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Abstract

Accurate prediction of operator execution time
is a prerequisite for database query optimiza-
tion. Although extensively studied for conven-
tional disk-based DBMSs, cost modeling in main-
memory DBMSs is still an open issue. Recent
database research has demonstrated that memory
access is more and more becoming a significant—
if not the major—cost component of database op-
erations. If used properly, fast but small cache
memories—usually organized in cascading hier-
archy between CPU and main memory—can help
to reduce memory access costs. However, they
make the cost estimation problem more complex.

In this article, we propose a generic technique to
create accurate cost functions for database opera-
tions. We identify a few basic memory access pat-
terns and provide cost functions that estimate their
access costs for each level of the memory hierar-
chy. The cost functions are parameterized to ac-
commodate various hardware characteristics ap-
propriately. Combining the basic patterns, we can
describe the memory access patterns of database
operations. The cost functions of database opera-
tions can automatically be derived by combining
the basic patterns’ cost functions accordingly.

To validate our approach, we performed experi-
ments using our DBMS prototype Monet. The re-
sults presented here confirm the accuracy of our
cost models for different operations.

Aside from being useful for query optimization,
our models provide insight to tune algorithms not
only in a main-memory DBMS, but also in a disk-
based DBMS with a large main-memory buffer
cache.
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1 Introduction

Database cost models provide the foundation for query op-
timizers to derive an efficient execution plan. Such models
consist of two parts: a logical and a physical component.
The former is geared toward estimation of the data volumes
involved. Usually, statistics about the data stored in the
database are used to predict the amount of data that each
operator has to process. The underlying assumption is that
a query plan that has to process less data will also consume
less resources and/or take less time to be evaluated. The
logical cost component depends only on the data stored in
the database, the operators in the query, and the order in
which these operators are to be evaluated (as specified by
the query execution plan). Hence, the logical cost compo-
nent is independent of the algorithm and/or implementation
used for each operator.

The problem of (intermediate) result size estimation has
been intensively studied in literature [11, 5, 12]. In this ar-
ticle, we focus on the physical cost component. Therefore,
we assume a perfect oracle to predict the data volumes.

Given the data volumes, the physical cost component is
needed to discriminate the costs of the various algorithms
and implementations of each operator. The query optimizer
uses this information to choose the most suitable algorithm
and/or implementation for each operator.

Given the fact that disk-access used to be the predomi-
nant cost factor, early physical cost functions just counted
the number of 1/O operations to be executed by each algo-
rithm [4]. Any operation that loads a page from disk into
the in-memory buffer pool or writes a page from the buffer
back to disk is counted as an 1/0 operation. However, disk
systems depict significant differences in cost (in terms of
time) per /O operation depending on the access pattern.
Sequentially reading or writing consecutive pages causes
less cost per page than accessing scattered pages in a ran-
dom order. Hence, more accurate cost models discriminate
between random and sequential 1/0. The cost for sequen-
tial 1/0 is calculated as the data volume? divided by the I/O
bandwidth. The cost for random 1/O additionally considers
the seek latency per operation.

With memory chips dropping in price while growing in
capacity, main memory sizes grow as well. Hence, more
and more query processing work is done in main memory,
trying to minimize disk access as far as possible in order

1i.e., number of sequential 1/O operations multiplied by the page size



to avoid the 1/O bottleneck. Consequently, the contribution
of pure CPU time to the overall query evaluation time be-
comes more important. Cost models are extended to model
CPU costs, usually in terms of CPU cycles (scored by the
CPU’s clock speed to obtain the elapsed time).

CPU cost used to cover memory access costs [6, 17].
This implicitly assumes that main memory access costs are
uniform, i.e., independent of the memory address being
accessed and the order in which different data items are
accessed. However, recent database research has demon-
strated that this assumption does not hold (anymore) [2, 7].
With hierarchical memory systems being used, access la-
tency varies significantly, depending on whether the re-
quested data can be found in (any) cache, or has to be fetch
from main memory. The state (or contents) of the cache(s)
in turn depends on the applications’ access patterns, i.e.,
the order in which the required data items are accessed.
Furthermore, while CPU speed is continuously experienc-
ing an exponential growth, memory latency has hardly im-
proved over the last decade.? Hence, memory access has
become a significant cost factor—not only for main mem-
ory databases—which cost models need to reflect.

In query execution, the memory access issue has been
addressed by designing new cache-conscious data struc-
tures [13, 14, 1] and algorithms [15, 8]. On the modeling
side, however, nothing has been published yet considering
memory access appropriately.

In this article, we address the problem of how to model
memory access costs of database operators. As it turns
out to be quite complicated to derive proper memory ac-
cess cost functions for various operations, we developed a
new technique to automatically derive such cost functions.
The basic idea is to describe the data access behavior of
an algorithm in terms of a combination of basic access pat-
terns (such as ”sequential” or "random”). The actual cost
function is then obtained by combining the patterns’ cost
functions (as derived in this article) appropriately. Using a
unified hardware model that covers the cost-related charac-
teristics of both main memory and disk access, it is straight
forward to extend our approach to consider 1/0 cost as well.
Gathering 1/0O and memory cost models into a single com-
mon framework is a new approach that simplifies the task
of generating accurate cost functions.

In Section 2, we will discuss hierarchical memory sys-
tems and introduce our unified hardware model. Section 3
will present a simplified abstract representation of data
structures and identify a number of basic access patterns.
Using these tools, we will specify the data access patterns
of database algorithms by combining basic patterns. In
Section 4, we will derive the cost functions for our basic
access patterns and Section 5 provides rules how to obtain
the cost functions of compound access patterns. Section 6
contains some experimental results validating the obtained
cost functions and Section 7 will draw some conclusions.

2Wider busses and raised clock speeds, such as with DDR-SDRAM or
RAMBUS, help to keep memory bandwidth growing at almost the pace
of CPU speed, however, these techniques do not improve memory access
latency.

