predator returns the protein name, its length in amino 
acids, its primary structure, and its predicated secondary 
structure along a number in the range 0-9 for each 
position.  This number indicates the probability that the 
prediction is accurate for the given position.  We add a 
unique id to each protein for internal purposes.  Figure 1 
contains a portion of a sample protein in our database. 

3. Query Language and Sample Queries 
Next we determine the types of queries that are useful to 
scientists in order to examine secondary structure 
properties and design a query language to express these 
queries.  Based on interviews with scientists who perform 
secondary structure protein analysis on a regular basis, we 
are able to formulate three initial classes of queries.  As 
these queries are defined, an intuitive query language 
begins to emerge.  Due to the fact that only three types of 
secondary structure can occur in a protein sequence, ‘h’, 
‘e’, and ‘l’, and as these types normally occur in groups as 
opposed to changing at each position, it is natural to 
characterize a portion of a secondary structure sequence 
by its type and length.  For example, because the 
sequence ‘hhhheeeelll’ is more likely to occur than 
‘helhelehle,’ it is intuitive to identify the first sequence as 
three different segments:  4 h’s, 4 e’s, and 3 l’s. 

The formal process for posing a query is to express the 
query as a sequence of segment predicates, each of which 
must be matched to satisfy the query.  Each segment 
predicate in the query is described by the type and the 
length of the segment.  It is often necessary to express 
both the upper and lower bounds on the length of the 
segment instead of the exact length.  Finally, in addition 
to the three type possibilities, ‘h’, ‘e’, and ‘l’, we also use 
a fourth type option, ‘?’, which stands for a gap segment 
and allows scientists to represent regions of unimportance 
in a query.  The formal query language is defined in 
Figure 2.  A quick note on terminology:  throughout this 
paper we will refer to segment predicates as either query 
predicates or simply predicates. 

We will now look at three important classes of queries 
that can be expressed using the language described above.  
In the simplest situations, scientists would like to find 
proteins that contain an exact query sequence, such as {<h 
3 3><e 4 4>}.  Our algorithms take the exactness of these 

predicates literally in that matches that are part of a larger 
sequence are not returned.  For example, the sequence 
‘hhhheeee’ would not match the above query because it 
contains four ‘h’s, not the specified three.  While exact 
matching is important, in some cases it may be sufficient 
to find matches of approximate length.  This can be 
expressed using range queries such as {<h 3 5><l 2 8>}, 
which finds all proteins that contain a helix of length 3 to 
5 followed by a loop of length 2 to 8.  Another feature 
scientists would like to be able to express in their queries 
is the existence of gaps between regions of importance.  A 
gap query can be expressed as {<h 4 6><? 0 ∞><l 5 5>}, 
which finds all proteins that contain a helix of length 4 to 
6 followed at some point by a loop of length 5.  These 
three classes of queries provide an initial functionality for 
our system to solve; we will look at more complex 
queries in our future work.  A more formal definition of 
the three query classes may be found in the full-length 
version of this paper [12]. 

4. Query Evaluation Techniques 
This section describes four methods for evaluating the 
types of queries defined above.  The first approach uses a 
protein scan while the last three utilize a segmentation 
technique similar to that described in Section 3 that 
represents proteins as sequences of segments. 

4.1 Complex Scan of Protein Table (CSP) 
The first approach performs a scan of the protein table 
itself.  One by one, each protein in the database is 
retrieved, its secondary structure is scanned, and its 
information is returned if the secondary structure matches 
the query sequence.  The matching check is performed 
using a non-deterministic finite state machine (FSM) 
technique similar to that used in regular expression 
matching [26].  Each secondary structure is input to the 
FSM one character at a time until either the machine 
enters a final (matching) state or it is determined that the 
input sequence does not match the query sequence.  The 
FSM itself is constructed once for each query.   

As protein sequences can be long, sometimes 
consisting of thousands of amino acids, it is common for a 
query sequence to match more than once in a given 
protein.  Scientists are interested in each match, not just 
each matching protein.  In other words, if a sequence 
matches a given protein in two distinct places, each of 

name: t2_1296
id: 1
length: 554
primary structure: |GQISDSIEEKRGFFSTKR..
secondary structure:|HLLLLLLLLLLHHHEEEE..
probability: |855577763445449476..

Figure 1: Sample Protein 

Query -> {Segments}
Segments -> Segment*
Segment -> <type lb ub>
type -> e | h | l | ?
lb -> any integer >= 0
ub -> any integer >= 0 | ∞
Segment Constraint: lb <= ub

Figure 2:  Query Language Definition 



 

 

these places must be reported separately.  To achieve this 
result our algorithm checks for all possible occurrences in 
a protein by running the FSM matching test once for each 
position in the protein’s secondary structure. 

