
Analyzing Energy Behavior of Spatial Access Methods for
Memory-Resident Data

Ning An Anand Sivasubramaniam Narayanan Vijaykrishnan Mahmut Kandemir
Mary Jane Irwin Sudhanva Gurumurthi

Dept. of Computer Science and Engineering
The Pennsylvania State University

University Park, PA 16802
USA

fan,anand,vijay,kandemir,mji,gurumurtg@cse.psu.edu

Abstract

The proliferation of mobile and pervasive com-
puting devices has brought energy constraints into
the limelight, together with performance consid-
erations. Energy-conscious design is important at
all levels of the system architecture, and the soft-
ware has a key role to play in conserving the bat-
tery energy on these devices. With the increasing
popularity of spatial database applications, and
their anticipated deployment on mobile devices
(such as road atlases and GPS based applications),
it is critical to examine the energy implications
of spatial data storage and access methods for
memory resident datasets. While there has been
extensive prior research on spatial access meth-
ods on resource-rich environments, this is, per-
haps, the first study to examine their suitability
for resource-constrained environments. Using a
detailed cycle-accurate energy estimation frame-
work and four different datasets, this paper ex-
amines the pros and cons of three previously pro-
posed spatial indexing alternatives from both the
energy and performance angles. The results from
this study can be beneficial to the design and im-
plementation of embedded spatial databases, ac-
celerating their deployment on numerous mobile
devices.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

1 Introduction

Computing is becoming a pervasive and ubiquitous part of
everyday life. The traditional modus-operandi of sitting
at a desk to interact with a computer system is gradually
going out of style, with users demanding access to com-
putational resources and information whenever and wher-
ever (even when they are on the move) they choose. These
needs have opened the door to several interesting and cru-
cial topics for research in the broad domain of mobile and
resource-constrained computing. Focusing specifically on
spatial databases (an important and useful class of mobile
applications), this paper explores the energy (a scarce and
valuable resource in mobile devices) consumption and per-
formance trade-offs of different storage organizations for
spatial data on resource-constrained mobile devices.

Programs running on mobile devices (PDAs, laptops,
etc.) can be subject to very different operating conditions
compared to their desktop/server counterparts. This in-
cludes limited computational resources, storage capacity,
battery energy, and connectivity, that are a consequence of
design considerations such as small form factor, weight,
cost and diverse operating conditions. It is widely recog-
nized that battery energy is, perhaps, one of the the most
challenging limitations, with many other factors (such as
computational speed) directly or indirectly related to en-
ergy availability. Mobility precludes the use of a wall
socket to power the device, and at the same time one does
not wish to carry a heavy battery along for its operation.
The growing mismatch between energy capacity of batter-
ies and the energy consumption of mobile devices makes it
all that much more critical to employ algorithmic, software
and architectural techniques for energy savings. It is hy-
pothesized [13] that high level optimizations in algorithms
and data structures can give much more energy savings than
micro-managing the energy consuming resources at a very
low level. Such optimizations can even amplify the savings
obtained from well-known low level energy saving tech-
niques [27], and are thus the motivation for this work.

Database applications are expected to be the dominant
workloads running on the mobile devices [2]. This paper
specifically focuses on spatial databases, an important class
of applications for the mobile devices. In general, Spa-
tial Database Management Systems (SDBMS) [26] have
found widespread adoption in numerous areas including
Geographical Information Systems (GIS), Image Process-
ing, Computer Aided Design (CAD), Multimedia Systems,
and Medical Database Systems. SDBMS are important
for mobile computing, with several possible applications in
this domain. Already, mobile applications for spatial nav-
igation and querying using a street atlas are available for
many PDAs [16, 6]. In addition, traditional data input and
querying for conventional SDBMS can be supplanted by
mobile operations for better productivity and convenience.

Even in a resource-rich environment, SDBMS design
and implementation is a difficult problem [26], because the
system has to deal with multidimensional data. Moving
the target to a mobile device makes the design and im-
plementation of a SDBMS even more challenging. Re-
source constraints such as limited energy, computational
power and memory add to the complexity of the problem.
Performance is not necessarily the only goal for optimiza-
tion. Sometimes the user may be willing to sacrifice some
amount of performance if that will enable the device to run
longer on battery. Further, power dissipation of different
system components may also be an important issue for ther-
mal considerations.

