
Incorporating XSL Processing Into Database Engines

Guido Moerkotte

University of Mannheim
D7, 27

68131 Mannheim
Germany

moerkotte@informatik.uni-mannheim.de

Abstract

The two observations that 1) many XML docu-
ments are stored in a database or generated from
data stored in a database and 2) processing these
documents with XSL stylesheet processors is an
important, often recurring task justify a closer
look at the current situation. Typically, the XML
document is retrieved or constructed from the
database, exported, parsed, and then processed
by a special XSL processor. This cumbersome
process clearly sets the goal to incorporate XSL
stylesheet processing into the database engine.

We describe one way to reach this goal by trans-
lating XSL stylesheets into algebraic expressions.
Further, we present algorithms to optimize the
template rule selection process and the algebraic
expression resulting from the translation. Along
the way, we present several undecidability results
hinting at the complexity of the problem on hand.

1 Introduction
This work is motivated by three observations. The first ob-
servation is that with the rapid proliferation of XML [6],
more and more XML documents are

� stored in databases or

� generated from data stored in a database.

Today, all major vendors of relational database systems
provide facilities to manage and generate XML documents.
Among the most important relational systems are IBM’s
DB2 [1], Microsoft’s SQL Server [2], and Oracle [3] by
Oracle Corp.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

The second observation is that XML documents are
rarely retrieved for their own sake but more often subse-
quently processed by some application. The most promi-
nent application is an XSL [10] stylesheet processor. In
one usage scenario, a web server runs an XSL processor to
generate HTML or XHTML documents out of XML docu-
ments, which are then served to the web.

The third observation concerns the coupling of the
database management system and the XSL stylesheet pro-
cessor. We found the following to be representative. First,
an XML document is retrieved from a database or con-
structed from data stored in a database. The result is an
XML document in textual form, which is then exported
from the DBMS and written to a file. This file is then parsed
and processed by the XSL stylesheet processor.

This cumbersome process raises the question whether
it is possible to incorporate stylesheet processing into the
database engine. If we can do so, we gain several ad-
vantages. The most obvious one is that the intermedi-
ate materialization becomes superfluous. Further, if the
XSL stylesheet accesses only parts of a document, only
these parts have to be retrieved/constructed. Note that in
the above approach, the whole document has to be re-
trieved/constructed and passed to the XSL processor since
the DBMS has no knowledge about the stylesheet. Last,
let us consider the case where the XML document is
constructed from the database. In this case, an XML
document is specified declaratively by some construction
specification—for example in an extended SQL [1, 2, 3,
17, 19]. One can imagine that a combined optimization of
the construction specification and the XSL stylesheet leads
to significant performance improvements.

The goal of the paper is to show one way to incorporate
XSL stylesheet processing into database engines. We have
chosen to translate XSL stylesheets into algebraic expres-
sions. The reason is that XML construction is also based on
translating some extended SQL into algebraic expressions
which are then optimized (e.g. [19]).

Our contributions can be summarized as follows. We
show how to extend an algebra to be able to capture XSL
stylesheet processing. At the same time, we take care
that these extensions can be integrated easily into current

database engines where physical algebraic operators are
implemented using the iterator principle [13]. We provide
an algorithm to translate the core of XSL into our algebra
and optimize the resulting algebraic expression. A large
fraction of the paper is devoted to the problem of optimiz-
ing the process of selecting the next applicable template
rule. Along our way, we present several new undecidability
results hinting at the complexity of the discussed problem.

The rest of the paper is organized as follows. The next
section summarizes XSL essentials. The material on tem-
plate rule selection and its optimization is contained in Sec-
tion 3. Section 4 introduces the algebra and gives an algo-
rithm to translate an XSL stylesheet into the algebra. Sec-
tion 5 shows how the initial algebraic expression can be
optimized. In particular, it shows how recursion can be
eliminated. Section 6 concludes the paper.

2 XSL Essentials

General XSL [10] is a language for representing
stylesheets. According to the W3C, it consists of three
parts: XSL Transformation (XSLT [7]) for describing the
transformation of XML documents, XML Path Language
(XPath [8]) for accessing parts of an XML document, and
XSL Formatting Objects for specifying formatting seman-
tics (a description is contained in the document on XSL).
Since we are not interested in formatting and we can eas-
ily incorporate XSL formatting elements into our approach,
we concentrate on XSLT, which contains the logic of any
XSL stylesheet. For space reasons, we cannot give a sum-
mary of XPath or describe XSLT in full detail. The reader
is referred to the specification documents.

XSLT is a language for transforming XML documents
into other documents. Such a transformation is expressed
in XSLT by means of a stylesheet consisting of - among
other things - a sequence of template rules. These consist
of two parts: a pattern which is matched against nodes in
the source document and a template which can be instan-
tiated to form part of the result document. A template is
instantiated for a particular source node that matches the
pattern of the template rule. When a pattern is instantiated,
each instruction is executed and replaced by the result it
creates. The results of all instructions are concatenated to
form the result of the instantiated template. Instructions
can select and process descendant source nodes.

Syntax The syntax of XSLT is XML. Figures 1-4 con-
tain a sample DTD and XML document, a stylesheet, and
the result of applying the stylesheet to the document. We
use the xsl namespace to distinguish XSLT elements from
other elements. A stylesheet is always embedded in an
xsl:stylesheet element. A template rule is expressed
by an xsl:template element. Its match attribute con-
tains the pattern in the form of an XPath expression. A tem-
plate can also contain a priority attribute whose value
must be a number. If no priority is specified, a default pri-
ority is assigned (see Fig. 5).