4.2 General Segmentation Technique 
The last three approaches are based on a segmentation 
scheme that represents proteins as a sequence of 
segments.  This segmentation technique is similar to the 
one described in [23] in which they are interested in 
retrieving sequences of integers.  The idea is to break the 
secondary structure of a protein into segments of like 
types.  These segments are stored in a separate segment 
table.  Along with the type and length of each segment, 
the protein id of the segment’s originating protein and the 
start position of the segment in that protein are also 
stored.  A multi-attribute B+-tree index is built on the 
segment table’s type and length attributes.  A clustered 
B+-tree index is also built on the protein id of the protein 
table to facilitate protein retrieval.  Table 1 and Table 2 
show an example of several small protein entries with 
their corresponding segment tuples.  The protein table 
fields are the same as described in Figure 1. 
 

name id len primary secondary prob. 
A 1 5 mtgpi lleee 99401 
B 2 6 liffki hhheee 983121 

Table 1:  Sample Protein Table 

seg id id type length start position 
1 1 l 2 1 
2 1 e 3 3 
3 2 h 3 1 
4 2 e 3 4 

Table 2:  Sample Segment Table 

The remaining three segmentation techniques all 
incorporate some variation on the following plan 
description to produce proteins that satisfy a given query.  
In general, each non-gap predicate of a query can be 
evaluated using either a scan of the segment table or an 
index probe.  Once individual matching segments of the 
query have been retrieved, they can be merged based on 
protein id; the start position information can then be used 
to satisfy the ordering constraints between segments to 
produce final matching results.   

In all three techniques, once the matching protein ids 
have been found, they must still be joined with the protein 
table in order to obtain the actual proteins.  This is 
accomplished by an index-nested loops join (INLJ) of the 
protein ids with the B+-tree index built on the protein id 
attribute of the protein table.  These protein ids (obtained 
from the segment predicate matches) are first sorted in 
order to improve the performance of the INLJ.  This join 
provides quick retrieval of the actual proteins stored in the 

protein table, especially as the B+-tree index is clustered 
on the protein id attribute. 

This segmentation query plan can be conveyed in 
standard database terminology through SQL queries using 
the segment and protein tables.  For example, in SQL the 
query {<e 3 9><? 3 5><h 2 2>} is expressed as: 

 “select * from proteinTbl p, segTbl s1, segTbl s2      
where s1.type = ‘e’ and s2.type = ‘h’ and s1.id = s2.id 
and s1.id = p.id and s1.length >= 3  
and s1.length <= 9 and s2.length = 2  
and s2.start_pos – (s1.start_pos + s1.length) <= 5  
and s2.start_pos – (s1.start_pos + s1.length) >= 3;” 

4.2.1 Simple Scan of Segment Table (SSS) 
In this technique the entire segment table is scanned for 
segments that match the most highly selective predicate 
of the query.  All of the segments returned by the scan 
then participate in the aforementioned INLJ to retrieve 
their actual proteins.  If there are additional predicates in 
the query, each retrieved protein is then scanned using the 
FSM technique described in Section 4.1 to determine the 
final matching verdict. 

4.2.2 Index Scan of Segment Index (ISS) 
The index scan query plan is essentially identical to the 
SSS method with one exception.  Instead of scanning the 
segment table, the ISS method probes the segment index 
with the most selective segment predicate. 

4.2.3 Multiple Index Scans of Segment Index 
(MISS(n)) 

The final method described in this paper, the multiple 
index scan technique, is a generalization of the ISS plan.  
The basic change is that instead of only performing one 
index probe, the B+-tree index is now probed n times with 
the n most highly selective query predicates, where n can 
range from two to the total number of predicates in the 
query.  The segment results of each individual index 
probe are sorted, first by protein id and then by start 
position, and written to separate files.   

The newly written files then participate in an n-way 
sort-merge join to find query segments with the same 
protein id.  At this point the start position information is 
used to determine whether the segments occur in the 
correct order within the protein and if the proper gap 
constraints between them are met.  If the segments match 
the query constraints, then the corresponding protein id is 
returned.  As with the previous two plans, the protein id 
then participates in an INLJ with the protein id index 
followed by a possible complex scan to test for any 
remaining query predicates. 

5. Query Optimizer and Estimation 
When a query is posed to Periscope, the system must 
decide which of the four plans should be used to evaluate 



 

 

the given query.  In this section we present the framework 
of a query optimizer that is used to make this decision.  
As in the classic System R paper, our query optimizer 
utilizes cost functions that model the CPU and I/O 
resources of each plan [5, 25].  These cost functions take 
as input the estimations of the selectivity of each of the 
query predicates and the selectivity of the result.  
Traditional database management systems utilize 
histograms to provide such estimations [14, 15, 17, 20, 
25].  The unique, restricted nature of the segment query 
language and the composition of protein secondary 
structure allows the Periscope query optimizer to 
incorporate these standard techniques and expand the 
estimation capabilities of histograms beyond their typical 
capacity.  We utilize two histograms in our current 
implementation:  a basic one that determines the 
selectivities of the query predicates and a more complex 
one to estimate the result protein selectivity. 