2 Hierarchical Memory Systems
2.1 Cache Memories

The fundamental principle of all cache architectures is “ref-
erence locality”. The assumption is that at any time the
CPU, respectively the program, repeatedly accesses only a
limited amount of data that fits in the cache. Only the first
access is “slow”, as the data has to be loaded from main
memory. We call this a compulsory cache miss. Subse-
quent accesses (to the same data or memory addresses) are
then “fast” as the data is then available in the cache. We
call this a cache hit.

Cache memories are often organized in multiple cascad-
ing levels between the main memory and the CPU. We re-
fer to the individual caches as first level (L1) cache, second
level (L2) cache, and so on. In nowadays computers, there
are typically two or three cache levels. Often, L1 and L2
are integrated on the CPU’s die, while L3—if present—is
located on the system board. Caches become faster, but
smaller, the closer they are to the CPU.

Caches are characterized by three major parameters:
Capacity (C'), Line Size (B), and Associativity (A):

Capacity (C). A cache’s capacity defines its total size
in bytes. Typical cache sizes range from 16 KB to 8 MB.

Line Size (B). Caches are organized in cache lines,
which represent the smallest unit of transfer between ad-
jacent cache levels. Whenever a cache miss occurs, a com-
plete cache line (i.e., multiple consecutive words) is loaded
from the next cache level or from main memory, trans-
ferring all bits in the cache line in parallel over a wide
bus. This exploits spatial locality, increasing the chances
of cache hits for future references to data that is "closed to”
the reference that caused a cache miss. Typical cache line
sizes range from 16 bytes to 128 bytes.

Dividing the cache capacity by the cache line size, we
get the number of available cache lines in the cache: # =
C/B. Cache lines are often also called cache blocks.

Associativity (A). To which cache line the memory is
loaded, depends on the memory address and on the cache’s
associativity. An A-way set associative cache allows to
load a line in A different positions. If A > 1, some cache
replacement policy chooses one from the A candidates.
Least Recently Used (LRU) is the most common replace-
ment algorithm. In case A = 1, we call the cache direct-
mapped. This organization causes the least (virtually no)
overhead in determining the cache line candidate. How-
ever, it also offers the least flexibility and may cause a lot
of conflict misses: Equally aligned addresses mutually evict
each other from the cache, even if the cache capacity is not
reached. The other extreme case are fully associative
caches. Here, each memory address can be loaded to any
line in the cache (A = #). This avoids conflict misses, and
only capacity misses occur as the cache capacity gets ex-
ceeded. However, determining the cache line candidate in
this strategy causes a relatively high overhead that increases
with the cache size. Hence, it is feasible only for smaller
caches. Current PCs and workstations typically implement
2-way to 8-way set associative caches.



2.2 Memory Access Costs

We identify the following three aspects that determine
memory access costs. For simplicity of presentation, we
assume 2 cache levels in this section. Generalization to an
arbitrary number of caches is straight forward.

Latency is the time span that passes after issuing a data
access until the requested data is available in the CPU. In
hierarchical memory systems, the latency increases with
the distance from the CPU. As mentioned above, all
current hardware actually transfers multiple consecutive
words, i.e., a complete cache line, during this time.

When a CPU requests data from a certain memory ad-
dress, modern DRAM chips supply not only the requested
data, but also the data from subsequent addresses. The data
is then available without additional address request. This
feature is called Extended Data Output (EDO). Anticipat-
ing sequential memory access, EDO reduces the effective
latency. Hence, we actually need to distinguish two types
of latency for memory access. Sequential access latency
(Z®) occurs with sequential memory access, exploiting the
EDO feature. With random memory access, EDO does not
speed up memory access. Thus, random access latency [*
is usually higher than sequential latency.

Bandwidth is a metric for the data volume (in mega-
bytes) that can be transfered between CPU and main mem-
ory per second. Bandwidth usually decreases with the dis-
tance from the CPU, i.e., between L1 and L2 more data can
be transfered per time than between L2 and main memory.
In conventional hardware, the memory bandwidth used to
be simply the cache line size divided by the memory la-
tency. Modern multiprocessor systems typically provide
excess bandwidth capacity. To exploit this, caches need
to be non-blocking, i.e., they need to allow more than one
outstanding memory load at a time, and the CPU has to
be able to issue subsequent load requests while waiting for
the first one(s) to be resolved. Further, the access pattern
needs to be sequential, in order to exploit the EDO feature
as described above.

Indicating its dependency on sequential access, we re-
fer to the excess bandwidth as sequential access bandwidth
(b®). We define the respective sequential access latency
as [* = B/b®. For random access latency as described
above, we define the respective random access bandwidth
as b* = B/I*. For better readability, we will simply use
plain [ and b (i.e., without ® respectively *) whenever we
refer to both sequential and random access without explic-
itly distinguishing between them.

Address translation. For data access, logical virtual
memory addresses used by application code have to be
translated to physical page addresses in the main memory
of the computer. In modern CPUs, a Translation Looka-
side Buffer (TLB) is used as a cache for physical page ad-
dresses, holding the translation for the most recently used
pages (typically 64). If a logical address is found in the
TLB, the translation has no additional costs. Otherwise, a
TLB miss occurs. The more pages an application uses, the
higher the probability of TLB misses.

description unit symbol
cache name (level) - Li

cache capacity [bytes] C;

cache block size [bytes] B;

number of cache lines - #,=0C;/B;

cache associativity - A;
sequential access
access bandwidth [bytes/ns] | b5,

access latency [ns] I3, =Bi/b5,
random access

access latency [ns] [
access bandwidth [bytes/ns] | bF,, = Bi/lf,,

Table 1: Cache Parameters (i € {1,...,N})3

We will treat TLBs just like memory caches, using the
memory page size as their cache line size, and calculating
their (virtual) capacity as number _of _entries x page _size.
TLBs are usually fully associative. Like caches, TLBs can
be organized in multiple cascading levels.