Inside the xslt:template element we find literal
XML or text as well as XSLT instructions. Among the

<!ELEMENT world (country*)>
<!ATTLIST world id ID #REQUIRED>
<!ELEMENT country (city*)>
<!ATTLIST country

id ID #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT city EMPTY>
<!ATTLIST city

id ID #REQUIRED
name CDATA #REQUIRED>

Figure 1: A Sample DTD

<?xml version="1.0"?>
<!DOCTYPE world SYSTEM "world.dtd">
<world id="1">

<country id="2" name="Germany">
<city id="21" name="Berlin"/>
<city id="22" name="Bonn"/>

</country>
<country id="3" name="France">
<city id="31" name="Paris"/>
<city id="32" name="Sanary"/>

</country>
<country id="4" name="Italy">
<city id="41" name="Roma"/>
<city id="42" name="Milano"/>

</country>
</world>

Figure 2: A Sample Document

possible instructions are xsl:if, a conditional without
”else”, xsl:foreach for iteration, xsl:choose for
branching like in a switch statement, xsl:value-of to
convert the result of an XPath expression to a string, and
xsl:apply-templates. The latter recursively applies
the template rules to all nodes in the result of the XPath
expression given in its select attribute.

Processing Model Processing a template rule always
takes place with respect to a current node and a current
node list. At the beginning, the current node is the root
node of the source document and the current node list only
consists of this same node. Given a current node and a
current node list, the template to be applied is selected. To
guarantee that at least one template is applicable, XSLT de-
fines default template rules (see Fig. 6). The template rule
selection step is described in detail in the next section.

Given the template rule to be applied, its template is in-
stantiated and produces a part of the result document. The
processing model does not only process single nodes but in-
stead processes lists of nodes (the current node list). The re-
sult of processing a list of nodes is the concatenation of the
processing results of its members in order. A template rule
then typically selects another list for processing. Hence
evaluation continues recursively.

Including and Importing Stylesheets Selecting the
correct template rule to be applied to a given current node
is a tricky and costly procedure. Since we want to be com-
plete and precise on this point, we must consider including
and importing stylesheets. The xsl:include element

<?xml version="1.0"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/XSLT
version="1.0">

<xsl:template match="/world">
<world>
<xsl:apply-templates

select="country"/>
</world>

</xsl:template>
<xsl:template match="country">

<country>
<name>
<xsl:value-of select="@name"/>

</name>
<xsl:apply-templates select="city"/>
</country>

</xsl:template>
<xsl:template match="city">

<city>
<xsl:value-of select="@name"/>

</city>
</xsl:template>
</xsl:stylesheet>

Figure 3: A Sample Stylesheet

allows to include another stylesheet referenced in its href
attribute. Processing replaces the xsl:include element
by the contents of the referenced stylesheet.

The xsl:import element, which is only allowed at
the beginning of the stylesheet, allows to import another
stylesheet referenced by its href attribute. It is processed
like the xsl:include element except that the template
rules of the importing stylesheet take precedence over those
in the imported stylesheet.

Possible xsl:import elements of included
stylesheets are moved up in the including stylesheet to
occur before the root but after the last possibly already
present xsl:import element. Since the imported
stylesheet may import other stylesheets, we are faced with
an import hierarchy.

A template rule in the import hierarchy is defined to
have lower import precedence than another template rule
if in the import hierarchy it would be visited before that
template rule in a post-order traversal of the import hierar-
chy.

3 Optimizing Template Rule Selection

3.1 When a Template Rule’s Pattern Matches

Let � be a current node and
�

be a current node list. Let �
be a pattern in the match attribute of an xsl:template
element. Remember that � is an XPath expression. XPath
expressions are evaluated with respect to a current node and
a current node list.

XSLT specifies that � matches for the given � and
�

if and only if there is an ancestor node ��� of � (������� is
allowed) such that � is in the result obtained by evaluating
� with current node � � and current node list

� � consisting

<?xml version="1.0"?>
<world>

<country>
<name>Germany</name>
<city>Berlin</city>
<city>Bonn</city>

</country>
<country>
<name>France</name>
<city>Paris</city>
<city>Sanary</city>

</country>
<country>
<name>Italy</name>
<city>Roma</city>
<city>Milano</city>

</country>
</world>

Figure 4: Result of Stylesheet Processing

1. A pattern of the form ’name’ or ’@name’
has the default priority 0.

2. If a pattern is a node test, i. e. tests for element
or attribute nodes, the default priority is -0.5.

3. In other cases the default priority is 0.5.

Figure 5: Default Priorities

only of �	� .
A literal implementation of this test computes all the an-

cestors �	� of � . For each ancestor �	� it then evaluates the
XPath expression � and checks whether � is in the result.
If this is the case for at least one ancestor, � matches. Oth-
erwise it does not. This procedure is very expensive. Con-
sider, for example, the pattern ”//*”. Checking the pattern
with the above procedure results in visiting every node in
the document. That is why we optimize this check in Sec-
tion 3.3.

3.2 Conflict Resolution, its Complexity, and the Tem-
plate Sequence

It is easily the case that several patterns of different tem-
plate rules match. Hence, a conflict resolution scheme is
needed. XSLT specifies the following conflict detection
and resolution procedure. Let � be the set of all match-
ing template rules. Then apply the following steps:

1. Eliminate all matching template rules that have lower

<xsl:template match = "*|/">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match = "text()|@*">
<xsl:value-of select = "."/>

</xsl:template>

Figure 6: Default rules for element, root, text and attribute
nodes

import precedence than rules with the highest import
precedence found in � .

2. Eliminate all matching template rules with a priority
lower than the highest priority found among template
rules in � .

If a template rule’s pattern contains multiple alternatives
separated by ’ � ’, then it is treated as a set of template rules,
one for each alternative.

XSLT further specifies that

� it is an error if this leaves more than one matching
template rule.

� an XSLT processor may signal the error; if it does
not signal the error, it must recover by choosing from
among the matching template rules that are left the
one that occurs last in the stylesheet.