5.1 Basic Histogram 
The basic histogram contains information about the 
number of segments in the segment table for a given type 
and length pair.  As there are only three possible types, 
‘e’, ‘h’, and ‘l’, and as the segments are usually relatively 
small in length, it is neither space nor time consuming to 
maintain exact counts for the majority of protein 
segments.  The basic histogram is stored in the form of a k 
x 3 matrix, where k is the number of length buckets in the 
histogram and the second dimension has one value for 
each of the three possible types, ‘e’, ‘h’, and ‘l’.  For 
example, position [7][2] holds the number of <h 7 7> 
segments.  The last bucket is used to represent all 
segments with length greater than or equal to k.  For range 
predicates, an estimate is computed by summing the 
counts in the appropriate range of buckets.  This estimate 
is exact for all segment predicates that are less than k in 
length. 

In our current implementation, the number of buckets 
is set to one hundred, since segments rarely have a length 
of longer than one hundred positions.  This size is also 
small enough to ensure a compact storage representation 
for the histogram.  Segments over a length of one hundred 
are considered to have a default low selectivity.  

This histogram may be populated during or 
immediately following the loading of the segment table.  
Updates can be performed upon each new protein 
addition without significant time penalty.  With the 
protein data set that we use for our experimentation, 
which contains 248,375 proteins and their associated 
10,288,769 segments, this histogram requires only 13 
seconds to build and is created immediately after the 
loading of the segment table.  The time spent by the query 
optimizer in estimating query predicate selectivities using 
this histogram is minimal, less than a millisecond per 
predicate on average.  In terms of space requirements, the 
histogram contains information about greater than 99% of 
all segments and occupies only 1.2 KB of disk space. 

5.2 Complex Histogram 
The second histogram, which has a more complex 
structure, is used to estimate the selectivity of the entire 
query result, not just of a given query predicate.  This 
calculation procedure surpasses traditional histogram 
estimation techniques in that it finds the probability of 
multiple attributes occurring in a specific order in the 
same string, possibly separated by gap positions.  This 
estimation technique is in contrast to traditional 
histograms that are used to estimate the occurrence of a 
single attribute [14, 15, 25] or multiple unordered 
substrings [17]. 

5.2.1 Description 
The complex histogram is stored as a four-dimensional 
matrix; the first dimension corresponds to the protein id 
attribute, the second dimension to the start position 
attribute, and the third and fourth dimensions represent 
the same length and type attributes as in the basic 
histogram.  Due to the large number of proteins found in 
protein databases and their long sequence lengths, the first 
two dimensions are divided into equi-width buckets to 
reduce space requirements.  For example, in our 
experimental data set with 248,375 proteins and 
10,288,769 segments, we use one hundred buckets each 
for the first, second and third dimensions and three 
buckets for the fourth dimension (corresponding to the 
three types ‘e’, ‘h’, and ‘l’).  Position [3][4][7][2], for 
example, holds the number of <h 7 7> segments whose 
starting position is in the range of the 4th bucket and 
whose protein id lies within the 3th bucket. 

5.2.2 Result Cardinality Estimation 
In the interest of space, we explain our cardinality 
estimation algorithm using an example; a more detailed 
explanation of the algorithm is provided in the full-length 
version of this paper [12].  Consider the query: 
{<P1><P2>}, which has two predicates P1 and P2.  Table 3 
shows all possible arrangements for the two predicates in 
a histogram with three buckets for the start position 
ranges 0-49, 50-99 and 100-149, respectively.  For 
simplicity we assume here that these three start position 
buckets correspond to the same protein id bucket.  Note 
that the type and length attributes of the buckets shown in 
the table are implicitly defined based on the definition of 
the predicates P1 and P2.  

The arrangements of these two predicates fall into two 
configurations.  In the first configuration, the predicates 
match segments in distinct start position buckets.  For the 
two-predicate example, cases 1-3 show all possible 
arrangements in this configuration.  In the second 
configuration, corresponding to cases 4-6 in Table 3, both 
predicates match segments in the same bucket.  

We now need formulas to estimate the number of 
matches in each of these cases.  Once we have these 
formulas, the result cardinality is the sum of the estimates 
from each of the cases.  The result selectivity follows by 



 

 

dividing the cardinality by the total number of proteins in 
the database.  We next present the estimations for cases in 
both these configurations.  In the proceeding discussions 
we will refer to these configurations as distinct bucket and 
same bucket configurations. 
  