2.3 Unified Hardware Model

Summarizing our previous discussion, we describe a com-
puters memory hardware as a cascading hierarchy of N lev-
els of caches (including TLBs). Each cache level is char-
acterized by the parameters given in Table 1.3 In [8], we
presented a system independent C program called Calibra-
tor* to measure these parameters on any computer hard-
ware. We point out, that these parameters also cover the
cost-relevant characteristics of disk accesses. Hence, view-
ing main memory (e.g., a database system’s buffer pool) as
cache for 1/O operations, it is straight forward to include
disk access in this hardware model.

3 Theldea

Our recent work on main-memaory database algorithms sug-
gests that memory access cost can be modeled by estimat-
ing the number of cache misses M and scoring them with
their latency I [10]. This approach is similar to the one
used for detailed 1/O cost models. The hardware discussion
above shows, that also for main-memory access, we have
to distinguish between sequential and random access pat-
terns. However, contrary to disk access, we now have mul-
tiple levels of cache with varying characteristics. Hence,
the challenge is to predict the number and kind of cache
misses for all cache levels. Our hypothesis is, that we can
treat all cache levels individually, though equally, and cal-
culate the total cost as the sum of the cost for all levels:

N
Them = 3 (M - 12, + M -

i=1
With the hardware modeled as described in the previous
section and the hardware parameters measured by our cali-

i1)- @

3We assume, that costs for L1 cache accesses are included in the CPU
costs, i.e., 11 and b are not used and hence undefined.
“4Freely available for download from ht t p: / / monet db. cwi . nl



bration tool [8], the remaining challenge is to estimate the
number and kind of cache misses per cache level for vari-
ous database algorithms. The task is similar to estimating
the number and kind of 1/O operations in traditional cost
models. However, our goal is to provide a generic tech-
nique for predicting cache miss rates of various database
algorithms. Nevertheless, we want to sacrifice as little ac-
curacy as possible to this generalization.

To achieve the generalization, we introduce two abstrac-
tions. Our first abstraction is a unified description of data
structures. We call it data regions. The second are data ac-
cess patterns. Both of them are driven by the goal to keep
the models as simple as possible, but as detailed as neces-
sary. Hence, we try to ignore any details that are not signif-
icant for our purpose (predicting cache miss rates) and only
focus on the relevant parameters. The following paragraphs
will present both abstractions in detail.

3.1 Data Regions

We model data structures as data regions. I denotes the
set of data regions. A data region R € D consists of R.n
data items of size R.w (in bytes). We call R.n the length
of region R, R.w its width and || R|| = R.n - R.w its size.
Further, we define the number of cache lines covered by R
as |R|g = [||R]||/B], and the number of data items that fit
in the cache as |C|g.o = [C/R.w].

A (relational) database table is hence represented by a
region R with R.n being the table’s cardinality and R.w
being the tuple size (or width). Similarly, more complex
structures like trees are modeled by regions with R.n rep-
resenting the number of nodes and R.w representing the
size (width) of a single node.

3.2 Basic Access Patterns

Data access patterns vary in their referential locality and
hence in their cache behavior. Thus, not only the cost (la-
tency) of cache misses depend on the access pattern, but
also the number of cache misses that occur. Each database
algorithm describes a different data access pattern. This
means, each algorithm requires an individual cost function
to predict its cache misses. Deriving each cost function by
hand” is not only exhaustive and time consuming, but also
error-prone. Our hypothesis is that we only need to spec-
ify the cost functions of a few basic access patterns. Given
these basic patterns and their cost functions, we could de-
scribe the access patterns of database operations as com-
binations of basic access patterns, and derive the resulting
cost functions automatically.

In order to identify the relevant basic access patterns, we
have to analyze the data access characteristics of database
operators, first. We classify database operations according
to the number of operands.

Unary operators—such as, e.g., table scan, selection,
projection, sorting, hashing, aggregation, or duplicate
elimination—read data from one input region and write
data to one output region. Data access can hence be mod-
eled by two cursors, one for the input and one for the out-

put. The input cursor traverses the input region sequen-
tially. For table scan, selection, and projection, the output
cursor also simply progresses sequentially with each out-
put item. When building a hash table, the output cursor
"hops back and forth” in a non-sequential way. In practice,
the actual pattern is not completely random, but rather de-
pends on the physical order and attribute value distribution
of the input data as well as on the hash function. In our
case, i.e., knowing only the algorithm, but not the actual
data, it is not possible to make more accurate (and usable)
assumptions about the pattern described by the output cur-
sor. Hence, we assume that the output region is accessed in
a completely random manner. This assumption should not
be too bad, as a ”’good” hash function typically destroys any
sorting order and tries to level out skew data distributions.

Sort algorithms typically perform a more complicated
data access pattern. In Section 6.2, we present quick-sort as
an example to demonstrate how such patterns can be spec-
ified as combinations of basic patterns. Aggregation and
duplicate elimination are usually implemented using sort-
ing or hashing. Thus, they perform the respective patterns.

Though also a unary operation, data partitioning takes
a separate role. Again, the input region is traversed se-
quentially. However, modeling the output cursor’s access
pattern as purely random is too simple. In fact, we can do
better. Suppose, we want to partition the input region into
m output regions. Then, we know that the access within
each region is sequential. Hence, we model the output ac-
cess as a nested pattern. Each region is a separate local
cursor, performing a sequential pattern. A single global
cursor hops back and forth between the regions. Simi-
lar to the hashing scenario described before, the order in
which the different region-cursors are accessed—i.e., the
global pattern—depends on the partitioning criterion (e.g.,
hash- or range-based) and the physical order and attribute
value distribution of the input data. Again, it is not possi-
ble to model these dependencies in a general way without
detailed knowledge about the actual data to process. Purely
from the algorithm, we can only deduce a random order.

Concerning binary operations, we focus our discussion
on join. The appropriate treatment of union, intersection
and set-difference can be derived respectively. Binary op-
erators have two inputs and a single output. In most cases,
one input—we call it left or outer input—is traversed se-
quentially. Access to the other—right or inner—input de-
pends on the algorithm and the data of the left input. A
nested loop join performs a complete sequential traver-
sal over the whole inner input for each outer data item.
A merge join—assuming both inputs are already sorted—
sequentially traverses the inner input once while the outer
input is traversed. A hash join—provided there is already
a hash table on the inner input—performs an ”un-ordered”
access pattern on the inner input’s hash table. As discussed
above, we assume a uniform random access.