Note that following this procedure literally requires check-
ing all template rules for a match. If we decide not to signal
an error but always recover, the following helps us saving
half of this enormous effort.

1. For all templates with no priority given, add the de-
fault priority.

2. Determine the highest and the lowest priority (��� and
���) of all template rules in the stylesheet and all di-
rectly or indirectly included or imported stylesheets.

Define � � � � ���	� and � � � � ��
�� .
3. Recursively replace xsl:include elements by the

template rules in the included stylesheet.

4. Call resolve-import (stylesheet, 0, � �) (see
Fig. 8).

5. Add the default rules with priority �
� .

6. Apply a stable sort to order template rules by ascend-
ing priorities.

7. Reverse the resulting sequence.

Figure 7: Computing the template sequence

number resolve-import (stylesheet s , number w, number �) �
for each import element in document order
let � � be the referenced stylesheet
call � = resolve(� ���������)
� += � ;
for all templates � in �

add � to the priority of � .
replace all import elements in � by the sequence of

template rules found in the referenced stylesheet
return ��

Figure 8: Procedure resolve-import

First, we define the template rule sequence
 of a
stylesheet such that

1.
 contains all template rules of the stylesheet and the
directly or indirectly included or imported stylesheets.

2. for any given document, current node, and current
node list, the first template rule in
 that matches
is exactly the one the conflict resolution strategy of
XSLT chooses (no matter whether there is a conflict
or not).

Now we can iterate over
 until we find the first match-
ing template rule. Fig. 7 gives an algorithm to effectively
compute
 . For this algorithm we have:
Theorem The algorithm given in Fig. 7 correctly com-
putes
 .
For space restrictions we cannot give the proof of our the-
orems here (see [15]). Note that in the algorithm we can-
not sort descending in step 6 and leave out step 7 since the
‘physical’ position of a template rule in a stylesheet influ-
ences rule selection.

 can be computed once for a stylesheet and used for

every application of it, i. e.
 can be computed at compile
time. Although using
 already saves half of the effort on
average, we further optimize the template selection process
in Section 3.4.

The question remains what happens if we want to sig-
nal an error or warn the user of conflicting template rules.
Obviously, we can do so at runtime at the according costs.
What about compile time? For any two template rules with
the same priority, we have to check whether there is a doc-
ument and a current node in the document such that both
their patterns match. Unfortunately, this is undecidable:
Theorem For two given template rules it is undecidable
whether they conflict or not.
This theorem is derived from the following theorem which
is interesting in itself.
Theorem Given two XPath expressions ��� and ��� . It is
undecidable whether there exist a document � and a node
� in � such that the results of evaluating � � and � � with
current node � and current node list � ��� have an empty
intersection.
This theorem follows from the following theorem (use � �
= ‘//*’):
Theorem Given an XPath expression � , it is undecidable
whether there exist a document and a node � in � such that
evaluating � with current node � results in the empty set.
For this theorem we have several proofs (see [15]). Each
one uses only a small subset of the functionality of XPath.
The first proof needs the child axis, some arithmetic oper-
ations (+, *, -), equality and integer constants. It then ap-
plies the solution of Hilbert’s 10th problem [9]. The main
idea is to use polynomials within predicates. We think that
this part of the proof maybe of little relevance for practi-
cal stylesheets. The other proofs reduce Post’s correspon-
dence problem [16]. The first of these uses the child axis,
equality, disjunction, conjunction, and the nconc function
that concatenates all the string values of a set of nodes. The

second uses the child and next-sibling axis, equal-
ity, disjunction, conjunction and the conc function that
concatenates two strings. It further uses the position()
and last() function as well as count(). Alternatively
to next-sibling, prev-sibling can be used, as our
last proof showed. We do not know whether these scenarios
capture realistic stylesheets.

The quintessence of these theorems is that signaling an
error on conflicts is very expensive since in general it re-
quires checking all template rules for a match. Since the
goal of the paper is fast stylesheet processing, we choose
to follow the recovery option of the XSLT specification and
do not signal errors due to conflicts. Instead, we start with

 and its related evaluation strategy and then apply further
optimizations. The next subsection optimizes match checks
for single template rules, the last subsection optimizes the
overall template selection process.

3.3 Optimizing Single Match Checks

Let � be a current node for which the applicability of a
template rule � is to be checked. In order to do so, we
have to evaluate � ’s pattern � for all anchestors � � of � ,
including � itself. If we denote by ����� ���	�
���
 ��� the result
of evaluating the Xpath expression � with current node � �
and current node list � �	� � , we have to check whether for
all ��� �����	��� �����
 �
 ��� . In case of a success we can stop
the evaluation early, otherwise we have to go all the way
through!

If � contains only a single ‘//’, this potentially results
in the traversal of the whole document. Even if no ‘//’ is
present, larger than necessary parts of the document are
traversed as illustrated in Fig. 9. The parts traversed for
checking the pattern ‘/a/b/c’ are indicated by a dotted line:
it is the whole tree.

bb

root

b

a

c c c ccc c cc

traversed by

traversed
by XPath
evaluation

�

backward path
evaluation

Figure 9: Traversed nodes for checking the pattern ‘/a/b/c’
with current node �

Intuitively, it is cheaper to start the test at node � and
check whether it is a � -node. Then move up to the parent
and check whether it is a � -node and so on. The nodes
traversed by this backward evaluation are also indicated in
Fig. 9.

The idea of evaluating a given path expression back-
wards is not new. It appears for example in the object-
oriented context (e.g. [4]) and in the semi-structured con-
text (e.g. [14]). The basic idea of any of these approaches
is to optimize the computation of the result of a path ex-
pression. As an invariant, it is always true that the result
obtained by backward evaluation is the same as the result
obtained by forward evaluation. The difference between
forward and backward evaluation lies solely in the realm of
efficiency. In contrast, we take an approach where we trans-
late an XPath expression � (from now on synonymously
called forward path) into a backward path � � . In all but
trivial cases, the evaluations of � and � � will differ.