  B1 (0-49) B2 (50-99) B3 (100-149) 
1 P1 P2  
2 P1  P2 
3  P1 P2 
4 P1 & P2   
5  P1 & P2  
6   P1 & P2 

Table 3:  Arrangement Possibilities for Two Query 
Predicates in Three Start Position Buckets 

The calculations for both types of configurations are 
performed with the assumption that the segments are 
uniformly distributed throughout the protein id and start 
position buckets.  The distinct bucket configuration 
estimate is calculated by multiplying the number of 
matching first-predicate segments found in the first start 
position bucket by the number of second-predicate 
matches found in the second bucket divided by the 
number of proteins ids in each protein id bucket.  The 
division operation is necessary because of the uniform 
distribution assumption.  This formula can be generalized 
to estimate the number of results from n predicates in n 
distinct start position buckets and can also incorporate 
gap information to automatically disregard start position 
buckets that do not satisfy the gap requirements.  For 
brevity, exact details of the algorithm are omitted here but 
are presented in [12].  

The calculations for the same bucket configuration are 
more complex.  When P1 and P2 are in the same bucket, 
P1’s start position could be anywhere within the range of 
that bucket.  We assume a uniform distribution of the start 
positions of the two predicates.  For each possible first-
predicate start position, we calculate the chances of the 
second predicate being in the proceeding start positions 
and in the same protein.  For example, in case 4, the 
number of proteins that match P1 at position 9 is np1 = 
(1/50) * (number of P1 in B1).  Similarly, the number of 
proteins that match P2 in positions 10 to 49 is np2 = (4/5) 
* (number of P2 in B1).  Now, assuming that there are one 
hundred proteins in each protein id bucket, the estimated 
number of proteins that match the query in start position 9 
for the given protein id bucket is:  (np1 * np2)/100.  To get 
the total estimate for the bucket B1 we integrate over all 
the possible start positions.  In our actual estimates we 
also factor the lengths of the predicates into the analysis.  
In the interest of space the exact details of this calculation 
are omitted here; see the full-length version [12]. 

5.2.3 Histogram Analysis 
Next we examine the accuracy of the complex histogram 
as well as its space and time efficiency.  Figure 3 tests the 

accuracy of these complex histogram estimates by 
comparing the actual number of proteins that match a 
given query with the estimated number.  The query tested 
is a three-predicate query in which the gap, or middle 
predicate, is varied to produce different result 
selectivities.  The results from the data set of 248,375 
proteins show that the histogram estimates are accurate to 
within approximately 80% of the actual result size.  This 
degree of accuracy is sufficient for the optimizer’s needs, 
as only a general idea of the result selectivity is required 
by the cost functions.  

Another consideration to take into account is the time 
required to compute these estimates.  The number of 
calculations performed is factorial in the number of 
predicates and start position buckets, and the estimation 
time should reflect that.  We tested the estimation times of 
various queries with different numbers of predicates and 
discovered that indeed, the estimation time requirements 
dramatically increased with the number of query 
predicates.  We also noticed that adding more predicates 
does not significantly improve the accuracy found by only 
using two of a query’s predicates.  Thus, based on this 
empirical evidence, in our implementation we only look 
at the two or three most highly selective query predicates 
for estimation purposes.  We choose these predicates 
because they have the greatest impact on the reduction of 
the query result space.  In the experiment shown in Figure 
3, the estimation time is around 20 milliseconds. 

In the current implementation we create the complex 
histogram immediately following the loading of the 
segment table.  The complex histogram takes 22 seconds 
to build and requires 5.8 MB of disk space, which is only 
1% of the size of the segment table. 

5.3 Cost Formulas 
We use cost formulas to model the I/O time and CPU 
resources needed for each evaluation method for a given 
query.  The underlying functionalities of each of the 
methods are similar and use a number of “basic blocks” 
including index scans, table retrievals, and finite state 
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machine matchings.  We developed cost models, which 
are along the lines of the cost models in [25], for each of 
these basic blocks.  These models are then incorporated 
into the individual cost models for the various algorithms.  
Histograms are used to estimate the query segment 
selectivities and the result protein selectivity.  Standard 
statistics such as table cardinalities and tuple sizes are 
maintained and used in the cost model.  In addition, a 
number of system-dependent “fixed” constants such as 
page size, maximum index fanout, and weighted I/O and 
CPU costs are used.  A more thorough examination of the 
query plan cost functions may be found in the full-length 
version of this paper [12]. 

The actual query optimization process happens as 
follows.  First, the simple histogram is used to determine 
the segment selectivities of all the non-gap predicates in 
the query and the complex histogram is used to calculate 
the result protein selectivity.  These results are input into 
the different cost formulas along with the table and index 
information.  Then, the optimizer evaluates these cost 
formulas for the CSP, SSS, and ISS plans, as well as for 
each of the MISS(n) plans.  Finally, the plan with the 
lowest cost formula is returned as the optimal plan and 
the system uses this method to evaluate the query. 