From this discussion, we identify the following basic ac-

cess patterns as eminent in the majority of relational alge-
bra implementations:



Figure 2: Single Random Traversal: r_tra(R, u)

single sequential traversal: s_tra(R[, u])

A sequential traversal sequentially sweeps over R, ac-
cessing each data item in R exactly once. The optional
parameter u gives the number of bytes that are actually
used of each data item. If not specified, we assume
that all bytes are used, i.e., v = R.w. If specified,
we require 0 < u < R.w. u models the fact that an
operator, e.g., an aggregation or a projection (either as
separate operator or in-lined with another operator),
accesses only a subset of its input’s attributes. For
simplicity of presentation, we assume that we always
access u consecutive bytes. Though not completely
accurate, this is a reasonable abstraction in our case.®
Figure 1 shows a sample sequential traversal.

repetitive sequential traversal: rs_tra(r,d, R, [, u])
A repetitive sequential traversal performs r sequential
traversals over R after another. d specifies, whether all
traversals sweep over R in the same direction (d=uni:
uni-directional), or whether subsequent traversals go
in alternating directions (d=bi: bi-directional).

single random traversal: r_tra(R[, u])
Like a sequential traversal, a random traversal ac-
cesses each data item in R exactly once, reading or
writing u bytes. However, the data items are not ac-
cessed in the order they are stored, but rather ran-
domly. Figure 2 depicts a sample random traversal.

repetitive random traversal: rr_tra(r, R[, u])
A repetitive random traversal performs r random
traversals over R after another. We assume that the
permutation orders of two subsequent traversals are
independent of each other. Hence, there is no point
in discriminating uni-directional and bi-directional ac-
cesses, here. Therefore, we omit parameter d.

random access: r.acc(r, R[,u])
Random access hits  randomly chosen data items in

5In case the u bytes are somehow spread across the whole item width
R.w, say as k times «’ bytes (k - u' = w), one can replace s_tra(R, u)
by s_tra(R', ') with R'.w = Rw/k and R'.n = R.n - k.

—> local cursors ~~ > global cursor
Figure 3: Interleaved Multi-Cursor Access:
nest(R, m,s_tra(R,u), seq, bi)

R after another. We assume, that each data item may
be hit more than once, and that the choices are inde-
pendent of each other. Even with » > R.n we do not
require that each data item is accessed at least once.

interleaved multi-cursor access: nest(R,m,P, O[, D])
A nested multi-cursor access models a pattern where
R is divided into m (equal-sized) sub-regions. Each
sub-region has its own local cursor. All local cursors
perform the same basic pattern, given by P. O speci-
fies, whether the global cursor picks the local cursors
randomly (O = ran) or sequentially (O = seq). In
the latter case, D specifies, whether all traversals of
the global cursor across the local cursors use the same
direction (D = uni), or whether subsequent traver-
sals use alternating directions (D = bi). Figure 3
shows a sample interleaved multi-cursor access.

3.3 Compound Access Patterns

Database operations access more than one data region, usu-
ally at least their input(s) and their output. This means,
they perform more complex data access patterns than the
basic ones we introduced in the previous section. In order
to model these complex patterns, we now introduce com-
pound data access patterns. Unless we need to explicitly
distinguish between basic and compound data access pat-
terns, we refer to both as data access patterns, or simply
patterns. We use Py, P, and P = P, U P, to denote the set
of basic access patterns, compound access patterns, and all
access patterns, respectively. We require P, N P, = .

Be Pi,..., P, € P (p > 1) data access patterns. There
are two principle ways to combine two or more patterns.
Either the patterns are executed one after the other or they
are executed concurrently. We call the first combination
sequential execution and denote it by operator & : P — P;
the second combination represents concurrent execution
and is denoted by operator ® : P — P. The result of
either combination is again a (compound) data access pat-
tern. Hence, we can apply & and ® repeatedly to describe
complex patterns. By definition, ® is commutative, while



W < zick_zack_join(U, V)
H + hash_build(V)

W < hash_probe(U, H)

W « hash_join(U,V)

{U; 7L, « cluster(U,m)
W« part_nl_join(U, V, m)

stra(V) ©r_tra(H)

W« part_h_join(U,V,m)

algorithm pattern description name
W« select(U) stra(U) ® s_tra(W)
W « nested_loop_join(U,V) | stra(U) ® rs_tra(U.n,uni, V) ® s_tra(W) =: nljoin(U,V,W)

stra(U) ® rs_tra(U.n,bi, V) © s_tra(W)

stra(U) ® r.acc(U.n, H) ® s_tra(W)
build_hash(V, H) & probe_hash(U, H, W)
s-tra(U) © nest({U; }|72,,m,stra(U;), ran) =:
part(U7 m, {UJ}|§H:1) 63 part(va m, {VJ}|;”:1)

@ nl_join(Uy, V1, W1) @ ... @ nljoin(Un, Vi, Win)
part(U,m, {U; }|71,) @ part(V,m, {V; }]L;)

® hjoin(U1, V1, W1) @ ... ® hjoin(Up, Vin, Win)

build_hash(V, H)
probe_hash(U, H, W)
h_join(U, V, W)
part(U, m, {U;}7,)

Table 2: Sample Data Access Patterns

@ is not. In case both ® and & are used to describe a com-
plex pattern, ® has precedence over @, i.e.,

PiOP2dP3OP1dPs = (PLOP2)D(P3OPs)dPs).

We use bracketing to overrule these assumptions or to avoid
ambiguity. Further, we use the following notation to sim-
plify complex terms. Be ® € {®, ®}:

P1@©...0P, = O(P,...,Py) = ©F_(P,)-

Table 2 gives some examples how to describe the access
patterns of some typical database algorithms as compound
patterns. For convenience, some re-occurring compound
access patterns are assigned a new name.