Let � be the translation process of translating a forward
path into a backward path (described below). Let the back-
ward path � � be the result of �
 ��� for some forward path
� . If we denote the evaluation of a backward path � � with
current node � by �	��� ��� �

 � ��� , then the following holds:

�� ����� ancestor-or-self
 ���!

�"�#����� ���	�
 �$
 ���%�'&)(
 �	��� � � �

 � � �+*�-,.�0/
The backward path then captures our intuition in that its
evaluation requires only a small fraction of the document
to be traversed (as in Fig. 9). Hence, we replace the stan-
dard evaluation of the right-hand side by the much cheaper
evaluation of the left-hand side. Since we are not interested
in the result of the backward evaluation but only in the fact
whether the result is empty or not, the above equivalence
gives us the correctness of our approach. In the remainder
of this subsection we formalize backward paths, their eval-
uation, and � . The formalization of backward paths will be
needed in the next subsection.

As in XPath expressions, backward paths are allowed to
carry predicates for nodes. We borrow XPath’s syntax and
emphasize the existence of the base predicates root(),
element() and attribute() as well as the function
name(). The root() predicate evaluates to true if the
current node � is the root node of the document that con-
tains � . The predicates element() and attribute()
evaluate to true if the current node is an XML element or
attribute node, respectively. The function name() returns
(as in XPath) the name of an element or attribute node.

We can define backward paths inductively:

� /21 354 is a backward path and

� �768/91 3�4 and �76.68/91 3�4 are backward paths for any back-
ward path � .

The predicate 1 3�4 is optional. :;6 ’ is called parent and :<6.6 ’
ancestor-or-self axis1. The dot(’.’) is—strictly spoken—

1XSLT also allows ’..’, the parent axis which can easily be reflected by
adding a child axis ’..’ to backward paths.

not needed but makes a nice contribution to the graphical
representation of backward paths.
An example of a backward path is

.[element() � name()=’c’]
6 .[element() � name() = ‘b’]
6 .[element() � name()] 6 .[root()].

This backward path happens to be �
�� � � � � ��� .
The challenge to make backward paths work correctly

lies in some nitty gritty details. For example, a document’s
root node is an additional node atop the document node (the
top node of the contents of the document in XML termi-
nology). Another detail is the provision to always provide
a context that allows the correct evaluation of the XPath
functions position() and last(). Hence, the seman-
tics might look a little more complex than expected.

We define

eval
� �

 /21 354�� � � � � � � eval

���

 /91 3�4 � �

eval
� �

 �76�/21 354�� � � � � � � �	� � � eval

� �

 �����
�	� � 3 ��� ���	�
 � � � �
�
� � eval

�	�
 �
 / /* 1 354�� �

eval
� �

 �76.68/91 3�4 � � � � � � � � � � � eval

� �

 �����
��� � ancestor-or-self
 � � � ���
� � eval

�	�
 �
 / //* 1 3�4 � �

Note that if a predicate 3 does not contain position()
or last(), then 3 can always be evaluated locally at the
current node without going up to a parent or ancestor and
down to the children or descendants again. If 3 contains
at least one of these functions and 3 occurs in conjunction
with ‘ 6 ’, then siblings of the node under test have to be
traversed. Only in the remaining case, where 3 contains
one of the above functions and occurs in conjunction with
‘ 6.6 ’, larger parts of the document have to be traversed.

We define the translation � of a forward path into a back-
ward path as follows:

�
 ��� �
��
 � �
 � �2� 6�/21 root
 ��4 if P = / P’
� �
 � �9� 6.68/91 root
 ��4 if P = // P’

� �
 ��� 6.68/ otherwise

with

� �
 ��� ��� � �
 � �9� 6��
�� � if P = N/P’
� �
 � �2� 6 6��
�� � if P = N//P’

where � is a node specifier matching � ’s argument patterns
in �
 � 1 354�� � /91 element() � name()=‘a’ �73�4�
�� 1 354�� � /91 element() � 3�4�
�� � 1 354�� � /91 attribute() � name()=‘a’ �7354�
���� 1 354�� � /91 attribute() �7354
Again, the predicates are optional. The result of �
�� � � � � ���
has already been provided above. For more examples, see
the next section.

3.4 Optimizing the Overall Selection Process

Optimizing the costs of evaluating a bunch of conditions to
make a decision or determining a choice is often achieved
by using and optimizing decision trees. In a typical deci-
sion tree, every node is labelled by a predicate and for every
non-leaf node there exist two outgoing edges for the posi-
tive and the negative case. Decision trees of this form are
not useful in our context: we are talking about nodes, node
sets and occurrence and need to embed the notion of axis
traversal into the decision tree. Hence, we introduce the
axis enhanced decision tree. It is defined as follows. An
axis enhanced decision tree (AEDT) is an ordered rooted
tree whose nodes are labeled with predicates of the same
form as in backward paths and whose edges are labeled by
either self, ‘ 6 ’, or ‘ 6.6 ’. Additionally, leaf nodes contain
references to template rules. Apart from the last point, ev-
ery backward path is an axis enhanced decision tree where
its leftmost node (dot) becomes the root. AEDT’s are eval-
uated in a strict left to right order. Evaluation for a given
current node starts at the root of the AEDT. For any given
AEDT node � , its predicate is evaluated for the current
node. If it evaluates to true, and � is a leaf node, its tem-
plate rule is selected. Otherwise we follow the outgoing
edges in left to right order. For every edge, we evaluate
the path expression associated with it. If the label is self,
then the current node remains unchanged. If the label is
‘ 6 ’, the parent of the current node becomes the new current
node. In case of ‘ 6.6 ’, every ancestor of the current node
becomes the new current node. For each new current node,
we evaluate the predicate of the node the edge under con-
sideration leads to. If � ’s predicate evaluates to false, we
proceed with the next unprocessed edge of the AEDT.