6. Experimental Evaluation 
In this section we evaluate the algorithms presented in 
Section 4 using both a commercial ORDBMS and our 
native system, Periscope.  The experiments presented 
compare the performance of these algorithms and also 
show the different effects that the segment and result 
selectivities have on these algorithms.  We also used 
many of these same experiments to tune the cost models 
in Periscope’s optimizer.  Consequently, for all the 
experiments presented in this section, the Periscope 
optimizer always picks the cheapest plan.  A detailed 
validation of the optimizer cost models is beyond the 
scope of this paper and will be addressed in the future. 

6.1 Experimental Setup 
We implemented our query evaluation techniques in two 
different database systems, a commercial ORDBMS and 
Periscope, our own system built on top of the SHORE 
storage manager from the University of Wisconsin [6].  
SHORE provides various storage manager facilities 
including file and index management, buffer pool 
management, concurrency control, and transaction 
management.  The commercial system runs on Windows; 
Periscope can run on either Linux or Windows.  To 
compare the performance of the ORDBMS with 
Periscope we used a machine with an 850 MHz Intel 
Pentium III processor running Microsoft Windows 2000 
Professional and configured with 128 MB of memory and 
a 10 GB IBM DJSA-210 IDE disk.  For all other tests we 
used a Linux 2.4.13 machine with 896 MB of memory, a 
1.70 GHz Intel Xeon processor, and a Fujitsu 

MAN3367MP hard drive with a SCSI interface and a 40 
GB capacity.  In both configurations SHORE is compiled 
for a 16 KB page size, and the buffer pool size is set to 64 
MB.  The numbers presented in this study are cold 
numbers, i.e. the queries do not have any pages cached in 
the buffer pool from a previous run of the system.  Each 
of the experimental queries is run five times and the 
average of the middle three execution times is presented 
in the following graphs. 

6.1.1 System Implementations 
In this section we describe the specifics of both the 
Periscope and the ORDBMS implementations.  Both 
systems contain the same tables, indices, and schema 
information:  a protein table, a B+-tree index on the 
protein id attribute, a segment table, and a B+-tree index 
on the type and length segment table attributes. 

For the commercial ORDBMS we utilized its type-
extensibility mechanism to create an array-like user 
defined type to support the primary structure, secondary 
structure, and probability protein table fields.  In addition, 
we created a user-defined function labelled as Comm-CSP 
to implement the protein table scan technique. 

The segmentation approach is implemented in the 
ORDBMS using the composite B+-tree index on the type 
and length attributes of the segment table.  Translation 
from our queries to SQL is accomplished by using a 
number of selection predicates in the SQL query to ensure 
that the ordering constraints are satisfied and that the 
resulting segments are from the same protein (see Section 
4.2 for an example).  After loading the tables we update 
all the catalog statistics so that the ORDBMS’s query 
optimizer has the most up-to-date statistical information.  
We let the built-in query optimizer pick the best plan and 
in the following graph label this approach as Comm-Seg.  

As the Periscope system is a native system, it gives us 
the flexibility of writing our own operators.  We 
implemented the four query evaluation techniques that are 
described in Section 4.  In the following experimental 
sections, the abbreviations CSP, SSS, ISS, and MISS are 
all implicitly understood to be implementations of these 
algorithms in the Periscope system.  When appropriate, 
the MISS plan will be shown for all possible numbers of 
query predicates, from two to the total number of 
predicates in the query.  This will be denoted by MISS(n), 
and the number of predicates used in the individual MISS 
plans will be referred to as the MISS number. 

6.1.2 Data Set 
To produce a data set for our experiments, we first 
downloaded the entire PIR-International Protein Sequence 
Database.  This database is a comprehensive, non-
redundant protein database in the public domain and is 
extensively cross-referenced [11].  Since the PIR data set 
only contains primary protein structures, we then used the 
Predator tool [10] to obtain predicted secondary 
structures.  The final data set consists of 248,375 proteins.  



 

 

Each protein has approximately 41 segments, which 
results in 10,288,769 segments.  The Periscope protein 
and segment tables are 259 and 355 MB in size, 
respectively, while in the commercial system the protein 
table is 390 MB and the segment table is 425 MB. 

6.1.3 Queries 
At this time we would like to discuss the intuition behind 
the queries that we use in our experimental evaluation.  
We found it surprisingly hard to find actual queries, as 
queries from past studies are usually not well documented 
and queries in current experiments are considered to be 
confidential because they could reveal a great deal about 
the actual experiment.   

Looking back, we do not consider the lack of 
scientific queries a drawback.  Our goal is to build a 
system that is efficient for any type of query, and the 
ability to design our own queries allows us systematically 
explore the entire search space.  Hence we pick queries 
based on the actual data set, i.e. we do not try random 
queries that may have zero matches.  This coarsely 
models reality as scientific query proteins are generally 
similar to actual proteins and will usually find at least a 
few matches. 

