
Figure 1: The architecture of VXMLR

VXMLR: A Visual XML-Relational Database System

Aoying Zhou Hongjun Lu* Shihui Zheng

Yuqi Liang Long Zhang Wenyun Ji Zengping Tian

Fudan University, Shanghai, China, ayzhou@fudan.edu.cn
* Hong Kong University of Science & Technology, Hong Kong, China, luhj@cs.ust.hk

Abstract

We demonstrate a visual based XML-Relational
database system where XML data is managed by
commercial RDBMS. A query interface enables
users to form path expression based queries
against stored data visually. Statistics about data
and a special path directory are used to rewrite
path expression based queries into efficient SQL
statements involving less number of joins.

1. Introduction

Anticipating that a large number of XML data will be
available, various approaches to storing and querying
XML data have been proposed. There are basically three
alternatives: storing XML data in semi-structured
repository, in object-oriented databases, and in relational
systems. This demonstration presents VXMLR, a visual
based XML document management system built on top of
a commercial relational database management system.

Figure 1 depicts the architecture of VXMLR. An input
XML document is first parsed into a DOM (Document
Object Model) tree. At the same time, the DTD (Data
Type Definitions) for the document is extracted. The
document tree is then mapped into relational tables and
stored in the database. Both the DTD structure and
mapping information are maintained in a DTD Directory,
that is used in query rewriting and result construction. To
access XML data stored in the database, VXMLR
supports a visual querying interface. Through the
interface, DTD structures of stored XML documents are
displayed, and users can form queries by clicking the
relevant data elements and entering conditions. Such
queries are first expressed as path expression queries that
are then transformed into SQL statements ready to submit
to the underlying relational DBMS. To generate efficient

SQL statements from path expression queries, VXMLR
maintains some statistics of data and a path directory,
which are used in the query rewriting process to reduce
the number of SQL statements and simplify join
conditions. The returned query results are constructed and
expressed using XSL before being delivered to the user
through the querying interface.

2. Querying XML data in relational systems

An XML document usually has its structure defined by its
DTD (Data Type Definition). Such structure is more
complex than relational tables. When an XML document
is stored in relational systems, it is flattened into relational
tables. Furthermore, SQL, the main query language
supported by relational systems, has to be used to query
the stored data. Obviously, impedance mismatch problem
occurs in such a system. Therefore, we concentrate
ourselves on efficiently querying XML data stored in
relational systems when developing VXMLR. In
particular, two main issues are addressed: ease of forming
queries and efficient retrieval of stored data.

Querying XML data is difficult since users need to
know the structure of the data. When XML data is stored

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

Relational Database Management System

XML-Rel.
Mapping

DTD
Dictionary

XML
Parser

DTD
Extractor

DTD-based Visual Query
Interface

RPE-SQL
Rewriter

Path
Directory

XSL
Processor

Result
Constr.

XML
Documents

Figure 2: The VXMLR query interface

Relational Schema:
laboratory(ID, labname , PARENTID);
project(ID, projname, PARENTID);
member(ID, name, email, PARENTID);
publication(ID, title, author, year, PARENTID);

Figure 3: A Sample DTD and its relational schema

in relational systems, this becomes more difficult as the
original structure may not be well reflected by the
relational schema. VXMLR implemented a visual query
interface as Java Applet running by browsers at client
sides. Figure 2 is the screen dump of the interface. It
consists of two portions (windows). The left portion
displays the DTD structure of the XML document to be
queried. The right portion is for user to specify the target
attributes to be retrieved and the conditions to be satisfied
by the retrieved data items. Users can simply click the
data elements in the DTD portion to select them and enter
the conditions at the right hand side windows. After a user
completes the specifications of the target list and
conditions, a query in the form of path expressions is
generated.

A path expression has the form
r = (r)* | (r)+ | (r)? | r1.r2 | r1|r2 | # | name.

where *, +. ? mean 0 or more, 1 or more, and 0 or 1
occurrences, respectively. Concatenation r1.r2 is used to
form a path from r1 to r2. Alternation “|” stands for
disjunction. The # sign denotes arbitrary occurrences of
any regular expressions. We distinguish two types of path
expressions: simple path expression (SPE) and regular
path expression (RPE). SPE are path expressions that
consist of only element or attribute names. For example,
with the data described in Figure 3, a SPE query that
retrieves the name of all members who have publications,

select member.publication.author.name
can be rewritten into the following single SQL query in a
rather straightforward way:

select m2.name
from member m1, publication, member m2
where publication.perantid = m1.ID
and publication.author = m2.ID
Note that the number of joins in the result SQL query

is equal to the number of intermediate nodes on the path.
To minimize the number of join conditions, VXMLR
maintains a path directory, which is similar but more than
join indexes that materializes the paths from the root to

elements existing in the data. Therefore, instead of join
conditions, path directory entries can be used in the SQL
statement, which reduces the number of join conditions,
hence improves the performance, dramatically.

Regular path expression queries (RPE) that contain
“#” and “*” need to be expanded to SPE queries first, then
translated into SQL statements. For example, query

select project.#.publication
selects all of the publications reachable from the project
node via zero or more edges. With the information in
DTD, the # in the query is expanded and the query
becomes

select project.member.(project.member)*.
 publication
|project.(member.project)*.publication

When expanding the * operator, the number of result
SPEs depends on the number of occurrences of paths
involved in the operator. Assuming that project.memer
occurs on each path at most once in the data, the above
RPE can be expanded to :

select project.member.publication
union
select project.publication
union
select project.member.project.publication

To facilitate this expanding process to only produce
necessary SQL statements, i.e., statements that will return
some results from the current data, VXMLR maintains
statistics on the cycles in the data graph and developed
algorithms to effectively use such statistics.

3. Conclusions

 The system was implemented on top of Microsoft
SQL Server. The server side program is implemented in
C++. The client side program, i.e., the visual query
interface, which runs on a browser, is written in Java.
Experimental study indicted that the system is user
friendly as well as performs well with various types of
data.

laboratory

labname

project

email

*

title

member projtitle

author

publication

yearID name

 *

*

*

&1 &2

&3 &4

&7 &8

&6&5

&9 &12&11

?

 *

&10