The template sequence
 can now be translated into an
initial AEDT by translating each pattern into a backward
path and then into an AEDT. All AEDT’s are then collected
under a new root and the edges from the root to the pattern’s
AEDTs are labelled by self. The resulting AEDT for the
template rules in Fig. 3 is given in Fig. 11 a). Since the
default rules will never fire for our example, we omitted
them as we will in the rest of the paper.

So far, not much has been gained over the simple tem-
plate rule selection procedure using
 . However, the
AEDT gives us a general representation of all tests to be
performed and allows subsequent optimizations.

Before giving our optimization method for AETDs, we
present two theorems illuminating the complexity of opti-
mizing AETDs.
Theorem Deciding whether two AEDTs are equivalent is
undecidable.
Equivalent here means that the same leaf node is selected
for any current node in any document. Again, we refer to
[15] for full proofs.
Theorem Under any reasonable cost function it is unde-
cidable whether a given AEDT is optimal even if we know
that it is equivalent to the initial AEDT of some template
sequence
 .
A cost function is reasonable if it adds positive costs for all

predicates occurring in the AEDT and sums up these costs.
The proofs build on the fact that there exist predicates that
cannot be eliminated safely but possibly.

1 3 �73 � 4 ���

1 3$4

1 3 �04
self

Predicate Extraction
(3 � does not contain position() or last())

�

[3]

. . .

�

[3]

. . .

���

�

[3]

.

Node Factorization
 � � � � self � � �	6 � � �

� �

1 3 4 1 3 �04

���

�

self self
1 3 4 1 3 � 4

Edge Factorization

� �

1 3 4 1 3 �04

 � �

1 3$4

Simplification (� � � � self � � � 6 � � and 3 � (3)

Figure 10: AEDT Transformation

These theorems show that optimization of the initial
AEDT should take place in small, carefully chosen steps.
We use the rewrite rules contained in Fig. 10 to transform
the initial AEDT into an optimized form. In general, the
rules are applied in a left to right manner. Some rules rely
on additional preconditions. The goal of applying these
rules is to eliminate as many redundant predicate evalua-
tions and traversals as possible. In order to do so, we per-
form the following steps to any initial AEDT:

1. Apply predicate extraction for all element() and
attribute() predicates.

2. Apply node factorization on nodes containing only the
element() or attribute() predicate.

3. Apply steps 1 and 2 for predicates involving the
name() function.

4. Apply as many edge and node factorization as well as
simplification steps as possible. Use predicate extrac-
tion to enable these rules.

An initial AEDT and its optimized form derived by apply-
ing the above algorithm is given in Fig. 11 a) and b). Evalu-
ation of the AEDT can then be optimized locally at the node
level. Consider for example the case where all child nodes
of a given node � have the form name() = const. If
all the edges from � to these children are labeled by self
or ‘ 6 ’, then we do not need sequential checking but can
replace this step by a more efficient jump table.

[element()

=’world’]

self self

[element()

self

1

2 3
= ’country’]

[element()

’city’]

[root()]
6

� name() � name() � name()=

a)

self self
self

1

2 3
[name()
=’world’]

6
[root()]

[name()=
[name()=
’city’]

self

[element()]

’country’]

b)

Figure 11: Initial AEDT and its optimized equivalent

4 From Stylesheets to Algebraic Expressions
4.1 Data Model, Algebra and the Rough Picture

Since order plays a crucial role in XSLT, our algebra works
on sequences of tuples. For a logical relational algebra this
is not really common. However, for a physical algebra this
is a given fact even in the standard relational case since al-
gebraic operators are implemented by applying the iterator
principle [13]. We will describe our algebra also in terms
of iterator implementations. Before we do so, let us clarify
what our tuples look like.

First, we view a tuple as a sequence of attribute values.
Each value can be a number or a string, but also a docu-
ment node or even a pointer to an algebraic operator. The
latter is used for routing the data flow as explained below.
It is convenient for us if some attributes of a tuple are pre-
defined. These are streamId, resumeOp, current
(holding the current node) and position (holding the
position of the current node). The resulting schema of a
tuple is shown in Fig. 12. The first two attributes will be
explained below.

The algebra now works on sequences of these tuples.
The core of the algebra consists of the following oper-
ators: DocScan, Sink, Map, Select, UnnestMap,
Distributor, GPush and Collector. All these op-
erators are iterator-based. Additionally, there is a stack
operator with the usual top, push and pop functions. It
is needed to resolve recursion. The next section will show
how it can be eliminated during the optimization of the ini-
tial plan. Let us now explain the remaining algebraic op-
erators. It might help if the reader already glances at the
initial plan (Fig. 13) for our sample stylesheet (Fig. 3).

DocScan (”world.xml”)

Distributor

Select � country�

Map ��� country ������� �

UnnestMap
�	�

”city”

GPush

Map ���
� country � �

Collector

Sink

Select � city �

Map ��� city � �

Map ����� name � �

Map ���
� city � �

Select ��� world �

Map ��� world ������� �

UnnestMap
�	�

� country �

GPush

Map ����� world � �

Stack

Figure 13: Initial Plan

The DocScan operator creates a single tuple for ev-
ery document to be processed by the current stylesheet.
It initializes the current attribute with the root node
of the document. Independent of how the documents are
stored, this is an easy task. If they are stored in a rela-
tional database, selecting root nodes of documents is easy
in any known encoding, for example [12, 20, 18, 19, 21].
If the documents are stored in a native XML database, re-
trieving document root nodes is also an easy task, as for

example in Natix [11]. The Sink operator does nothing
but eating all its input tuples. The Map operator applies a
function to a tuple. In our case this will always be a print
function2. We will give the text it prints as its subscript.
This text may contain XPath expressions whose result is to
be printed in textual form. We chose ‘ � ’ and ‘

�
’ to escape

these XPath expressions. The Select operator applies
a predicate to its input tuple and—this is different from
standard select—signals an end of stream if the predicate
evaluates to false. The Distributor together with the
immediately following Select operators implements the
template selection process.