Our hypothesis is, that we only need to provide an ac-
cess pattern description as depicted in Table 2 for each op-
eration we want to model. The actual cost function can then
be created automatically, provided we know the cost func-
tions for the basic patterns, and the rules how to combine
them. To verify this hypothesis, we will now first estimate
the cache miss rates of the basic access patterns and then
derive rules how to calculate the cache miss rates of com-
pound access patterns.

4 Deriving Cost Functions

In the following sections, N depicts the number of cache
levels and i iterates over all levels: ¢ € {1,...,N}. For
better readability, we will omit the index ¢ wherever we do
not refer to a specific cache level, but rather to all or any.

4.1 Preliminaries

For each basic pattern, we need to estimate both sequential
and random cache misses for each cache level. Given an
access pattern P € P, we describe the number of misses
per cache level as pair

M;i(P) = (M}(P),Mj(P)) eNxN  (2)

containing the number of sequential and random cache
misses. Obviously, the random patterns cause no sequen-
tial misses. Consequently, we always set

M;(T())=0 for T e {r_tra,rr_tra,r.acc}.

Sequential traversals can achieve sequential latency
(i.e., exploit full excess bandwidth), only if all the require-
ments listed in Section 2.2 are fulfilled. Sequential access
is fulfilled by definition. The hardware requirements (non-
blocking caches and super-scalar CPUs allowing specula-
tive execution) are covered by the results of our calibration
tool. In case these properties are not given, sequential la-
tency will be the same as random latency. However, the
pure existence of these hardware features is not sufficient
to achieve sequential latency. Rather, the implementation
needs to be able to exploit these features. Data dependen-
cies in the code may keep the CPU from issuing multiple
memory requests concurrently. It is not possible to deduce
this information only from the algorithm without knowing
the actual implementation. But even without data depen-
dencies, multiple concurrent memory requests may hit the
same cache line. In case the number of concurrent hits to a
single cache line is lower than the maximal number of out-
standing memory references allowed by the CPU, only one
cache line is loaded at a time.® Though we can say how
many subsequent references hit the same cache line (see
below), we do not know how many outstanding memory
references the CPU can handle without stalling.” Hence, it
is not possible to automatically guess, whether a sequen-
tial traversal can achieve sequential latency or not. For this
reason, we offer two variants of s_tra and rs_tra. s_tra®
and rs_tra® assume a scenario that can achieve sequential
latency while s_tra™ and rs_tra™ do not. The actual number
of misses is equal in both cases, but the first case causes no
random misses, the second no sequential misses:

ME(T*()) = M3(T*()) =0 for T € {s.tra,rs_tra}.

Unless we need to explicitly distinguish between both vari-
ants, we will use * € {3,7 } to refer to both.

8For a more detailed discussion, we refer the interested reader to [10].

“Our calibration results can only indicate, whether the CPU can handle
outstanding memory references without stalling, but not how many it can
handle concurrently.



4.2 Single Sequential Traversal

Be R a data region and P = s_tra®(R,u) (z € {s,r})a
sequential traversal over R. We distinguish two cases.

Case R.w — u < B. In this case, the gap between two
adjacent accesses that is not touched at all is smaller than a
single cache line. Hence, the cache line containing this gap
is loaded to serve at least one of the two adjacent accesses.
Thus, during a sweep over R with R.w — u < B all cache
lines coved by R have to be loaded, i.e.,

M (s.tra” (R, ) = |R|5;. 3)

Case R.w — u > B. In this case, the gap between two
adjacent accesses that is not touched at all spans at least a
complete cache line. Hence, not all cache lines coved by R
have to be loaded during a sweep over R with R.w — u >
B. Further, no access can benefit from a cache line already
loaded by a previous access to another spot. Thus, each
access to an item in R requires at least [%] cache lines
to be loaded: M?*(P) > [%4]. However, with u > 1 it
may happen that—depending on the alignment of « within
a cache line—one additional cache line has to be loaded per
access. Considering these additional misses we get®

M(s_tra®(R,u)) = R.n- (%W + %ﬁmd&)- @)

4.3 Single Random Traversal

Be R adataregionand P = r_tra(R, u) a random traversal
over R. Like before, we distinguish two cases.

Case R.w — u < B. With the untouched gaps being
smaller than cache line size, again all cache lines coved
by R have to be accessed. Hence, M*(P) > |R|g. But
due to the random access pattern, two locally adjacent ac-
cesses are not temporally adjacent. Thus, if || R|| exceeds
the cache size, a cache line that serves two or more (lo-
cally adjacent) accesses may be replaced by another cache
line before all accesses that require it actually took place.
This in turn causes an additional cache miss, once the orig-
inal cache line is accessed again. Of course, such addi-
tional cache misses only occur, once the cache capacity is
exceeded, i.e., after min {#;, |C;|r.. } Spots have been ac-
cessed. The probability that a cache line is removed from
the cache although it will be used for another access in-
creases with the size of R. In the worst case, each access
causes an additional cache miss. Hence, we get

M (r-tra(R,u)) =

|R

®)

Case R.w — u > B. Each spot is touched exactly once,
and as adjacent accesses cannot benefit from previously
loaded cache lines, we get the same formula as in (4):

M (r-tra(R,u)) = M (s_tra™ (R, u)) (6)

8For a detailed discussion see [9] (available for download from
http://ww. cw . nl / ~manegol d/).

5, +(R.n — min{#;, |Cz~IR.w})‘(1 - min{l’ % })

4.4 Repetitive Traversals

With repetitive traversals, cache re-usage comes into play.
We assume initially empty caches.® Hence, the first traver-
sal requires as many cache misses as estimated above. But
the subsequent traversals may benefit from the data already
present in the cache after the first access. We will analyze
this in detail for both sequential and random traversals.