In our exploration of the search space we will look at 
queries with both single and multiple predicates, with 
varying query segment selectivities, and with varying 
result protein selectivities.  The complexity of our queries 
makes it difficult to arbitrarily change the result 
selectivity; we accomplish this in our system by widening 
or lessening the gap predicates between actual query 
predicates to return greater or fewer results. 

6.2 Comparison with Commercial ORDBMS 
The first experiment tests the simplest type of query, a 
single-predicate exact match query1.  In this test the 
segment selectivity of the single predicate varies from 
0.03% to 7%.  Results are shown in Figure 4 for the 
Periscope CSP, SSS, and ISS methods as well as for the 
commercial system’s Comm-CSP and Comm-Seg 
methods.  Note that the MISS method is absent in this test 
simply because it reduces to the ISS plan for single-
predicate queries.  

This test shows that the Periscope methods outperform 
both the commercial methods.  The execution time for the 
CSP consistently requires one-third of the time of the 
Comm-CSP, while the Comm-Seg method performs 
increasingly worse as the segment selectivity increases.  
With the large execution time scale it is hard to 
distinguish between the Periscope methods; the following 
experiments will provide more conclusive results. 

                                                           
1 In the Comm-CSP method for this commercial ORDBMS, 
only one match is returned per protein; therefore, for this 
experiment only we modified the CSP method to also return 
only one match per protein. 

Additional experiments with the Comm-Seg and 
Comm-CSP methods involving more complex multiple-
predicate range and gap queries exhibit the same result 
trends witnessed in Figure 4 and are more expensive 
relative to Periscope query execution times.  In addition, 
in the commercial ORDBMS the choice between the Seg 
and the CSP plans has to be made explicitly by the user, 
using different SQL queries.  Furthermore, to investigate 
the performance differences across the different query 
evaluation algorithms and to use the query optimizer, we 
need control over the choice of the query plan that is used 
by the database system.  This control is easily available to 
us in Periscope, and for the rest of this study we only 
concentrate on the Periscope methods.  Note, however, 
that our results are applicable to commercial ORDBMSs 
with appropriate modifications to the query optimizer and 
operator algorithms, which could be implemented by 
ORDBMS vendors. 

6.3 Single-Predicate Queries 
The next experiment tests the performance of single-
predicate queries involving both exact match and range 
predicates.  In this test the segment selectivity of the 
single predicate varies from 0.04% to 17%.  Results for 
this experiment are shown in Figure 5 for the SSS, ISS, 
and CSP methods (MISS reduces to ISS as above). 

This test shows that both the SSS and ISS methods 
outperform the CSP method regardless of the segment 
selectivity.  This is because the CSP has to retrieve and 
perform a complex scan on each protein to find matches, 
whereas the other two methods only have to scan the 
segment table or probe the segment index to retrieve 
matching segments.  The final protein id INLJ that is 
necessary in the SSS and ISS methods does not contribute 
significantly to the overall execution time because the 
number of proteins to retrieve has been drastically 
reduced.  The ISS plan outperforms the SSS plan for 
predicates with selectivity less than 10%.  For less 
selective predicates (those with higher predicate 
selectivity values), however, the SSS plan becomes more 
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efficient than the ISS method.  This goes along with the 
rule of thumb commonly used in standard DBMSs that 
predicates with selectivity greater than 10% should no 
longer utilize B+-tree indices, but instead should be 
evaluated with simple table scans [7]. 

6.4 Multiple-Predicate Range and Gap Queries 
This set of experiments test more complex queries 
involving multiple predicates with ranges and gaps.  We 
tested the algorithms with a variety of complex queries, 
however in the interest of space we only present a few 
representative experimental results here. 

6.4.1 A Complex Query 
In this experiment we use a query with nine predicates, in 
which both the result protein selectivity and the various 
segment selectivities stay constant.  The variable in this 
experiment is the ordering of the nine query predicates.  
There are five non-gap predicates, four of which have a 
segment selectivity of less than .03% (S) and one of 
which has a segment selectivity of 7% (L).  The result 
protein selectivity is fixed at less than .1% by varying the 
four gap predicates, which are inserted between every two 
non-gap predicates.  Figure 6 shows the results of this 
experiment in which the position of the larger query 
predicate varies from last in the query to first. 

The results show that the CSP method is the only 
method that varies widely depending on the position of 
the large predicate.  This implies that the execution time 
of the CSP method is very sensitive to the selectivity of 
the first predicate.  Due to the nature of the FSM 
matching algorithm, queries in which the first predicate 
matches a large number of segments (like the L predicate) 
require the FSM to do more work.  Because the leading 
predicate matches often, the number of times that the 
FSM tries to match the subsequent predicates increases, 
which in turn leads to longer CSP execution times. 

This test also highlights the importance of the MISS 
number on the performance of the MISS method.  For 
MISS(2-4) the index is scanned for various subsets of the 
four most highly selective predicates, which in this test 

are all very selective.  In MISS(5), however, the index is 
also scanned for the larger (less selective) predicate.  This 
adds considerable length to the execution time (recall that 
the MISS algorithm picks predicates based on their 
selectivities and not their physical order in the query). 