If we glance at Fig. 13 again, we see the Selects and
the Distributor surrounded by a box. This indicates
that they should be implemented together as a single op-
erator using the AEDT approach of the previous section.
However, we keep them separate until the end of the op-
timization process since we will need explicit selections
in the next section. The predicates of the selection oper-
ators are given as the XPath expressions that occur in the
match attributes of the template rules. The semantics of
these predicates is the one described in Sec. 3.1.

In essence, the distributor sends each tuple to its out-
put streams (in order!) until one of them is able to process
it successfully. Since it is standard to implement algebraic
operators as iterators [13], we see a misfit. This is remedied
by the Collector. It simply asks the Distributor on
which stream the next next call is to be issued. Summa-
rizing, a Distributor-Collector pair together with
the Selections implements the template selection pro-
cess. Every stream in between then is the result of trans-
lating a single template rule’s body into the algebra. We
do not specify the output of the Collector here since it
does not matter because of the Sink on top of the plan.
However, the output will matter and be specified precisely
in the next section.

UnnestMap takes a path expression and returns for ev-
ery node in the result of the path expression a tuple with its
current attribute set to that node. It can be parameter-
ized in two aspects. First, it can copy the argument tuple it
got from a next call as its first output tuple before all the
other tuples are generated by evaluating the path expres-
sion. This option is indicated by an ‘F’ in the superscript.
If the original input tuple is to be copied to the output after
the nodes resulting from the evaluation of the path expres-
sion, we denote this by ‘L’. Second, UnnestMap is able
to reverse the result order. XPath specifies that nodes in the
result set are ordered in document order. If we add an ’R’ to
UnnestMap’s superscript, it generates the result set in re-
verse document order. Note that this does not imply buffer-
ing and reversing the result set, it can be implemented by
merely reversing traversal operations. For example, when
following the child axis, we produce the children starting
with the last child instead of the first. As an example con-
sider UnnestMap

� �������������
applied to the node with id 1

2This simplifies the exposition only. It is straightforward to add func-
tions that construct a tree of throw SAX events.

stream id resume op current position . . . other attributes . . .

Figure 12: Tuple Scheme

(see Fig. 2). It produces 1, 2, 3, 4. UnnestMap
�	�
�������������

produces 1, 4, 3, 2 and UnnestMap � ��� ������� � produces 2, 3,
4, 1.

The last operator to be described is GPush. It is as-
sumed that it receives an input as produced by Unnest-
Map

�	�

. This input is grouped. The first tuple is the orig-

inal tuple and then those generated from the path expres-
sion of UnnestMap

�	�

follow. With such a group GPush

now does the following: it marks the top tuple on the stack,
pushes all subsequent tuples of one such group onto the
stack, and then signals an end of stream. GPush marks the
first tuple by storing its own address/id in the resumeOp
attribute. This is necessary since every tuple must go
through one complete stream between a Distributor-
Collector pair. This is achieved in two phases. So far
we have described the first phase where tuples are pushed
onto the stack. They are eliminated from the stack only
by the Collector, and eventually a group’s first tuple
reappears on the top of the stack. GPush then recognizes
its responsibility by looking at the tuple’s resumeOp at-
tribute and passes it up the stream. It should be obvious
by now that an UnnestMap-GPush pair is generated for
every xsl:apply-templates instruction.

For details on the implementation of the next methods
of the algebraic operators [15].

4.2 The Translation Process

There are two main problems when translating XSL
stylesheets into an algebraic expression. The first one is
the template selection process. This process has been dis-
cussed in the previous section. The second problem occurs
with xsl:apply-templates instructions. These im-
ply recursion of high complexity [5]. In principle, there
should be two solutions to the problem: using a fixpoint
operator as in Datalog [22] or using a stack to resolve re-
cursion. We decided to take the second approach since or-
der preserving fixpoint operations which are also efficient
are not known to us. Maybe future research can help us
here. Meanwhile, we use a Stack operator. Given these
decisions and the algebra the algorithm for translating a
stylesheet into the initial plan is defined as follows:

1. Compute
 .

2. For every template rule in
 create a subplan by

� creating a single Select operator with the path
of the pattern of the template rule as its predi-
cate. This Select operator becomes the cur-
rent plan.

� For every instruction in the body of the template
rule (in order of appearance):

If the instruction is a string, create a Map oper-
ator with the string as its subscript and stack it
onto the current plan.
If the instruction is an
xsl:apply-templates element with a
path � in its select attribute, create an
UnnestMap

�	�

� operator and stack it onto the

current plan. Then add a GPush to the current
plan.
(Other possible instructions exist in XSLT and
their straightforward translations go here.)

3. Let a Distributor-Collector pair embrace all
the plans of step 2 while obeying
 ’s order.

4. Create a stack operator and make it known to all
Distributor, Collector and GPush operators
in the plan.

5. Add a Sink on top of the plan and a DocScan below
it.

The plan created by steps 1-4 is called the stylesheet’s core
plan.
Theorem The above translation is correct.

Although we will not give the full proof by induction
(see [15]) on the number of nodes to be processed, we give
the main arguments of the proof because we think they will
help the reader to understand what happens dynamically.
An alternative is to follow the example of Fig. 1 through
the initial plan. In doing so, it might be helpful to take a
look at Fig. 14 which contains the stack status after every
push or pop operation as well as the output produced by the
plan.