4.4.1 Repetitive Sequential Traversal

Be R a data region, P = rs_tra®(r,d, R,u) a repetitive
sequential traversal over R, and P’ = s_tra®(R,u) a sin-
gle sequential traversal over R. Two parameters determine
the caching behavior of P: the number M*(P’) of cache
lines touched during the first traversal and the direction d
in which subsequent traversals sweep over R.

In case M (P') is smaller than the number of available
cache lines, only the first traversal causes cache misses,
loading all required data. All » — 1 subsequent traversals
then just access the cache, causing no further cache misses.

In case M*(P') exceeds the number of available cache
lines, the end of a traversal pushes the data read at the begin
of the traversal out of the cache. If the next traversal then
again starts at the begin of R (d = uni), it cannot benefit
from any data in the cache. Hence, each sweep causes the
full amount of cache misses. If a subsequent sweep starts
where the previous one stopped, i.e., it traverses R in the
opposite direction as its predecessor (d = bi), it can benefit
from the data stored in the cache. Thus, only the first sweep
causes the full amount of cache misses. The r—1 remaining
sweeps cause cache misses only for the fraction of R that
does not fit into the cache. In total, we get

Mg (rs_tra” (r,d, R, u))
M3 (P), if MF(P') < #:

_Jr-M(PY), if MP(P')>4#: A d=uni 0
] ME(P) +(r—1) - (ME(P) — #4),

if MZ(P')>#; N d=>ni.

4.4.2 Repetitive Random Traversal

Be R a data region, P = rr_tra(r, R, u) a repetitive ran-
dom traversal over R, and P’ = r_tra(R,u) a single ran-
dom traversal over R. With random memory access, d is
not defined, hence, we need to consider only M*(P') to
determine to which extend repetitive accesses can benefit
from cached data.

When M~ (P') is smaller than the number of available
cache lines, we get the same effect as above. Only the first
sweep causes cache misses, loading all required data. All
r — 1 subsequent sweeps then just access the cache, causing
no further cache misses.

In case M*(P’') exceeds the number of available cache
lines, the most recently accessed data remains in the cache

9Section 5 will discuss how to consider pre-loaded caches.



at the end of a sweep. Hence, there is a certain proba-
bility that the first accesses of the following sweep might
re-use (some of) these # cache lines. This probability de-
creases as M"(P') increases. We estimate the probability
with #/M*(P"). In total, we get

M (rr_tra(r, R,u)) =

ME(P) it OMEP) < #
MI(P)+(r - 1) (ME(P) - s ) @

it ME(P') > #;.

4.5 Random Access

Be R a data region and P = r_acc(r, R, u) a random ac-
cess patternon R. In contrary to a single random traversal,
where each data item of R is touched exactly once, we do
not know exactly, how many distinct data items are actu-
ally touched with random access. However, knowing that
there are r independent random accesses to the R.n data
items in R, we can estimate the average/expected number
I of distinct data items that are indeed touched. Be E the
number of all different outcomes of picking r times one of
the R.n data items allowing multiple accesses to each data
item. Further be E; the number of outcomes containing
exactly 1 < j < min{r, R.n} distinct data items. If we
respect ordering, all outcomes are equally likely to occur:

min{r,R.n}
E;i(r,Rmn)-j
i=1

I(racc(r, R,u)) = —=

E(r,R.n)

We can calculate E(r, R.n) = R.n" and

s (%) )

where (z) and {;} denote the binomial coefficient and the

Stirling number of second kind [16], respectively.  First
of all, there are (RJ:") ways to choose j distinct data items

from the available R.n data items. Then, there are {’}
ways to partition the » access into j groups, one for each
distinct data item. Finally, we have to consider all j! per-
mutations to get equally likely outcomes.

Knowing the number I of distinct data items that are
touched by r_acc(r, R, u) on average, we can now calcu-
late the number C of distinct cache lines touched. Due to
space limitations, we refer the interested reader to [9] for
a detailed discussion of C. In principle, C is made-up by
similar formulas as used in Sections 4.2 and 4.3.

Knowing the number C of distinct cache lines touched,
we can finally calculate the number of cache misses. With
r accesses spread over I distinct data items, each item
is touched /I times on average. Analogously to Equa-

tion (8), we get (P = r.acc(r, R, u))

M (r-ace(r, R,u)) =

Ci(P), if Ci(P) <#i
Ci(P) + (1(;) - 1) -(Ci(P) - Cﬁ;) -#i> . ©
if Ci(P) > #i.

4.6 Interleaved Multi-Cursor Access

Be R = {R;}|7X, a data region divided into m < R.n
sub-regions R; with

_Rn

Rjw=Rw and
m

k:Rj.n

Further be @ = nest(R, m, T([r,]R;,u),0,D) with T €
{s_tra®,r_tra,r_acc} an interleaved multi-cursor access.
Our detailed analysis in [9] leads to the formula

M (nest(R, m, T([r,]Rj,u),0, D))

if T =s_tra®
A Rw—u< B;

A m- [B#-‘ > #;

1\7[,(T’([m -, ]R, U)) + )—ii,

M (T'([m - r,]R, u)), else
(10)
with
[s.tra®, if Te{raccrtra} A O=seq
Nk=1
rtra, if T=stra® A O=ran
T =< AN Rw—u>B;
sitra®, if T=stra® A O=ran
AN Rw—u<B;
LT, else.

X; =(0,(k=1)-(m— hl)), hi = #i/ [%-I

if O =seq A D =uni
if O =seq A D=>i

-h;, if O=ran

h! =

S ECEE

In other words, an interleaved multi-cursor access pat-
tern causes at least as many cache misses as some sim-
ple traversal pattern on the same data region. However,
it might cause random misses though the local pattern is
expected to cause sequential misses. Further, if the cross-
traversal requires more cache lines than available, X* =
(k — 1) - (m — h}) additional random misses will occur.



5 Combining Cost Functions

Given the cache misses for basic patterns, we will now dis-
cuss how to derive the resulting cache misses of compound
patterns. The major problem is to model cache interference
that occurs among the basic patterns.