The MISS number, in general, is dependent on the 
segment selectivities and the final protein selectivity.  The 
MISS plan performs a number of index probes, which 
reduces the number of proteins to be retrieved and 
scanned.  There is a balance between the costs incurred 
from performing these probes and the costs saved by the 
reduced number of proteins that must be retrieved.  This 
balance is also influenced by the result protein selectivity 
in that the time required to perform a FSM scan of each 
protein is affected by the result selectivity (we explore 
this effect in the next set of experiments).  The cost of 
adding another query predicate to the MISS(k) plan is the 
sum of the time to scan the segment index for the k+1th 
predicate, the time to sort the results by protein id and 
start position, and the time to add these results to the 
segment merge join.  Evaluating the k+1th predicate, 
however, will further cut down on the number of protein 
ids that emerge from the merge join, which in turn 
reduces the number of protein tuples that have to be 
retrieved.  The reduction factor is roughly inversely 
proportional to the selectivity value of the added 
predicate.  The time saved is the sum of the times to probe 
the id index for the eliminated proteins, retrieve them, and 
perform their complex scans.  When this time saved is 
greater than the time incurred by adding the k+1th 
predicate, the MISS number should increase to k+1; 
otherwise it is more efficient to remain at k.  

Another important point to notice in Figure 6 is that in 
many cases the optimal MISS method is an order of 
magnitude faster than the CSP method!  This experiment 
demonstrates that having flexible query plans that adapt 
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to query characteristics can significantly improve query 
response times. 

6.4.2 Effects of Segment and Protein Selectivities 
In this experiment we use four three-predicate queries to 
demonstrate the effects of segment and protein result 
selectivities on the performance of the four algorithms.  
The same results hold for queries with greater than three 
predicates; examples of more experiments of this nature 
can be found in the full-length version of this paper [12]. 

The three-predicate queries we investigate here have 
fixed segment selectivities and varying result selectivities.  
The result selectivity is varied by modifying the middle, 
or gap, predicate.  We increase the range of this gap 
predicate until the upper bound reaches ∞.  In the first test 
the two non-gap query predicates have relatively high 
segment selectivities; in the second they have low 
segment selectivity values.  The third tests a predicate 
with a high selectivity followed by a predicate with a low 
selectivity; the fourth reverses the order of these two 
predicates.  The results of this experiment are shown in 
Figures 7, 8, 9, and 10, respectively. 

Figure 7 contains the results of the query with two 
non-selective predicates separated by a gap predicate.  
Note that in this figure the result protein selectivity 
increases beyond 100% as some proteins match in 
multiple positions.  It is interesting to note that the CSP 
plan outperforms the other methods when the result 
protein selectivity is less than 50% even though the 
selectivity of the first predicate is relatively high.  This is 
because neither of the query predicate selectivity values 
are low enough to justify doing a table or index scan to 
reduce the number of proteins that have to be examined; it 
is faster to simply perform the complex scan of the entire 
protein table.  When the result selectivity increases 
beyond 50%, however, the situation changes.  The cost of 
performing a complex scan on a protein rises due to the 
increased number of matches, which causes the FSM to 
perform more comparisons.  Consequently, it is more 
time-effective to probe the segment index for both the 

query predicates and merge the results.  Only a subset of 
the proteins then needs to be retrieved and none need to 
be scanned; therefore, MISS(2) becomes the most 
efficient method.  The SSS and ISS methods still require 
complex scans of the resulting proteins, and the subset of 
proteins retrieved is not sufficiently reduced due to the 
high selectivity of the most highly selective predicate.  
These factors, along with the time required to perform the 
segment table scan or index probe, account for the poor 
performance of the SSS and ISS methods.   

The results of this experiment performed with two 
highly selective predicates are shown in Figure 8.  Even 
though the result protein selectivity is small for these 
query predicates, the MISS(2) method still outperforms 
the other three.  The two index probes are fast and do not 
return many results; consequently the merging phase and 
protein retrieval are very efficient.  The ISS method is the 
next best query plan for this query.  The single index 
probe is performed quickly with only a few results.  The 
main time factor in this method is that the resulting 
proteins must be scanned with the FSM.  The SSS plan 
shows the same trends as the ISS method; the difference 
in execution time is based solely on the time required for 
the segment table scan versus the segment index probe. 