The main arguments of the proof are:

1. The translation of the instructions other than
xsl:apply-template is obviously correct.

2. Only two operators push tuples onto the stack:
Distributor and GPush. Before each push,
the tuple’s current attribute contains a node that
needs (further) processing. Other attributes (resume,
streamId) are initialized correctly.

3. The order of streams in the Distributor-
Collector pair directly reflects
 ’s order.

4. Every node (= tuple’s current content) whose tem-
plate (= stream) is not yet decided upon (resume = 0,
streamId = -1) is sent to every stream in order.

5. If a select fails for a tuple, this tuple never moves
further upwards. That is, the Collector’s next
call returns false. This implies that the next stream is
tested for the same tuple.

Stack [empty]
Stack 1
Out <world>
Stack 1 4
Stack 1 4 3
Stack 1 4 3 2
Out <country><name>Germany</name>
Stack 1 4 3 2 22
Stack 1 4 3 2 22 21
Out <city>Berlin</city>
Stack 1 4 3 2 22
Out <city>Bonn</city>
Stack 1 4 3 2
Out </country>
Stack 1 4 3
Out <country><name>France</name>
Stack 1 4 3 32
Stack 1 4 3 32 31
Out <city>Paris</city>
Stack 1 4 3 32
Out <city>Sanary</city>
Stack 1 4 3
Out </country>
Stack 1 4
Out <country><name>Italy</name>
Stack 1 4 42
Stack 1 4 42 41
Out <city>Roma</city>
Stack 1 4 42
Out <city>Milano</city>
Stack 1 4
Out </country>
Stack 1
Out </world>
Stack [empty]

Figure 14: Stack dumps and output produced by the initial
plan

6. If a select succeeds for a tuple � (which is always
on top of the stack at this point in time), this tuple is
processed by subsequent operators.

If this is a Map, correctness is easily seen. The tuple is
processed immediately and moves up to the next op-
erator until it finally reaches the Collector, where
it is removed from the stack.

If there happens to be an UnnestMap-GPush pair
along the stream, first the UnnestMap operator cre-
ates a group of tuples: the original tuple and those in
the result of its path expression.

Note that the original tuple is still on top of the stack.
GPush correctly sets the ResumeOp attribute of this
tuple to itself, indicating that it has been processed by
all operators below it and needs to be processed by
all operators above it. Then GPush pushes the other
tuples onto the stack. The ’R’ of the UnnestMap

and the order-reversing effect of the stack cancel each
other out.

Let us assume that all tuples on the stack get processed
and let us consider the moment the original tuple reap-
pears on top of the stack. Since the Collector is
the only operator that calls pop and atop of it is the
sink operator, we can infer that the Distributor
is asked for the next stream to issue a next call on.

This stream is the one containing the GPush (deter-
mined by the streamId attribute) that pushed it and
the next-calls ripple down until its next member
function is called. GPush then looks at the top of
the stack, recognizes itself in the resumeOp attribute
and hands the tuple upwards.

Note that a plan may never halt. This is due to the fact that
stylesheet processing itself may also not terminate. The
problem to determine whether it halts or not is undecidable
[5].

5 Optimizing the Initial Plan
Every node processed by a stylesheet enters the stylesheet’s
core plan at the Distributor. Except for the root
node, GPush sends the nodes to the Distributor via
the stack. The main idea of the optimization process
is to successively replace GPush operations by the core
plan and apply some simplifications until a good plan has
been achieved or no more GPush operations are present.
Consider our example plan in Fig. 13. Looking at the
DOCTYPE (assumed to be metadata accessible to the tem-
plate optimizer) of our example document (Fig. 2) we
see that first the root node enters the core plan and the
Select � � � � ��� stream is selected. Hence, we start by re-
placing the GPush in this stream by the core plan. The
result is shown in Fig. 15. Note that we left out the stack.
A first subtlety occurs. We want every tuple that enters a
Distributor-Collector subplan to leave it. Hence,
we add a bypass stream to the inner Distributor-
Collector subplan. Along this bypass, the entering tu-
ple exits when all other nodes have been processed and
it reappears on top of the stack. In order to make this
work correctly, we mark the entering tuple and use an
UnnestMap � in the outer plan. The ‘R’ has also been
dropped since tuples are not pushed on the order revers-
ing stack anymore. Another subtlety is the tuple structure
which has to be changed. We need the predefined attributes
for every Distributor-Collector pair. Apart from
these two subtleties, there is no problem with replacing any
GPush by a stylesheet’s core plan.

After any such replacement we perform some optimiza-
tions. Consider again the plan in Fig. 15. DocScan
produces a tuple whose current attribute is set to the
root node of the document. Hence, we know that the
only branch that qualifies for this tuple is the rightmost
branch of the outer Distributor. We can eliminate the
other two branches. This leaves the outer Distributor-
Collector pair with only one stream in between. The

next optimization is to remove the Distributor and re-
place the Collector by a Group operator. Group re-
verses the effects of an UnnestMap � . It only outputs the
original tuple, i.e. the last in any group. The other tuples
are ignored. Hence, Group can be implemented very effi-
ciently.

We are now ready to pick another GPush for replace-
ment by the core plan. We chose the GPush of the inner
plan that lies on the Select

��� ������� �
branch since looking

at the DTD (Fig. 1) tells us that only country elements
are children of world elements. We know (DTD) that only
city elements are below country elements. Hence, all
other branches can be eliminated from the innermost core
plan. Again, this leaves a core plan with only one branch.
We can replace the Collector by a group and eliminate
the Distributor.

After these replacements we are left with a sequence
of operations with no more GPush, Distributor, or
Collector nodes. Hence, we can also leave out the stack
operator. In general, whenever there is a non-recursive
DTD, we can finally eliminate the stack by following the
above procedure. But we are not quite done. We can elimi-
nate the Select operations since we are sure the condition
will evaluate to true. The resulting plan is shown in Fig. 15.