5.1 Sequential Execution

Be Py,...,Pp, € P (p > 1). &(Ps,-..,Pp) then denotes
that P,41 is executed after P, is finished (cf. Sec. 3.3).
Obviously, the patterns do not interfere in this case. Con-
sequently, the resulting total number of cache misses is at
most the sum of the cache misses of all p patterns. How-
ever, if two subsequent patterns operate on the same data
region, the second might benefit from the data that the first
one leaves in the cache. It depends on the cache size, the
data sizes, and the characteristics of the individual patterns,
how many cache misses may be saved this way.

To model this effect, we need to consider the contents
or state of the caches. We describe the state of a cache as
a set S of pairs (R, p) € Dx]0,1], stating for each data
region R the fraction p that is available in the cache. For
convenience, we omit data regions that are not cached at all,
i.e., those with p = 0. In order to appropriately consider
the caches’ initial states when calculating the cache misses
of a pattern P = T({..,|R], ..]) € P, we define

(<030>a if <Ra ]-) € Sz
o - |R| g,
M;(P) - <0,%@? P |RB,->,
M (S:, P) = 4 '

if T € {rtra,rr_tra,r.acc}
A3dp €]0,1[: (R, p) € S;
| M;(P), else

(11)
with 1\7Ii(73) as defined in Equations (3) through (10). In
case R is already entirely available in the cache, no cache
misses will occur during P. In case only a fraction of R
is available in the cache, there is a certain chance, that
random patterns might (partially) benefit from this frac-
tion. Sequential patterns, however, would only benefit if
this fraction makes up the ”head” of R. As we do not know
whether this is true, we assume that sequential patterns can
only benefit, if R is already entirely in the cache. For con-
venience, we write  M;(0, P) = M;(P) VP €P.

Additionally, we calculate the caches’ resulting states
S(P) after a pattern P has been performed as follows:

S;(P) = {<R,min{”%”,1}>}
Si(@(Pla---app)) = Si(pp)-

Equipped with these tools, we can calculate the number
of misses for sequential execution, given an initial state S:

Mi(sia@(Pla e 3PP))
=M;(Si, P1) + ) Mi(Si(Py-1),Py)- (12)

q=2

5.2 Concurrent Execution

When executing two or more patterns concurrently, we ac-
tually have to consider the fact that they are competing for
the same cache. The number of total cache misses will be
higher than just the sum of the individual cache miss rates.
The reason for this is, that the patterns will mutually evict
cache lines from the cache due to alignment conflicts. To
which extend such conflict misses occur does not only de-
pend on the patterns themselves, but also on the data place-
ment and details of the cache alignment. Unfortunately,
these parameters are not know during cost evaluation.
Hence, we model the impact of the cache interference
between concurrent patterns by dividing the cache among
all patterns. Each individual pattern gets only a fraction
of the cache according to its footprint size. We define a
pattern’s footprint size F' as the number of cache lines that
it potentially revisits. With single sequential traversals, a
cache line is never visited again once access has moved on
to the next cache line. Hence, simple sequential patterns
virtually occupy only one cache line a at time. Or in other
words, the number of cache misses is independent of the
available cache size. The same holds for single random
traversals with R.w — w > B. In all other cases, basic
access patterns (potentially) revisit all cache lines covered
by their respective data region. We define F' as follows.
BeP =T([.,]R,u) € Prand Py,..., P, € P(p > 1):

F(,P)_ 1, if T=s_tra®Vv (T: r_tra AR'w_uZBi)
T )IR) B, else,

F’L(@(Ph .. JPP)) = ma‘X{F’i(Pl)a .. JF’i(PP)}7

Fi(©(P1,...,Pp)) = ZFi(Pq)-

Further, we use 1\7I,~/,, with v > 1 to denote the number
of misses with only Lth of the total cache size available.
To calculate 1\71,7,,, we simply replace C' and # by % and
%, respectively, in the formulas in Sections 4 and 5.1. We
write M; = M. Likewise, we define S, (P).

Given these tools and an initial cache state S, we can cal-
culate the number of cache misses and the resulting cache
state for concurrent execution.

F(@(Pl, . ,Pp))

Be v, = v (1<qg<p), then
q F(z})q) ( )
- p -
My, (Si; O(Py, -, Pp)) = D My, (Si,P;)  (13)
q=1

Si(®(P1,---,Pp)) = | Sip, (P)-

After executing ®(Ps,...,Pp), the cache contains a
fraction of each data region involved, proportional to its
footprint size.



5.3 Query Execution Plans

With the techniques discussed in the previous sections, we
got the basic tools at hand to also estimate the number and
kind of cache misses of complete query plans, and hence
to predict their memory access costs. The various opera-
tors in a query plan are combined in the same way as we
combine basic pattern to compound patterns. Basically, the
query plan describes, which operators are executed one af-
ter the other and which are executed concurrently. Here, we
view pipelining as concurrent execution of data-dependent
operators. Hence, we can derive the complex memory ac-
cess pattern of a query plan by combining the compound
patterns of the operators as discussed above. Considering
the caches’ states as introduces before takes care properly
recognizing data dependencies, especially for pipelining.

6 Experimental Validation

To validate our cost model, we will compare the estimated
costs with experimental results. Due to space limitations,
we will concentrate on a few characteristic operations,
here. The data access pattern of each operation is a combi-
nation of several basic patterns. The operations are chosen
so that each basic pattern occurs at least once. Extension to
further operations and whole queries, however, is straight
forward, as it just means applying the same techniques to
combine access patterns and derive their cost functions.

6.1 Setup

We implemented our cost functions and used our main-
memory DBMS prototype Monet [3] as experimentation
platform. We ran experiments on various hardware plat-
forms, ranging from Linux-PCs to an SGI Origin2000.
Due to space limitations, we concentrate on the results we
achieved on the latter machine, here.'® We use the CPU’s
hardware counters to get the exact number of cache and
TLB misses while running our experiments. Thus, we can
validate the estimated cache miss rates. Validating the re-
sulting total memory access cost (i.e., miss rates scored by
their latencies) is more complicated, as there is no way to
measure the time spent on memory access. We can only
measure the total elapsed time, and this includes the (pure)
CPU costs as well. Hence, we extend our model to esti-
mate the total executiontime T = T\em + Tcopu as sum of
memory access time and pure CPU time. Tyem is defined
in Equation (1). We calibrate Tcpy for each algorithm in
an in-cache setting, i.e., without memory cost.