Figure 9 gives the results of a query with a non-
selective predicate followed by a more selective predicate 
(lower selectivity value).  The most noticeable result is 
that of the CSP method, whose performance degrades 
rapidly due to the high selectivity value of the first 
predicate.  On the other end of the spectrum, the ISS 
method is initially the most efficient plan for this query.  
This is because the most highly selective predicate has a 
small selectivity value.  Therefore the index probe takes a 
short amount of time and drastically reduces the number 
of proteins that must be scanned.  The SSS method again 
exhibits the same characteristics as the ISS method, with 
the only difference being the longer time needed to scan 
the segment table than to probe the segment index.  The 
MISS(2) plan remains consistent throughout and as the 
result protein selectivity increases, replaces ISS as the 
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most efficient method.  Again, this is due to the fact that 
as the protein selectivity increases, the cost of scanning a 
protein also increases.  Because the MISS(2) plan does 
not have to perform complex scans, it becomes more 
efficient.  Initially, however, MISS(2) performs worse 
than ISS because it performs index scans not only for the 
highly selective third predicate but also for the less 
selective first predicate, which takes longer than its 
potential savings. 

The final experiment reverses the order of the query 
predicates so that the most highly selective predicate 
occurs first, followed by the less selective predicate; 
results are found in Figure 10.  The different query 
evaluation methods perform the same as in the previous 
experiment with respect to each other with ISS being the 
clear initial winner.  The difference in these results is the 
scale of the execution time.  The CSP method performs 
much faster than in the previous experiment due to the 
fact that the first predicate’s selectivity is small; this also 
reduces the time for SSS and ISS as their performance is 
partially dependent on the time to scan a protein.  The 
MISS(2) plan’s execution time remains the same because 
it performs the same index probes in both tests.  As the 
protein selectivity increases past the data points shown in 
Figure 10, it appears that the MISS(2) method will again 
outperform the ISS method by the same argument as in 
the previous experiment. 

As a final note we observe that our Periscope 
implementation is extremely efficient and returns results 
in a few tens of seconds for the 600 MB data set that we 
have used!  This fast query response time is very 
desirable especially when scientists want to analyze data 
by posing a number of successive queries and refining 
these queries as they learn from the results of the 
previous query. 

7. Conclusions and Future Work 
The secondary structure of proteins plays an important 
role in determining their function.  Consequently, tools 

for querying the secondary structure of proteins are 
invaluable in the study of proteomics.  This paper 
addresses the problem of efficient and declarative 
querying of the secondary structure of protein data sets.   

Our contributions include defining an expressive and 
intuitive query language for secondary structure querying 
and identifying various algorithms for query evaluation.  
To help a query optimizer pick amongst the various 
algorithms, we have also developed novel histogram 
techniques to determine segment and result selectivites. 

We have implemented and evaluated the proposed 
techniques in a native DBMS we have developed called 
Periscope.  We have compared the performance of 
Periscope with a commercial ORDBMS and have shown 
that for the class of queries that we are considering, 
Periscope provides an extremely efficient 
implementation.  As the experimental results show, the 
system that we have developed can query large protein 
databases efficiently, allowing scientists to interactively 
pose queries even on large data sets. 

There are a number of directions for our future work, 
including developing algorithms to produce results in 
some ranked order.  We would like to design a framework 
such that the ranking metric can be easily customized by 
the user, as the model for ranking proteins is usually not 
fixed but instead varies across scientists and may also 
change frequently during the course of an experiment.  
The ranking metric may take into account additional 
information that is present in the protein, such as the 
positional probability in the secondary structure, which is 
currently one of the fields produced as output by protein 
structure predication tools.  Techniques that have been 
developed for ranking results in other contexts may be 
applicable here [8, 9, 18, 21].  

Search engines for querying biological data sets often 
employ a query-by-example interface.  In BLAST, one of 
the most popular tools for searching genes and the 
primary structure of proteins, the system is presented with 
a query sequence and the search engine finds the best 
matches to this sequence [1, 3, 4].  The input sequence is 
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converted into a set of segments, and segment-matching 
techniques are employed to evaluate the query.  While our 
work presented in this paper focuses on such segment-
matching techniques for querying on the secondary 
structure of proteins, we would also like to explore the 
use of a query-by-example interface for our current 
system.  Query-by-example interfaces require additional 
input that allows the user to influence the mapping of the 
query into segments to be matched.  This additional input 
can be fairly complex; as an example the user may be 
allowed to specify a scoring matrix to assign weights to 
different portions of the input query.  The “right” 
interface for specifying this mapping model can vary 
between users, and designing an interface that is both 
intuitive and easily-specified is a challenge that we hope 
to undertake as part of our future work. 

Experiments in the life sciences often involve 
querying a number of biological data sets in a variety of 
different ways.  Ideally, a combination of both primary 
sequence and secondary structure searches will lead to 
more accurate protein function discovery [22].  This paper 
only addresses the issue of efficient query processing 
techniques for secondary structure.  Hence the tool that 
we have built would be an addition to the suite of 
biological querying tools that exist today.  Managing data 
that is related to the entire experiment, including queries 
using a number of different tools on a number of different 
data sets, is in itself an interesting database problem and 
is part of the long-term goal of the Periscope project. 
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