Last but not least, if there exist remaining
Distributor and Select operations, they should be
replaced by a powerful distributor implementation that
uses the AEDT approach.

6 Conclusion

We started by investigating the template rule selection pro-
cess. It turned out that its optimization is a hard problem:
conflict detection at compile time and constructing optimal
AEDTs are both undecidable problems. Then we saw that
by small, carefully selected rewrite steps substantial opti-
mization of a given AEDT is still possible. Next, we intro-
duced an algebra and a translation process of a stylesheet
into the algebra. Its subsequent optimization could not only
lead to more efficient plans but also eliminate recursion in
case of non-recursive DTDs.

Despite these achievements, there is a need for more
research. Future research should try to find more opti-
mization possibilities for AEDTs. A large area for fu-
ture research—not even touched in this paper—is the com-
bined optimization of queries constructing documents and
XSL stylesheets processing them. Last but not least, there
should be investigations on alternative ways to incorporate
stylesheet processing into database engines.
Acknowledgement. I thank Simone Seeger for her help
in preparing the manuscript and Thorsten Fiebig for many
fruitful discussions.

References

[1] DB2 XML Extender. http://www-4.ibm.com/-
software/data/db2/extenders/xmlext/.

[2] A survey of microsoft sql server 2000 xml
features. http://msdn.microsoft.com/library/-
default.asp?url=/library/en-us/dnexxml/html/-
xml07162001.asp.

[3] XML, XSLT and Oracle8i.
http://technet.oracle.com/sample code/tech/xml/-
xsql servlet/sample code index.htm.

[4] J. Banerjee, W. Kim, and K.-C. Kim. Queries in
object-oriented databases. In Proc. IEEE Conference
on Data Engineering, pages 31–38, 1988.

[5] G. Bex, S. Maneth, and F. Neven. A formal model
for an expressive fragment of XSLT. Computational
Logic, pages 1137–1151, 2000.

[6] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Ex-
tensible markup language (xml) 1.0. Technical report,
World Wide Web Consortium, 1998. W3C Recom-
mendation 10-Feb-98.

[7] J. Clark. XSL transformations (XSLT) version 1.0.
Technical report, World Wide Web Consortium, 1999.
W3C Recommendation 16 Nov. 1999.

[8] J. Clark and S. DeRose. XML path language (XPath)
version 1.0. Technical report, World Wide Web Con-
sortium, 1999. W3C Recommendation 16 Nov. 1999.

[9] M. Davis, Y. Matijasevich, and J. Robinson. Hilbert’s
tenth problem. diophantine equations: positive as-
pects of a negative solution. In Proc. of the Symp. on
Hilbert Problems, pages 323–378. American Math.
Soc., 1976.

[10] S. Deach. Extensible stylesheet language (XSL) spec-
ification. Technical report, World Wide Web Consor-
tium, 2001. W3C Recommendation 15 Oct 2001.

[11] T. Fiebig, S. Helmer, C.-C. Kanne, J. Mildenberger,
G. Moerkotte, R. Schiele, and T. Westmann. Anatomy
of a native xml base management system. Technical
Report 01, University of Mannheim, 2002.

[12] D. Florescu and D. Kossmann. Storing and querying
XML data using an RDBMS. IEEE Data Engineering
Bulletin, 22(3):27–34, 1999.

[13] G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2), June
1993.

[14] J. McHugh and J. Widom. Query optimization for
XML. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 315–326, 1999.

[15] G. Moerkotte. Incorporating XSL processing into
database engines. Technical Report 7, University of
Mannheim, 2002.

[16] E. Post. A variant of a recursively unsolvable prob-
lem. Bull. AMS, 52:264–268, 1946.

DocScan (world.xml)

Distributor �

select � country�select � city � select ��� world � �

Map � � world � �

UnnestMap �”country”

Distributor �

Select � country�

Map ��� country ������� �

UnnestMap
�	�

”city”

GPush

Map ���
� country � �

Collector �

Map ���
� world � �
bypass

Select � city �

Map ��� city � �

Map ����� name � �

Map ���
� city � �

Select ��� world�

Map ��� world ������� �

UnnestMap
�	�

� country�

GPush

Map ����� world � �

Collector �

docScan(”world.xml”)[$1]

Map ”world”

UnnestMap ”$1/country”[$2]

Map ”country...”

UnnestMap ”$2/city”[$3]

Map ��� city � �

Map ” � @name
�
”

Map ���
� city � �

Group ”city”[$3]

Map �
� country �

Group country[$2]

Map ” � /world � ”

sink

Figure 15: Result of GPush-Replacement and Final Plan

[17] M. Rys. Bringing the Internet to Your Database:
Using SQLServer 2000 and XML to Build Loosely-
Coupled Systems. In Proc. IEEE Conference on Data
Engineering, pages 465–472, 2001.

[18] A. Schmidt, M. Kersten, M. Windhouwer, and
F. Waas. Efficient relational storage and retrieval of
XML documents. In ACM SIGMOD Workshop on
the Web and Databases (WebDB), 2000.

[19] J. Shanmugasundaram, R. Barr E. J. Shekita, M. J.
Carey, B. G. Lindsay, H. Pirahesh, and B. Reinwald.
Efficiently Publishing Relational Data as XML Doc-
uments. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 65–76, 2000.

[20] J. Shanmugasundaram, H. Gang, K. Tufte, C. Yhang,
D. J. DeWitt, and J. Naughton. Relational databases
for querying xml documents: Limitations and oppor-

tunities. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 302–314, 1999.

[21] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasun-
daram, E. Shekita, and C. Zhang. Storing and query-
ing ordered XML using a relational database system.
In Proc. of the ACM SIGMOD Conf. on Management
of Data, 2002. to appear.

[22] J.D. Ullman. Database and Knowledge Base Systems.
Computer Science Press, 1989.