6.2 Results

Figure 4 gathers our experimental results. Each plot repre-
sents one algorithm. The cache misses and times measured
during execution are depicted as points. The respective cost
estimations are plotted as lines. Cache misses are depicted

10The detailed cache characteristics of this machine measured with
our calibration tool are listed in [9] and also on-line available at
http://www.cwi.nl/~manegold/Calibrator/.

in absolute numbers. Times are depicted in milliseconds.
We will now discuss each algorithm in detail.

Quick-Sort. We use quick-sort to sort a table in-place.
Quick-sort uses two cursors, one starting at the front and
one starting at the end. Both cursors sequentially walk to-
ward each other swapping data items where necessary, until
they meet in the middle. We model this as two concurrent
sequential traversals, each sweeping over one half of the ta-
ble: s_tra®*(U/2) @ s_tra®*(U/2). At the meeting point, the
table is split in two parts and quick-sort recursively pro-
ceeds depth-first on each part. With n being the table’s
cardinality, the depth of the recursion is log, n. In total, we
model the data access pattern of quick-sort as

U « quick_sort(U) :

@ |LegUn (@lé-o:ng'" (stra®(U/27) © s_traS(U/2j))) )

We varied the table sizes from 128 KB to 128 MB and
the tables contained randomly distributed (numerical) data.
Figure 4a shows that the models accurately predict the ac-
tual behavior. Only the start-up overhead of about 100 TLB
misses is not covered, but this is negligible. The step in the
L2 misses-curve depicts the effect of caching on repeated
sequential access: Tables that fit into the cache have to be
loaded only once during the top-level iteration of quick-
sort. Subsequent iterations operate on the cached data,
causing no additional cache misses.

Merge-Join.  Assuming both operands are already
sorted, merge-join simply performs three concurrent se-
quential patterns, one on each input and one on the output:

W + merge_join(U,V) :
stra®(U) @ stra®>(V) @ s_tra*(W).

Again, we use randomly distributed data and table sizes
as before. In all experiments, both operands are of equal
size, and the join is a 1:1-match. The respective results in
Figure 4b demonstrate the accuracy of our cost functions.
Further, we see that single sequential access is not affected
by cache sizes. The costs are proportional to the data sizes.

Hash-Join. While the previous operations perform only
sequential patterns, we now turn our attention to hash-join.
Hash-join performs random access to the hash-table, both
while building it and while probing the other input against
it. We model the data access pattern of hash-join as

W <« hash_join(U, V) :
s_tra®(V) ©r_tra(H) ®s_tra*U) @ r_accUn,H) ©s_tra*W).

Figure 4c clearly shows the significant increase in L2
and TLB misses, once the hash-table size || H || exceeds the
respective cache size.!* Our cost model correctly predicts
these effects and the resulting execution time.

Partitioning. One way to prevent the performance de-
crease of hash-join on large tables is to partition both

11The plots show no such effect for L1 misses, as all hash-tables are
larger than the L1 cache, here.
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operands on the join attribute and then hash-join the match-
ing partitions [15, 7]. If each partition fits into the cache,
no additional cache misses will occur during hash-join.
Partitioning algorithms typically maintain a separate
output buffer for each result partition. The input is read se-
quentially, and each tuple is written to its output partition.
Data access within each output partition is also sequential.
We model partitioning using a sequential traversal for the
input and an interleaved multi-cursor access for the output:

{U} 721 « cluster(U,m) :
stra®(U) @ nest({U;}|7,,m,s_tra*(U;), ran).

The curves in Figure 4d demonstrate the effect we dis-
cussed in Section 4.6: The number of cache misses in-
creases significantly, once the number of output buffers m
exceeds the number of cache blocks #. Though they tend
to under estimate the costs for very high numbers of parti-
tions, our models accurately predict the crucial points.

Partitioned Hash-Join. Once the inputs are partitioned,
we can join them by performing a hash-join on each pair of

matching partitions. We model the access pattern of parti-
tioned hash-join as

{W;Hjzy < part_hash_join({U;}[52,, {Vj}jL1, m):
@ |72, (hash_join(V;, U;, Wj))-

Figure 4e shows that the cache miss rates and thus the to-
tal cost decrease significantly, once each partition (respec-
tively its hash-table) fits into the cache.

7 Conclusion

We presented a new generic approach to build generic
database cost models for hierarchical memory systems. We
extended the knowledge base on analytical cost-models
for query optimization with a strategy derived from our
experimentation with main-memory database technology.
The approach taken shows that we can achieve hardware-
independence by modeling hierarchical memory systems
as multiple level of caches. Each level is characterized by a



few parameters describing its sizes and timings. This ab-
stract hardware model is not restricted to main-memory
caches. As we pointed out, the characteristics of main-
memory access are very similar to those of disk access.
Viewing main-memory (e.g., a database system’s buffer
pool) as cache for disk access, it is obvious that our ap-
proach also covers I/O. As such, the model presented pro-
vides a valuable addition to the core of cost-models for
disk-resident databases as well.

Adaptation of the model to a specific hardware is done
by instantiating the parameters with the respective values
of the very hardware. Our Calibrator, a software tool to
measure these values on arbitrary systems, is available for
download from our web site (http://monetdb.cwi.nl).

With our approach, building physical costs function
for database operations boils down to describing the al-
gorithms’ data access in a kind of ”pattern language” as
presented in Section 3.3. This task requires only informa-
tion that can be derived from the algorithm. Especially, no
knowledge about the hardware is needed, here. The de-
tailed cost function are than automatically derived from the
pattern descriptions.
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