There are several important and interesting issues in de-
signing a SDBMS for a resource-constrained mobile de-
vice, and a few of them includeconnectivity(communica-
tion), data storage and access methods, query processing,
anddynamic adaptation.

With limited resources, there is the important question
of where should the operations (queries) be performed.
Does it make sense to ship the operation to a resource-
rich server (which may, perhaps, have access to the data)
and simply ask the mobile device to act as an intermediary
to display the end results to the user, or should the device
itself perform the operation? While the former choice is
attractive for saving energy (and maybe even speed), there
are several practical considerations that may force the lat-
ter choice including limited connectivity, energy consum-
ing communication devices [11], and even privacy. Such
factors may warrant the storage of the spatial data on the
mobile device itself, with the queries directly performed on
it, and this paper specifically focuses on such scenarios.

If the dataset needs to be stored in the mobile device,
how should it be organized for good performance? Ear-
lier work has focussed mainly on optimizing the retrieval
and processing of large disk-resident spatial datasets on
server environments. It is imperative to revisit this issue
for resource-constrained devices with limited memory and
without the presence of a disk (while laptops are equipped
with small disks, few other mobile devices enjoy this lux-
ury) not only from the performance viewpoint, but from the
energy consumption angle as well.

Query processing and optimization is always a key de-
terminant to performance. Decomposing the high level
user request into the fundamental database operations, and
deriving a query execution path should be based on both
performance and energy consumption. Dynamic adapta-
tion based on changing resource constraints (such as en-
ergy, connectivity, etc.) is another important consideration.
Modulation of the storage structures, query execution and
optimizations is needed when the operating conditions are
changing.

Examining all these issues is overly ambitious, and is
well beyond the scope of this paper. Instead, we specifi-
cally focus on the following problem:what are the perfor-
mance and energy implications of storing and processing
memory-resident spatial data on a resource-constrained
device?In particular, we address the issue of storing spa-
tial data in main memory and performing certain basic spa-
tial operations on this data including point queries, range
queries and nearest-neighbor queries. We assume that all
of the dataset is resident in the memory of the mobile de-
vice, there is no necessity for communication with a server
(no dynamic updates), and complex queries (and their opti-
mizations) are not considered. This is a largely unexplored
area, with most previous work on spatial databases examin-
ing storage organizations on disks of resource-rich environ-
ments. Memory resident spatial data organization [15] has
not been extensively studied from the performance angle,
let alone the energy viewpoint.

The first step to the development of energy and perfor-
mance efficient storage organizations for memory-resident
spatial data is a rigorous examination of the pros and cons
of the already existing solutions [5] that have been pro-
posed for resource-rich environments. Such a study can
not only identify energy-performance trade-offs between
the existing solutions, but can suggest enhancements, or
can even suggest entirely new storage organizations. At
the same time, performance and energy profiles can suggest
architecture/hardware enhancements to improve the perfor-
mance and energy savings of resource-constrainedsystems.
This is similar to the motivation behind a recent study [1]
that has examined the execution profile of commercial rela-
tional DBMSs, except that our focus here is on SDBMS and
energy profiling (together with performance-energy trade-
offs) that has not been explored before. This paper takes the
first step to the development of energy-efficient SDBMS by
attempting to answer the following important questions:

� How do the previously proposed alternatives for spa-
tial data organization such as Quadtrees [9, 10], R-
trees [8, 14] and Buddy-Trees [25, 24], compare for
memory resident datasets in terms of performance?
What are the energy consumptions of these different
structures when answering queries?

� During the processing of a query, how much energy
and time are expended in traversing the index struc-
tures to identify candidates that are potential solu-
tions for the query (filtering step)? Subsequently, how

much energy and time are expended in performing
the geometric operations on the actual candidate data
items to find the exact solutions (refinement step)?
Such software profiles are very useful to find hotspots
for potential optimization (code restructuring), and to
study the pros and cons of the structures in detail.

� For each phase of query processing, how much energy
is consumed by the different hardware components of
the device - processor core, processor clock, cache,
memory and buses? Such a hardware profile can also
help us structure the code and suggest architectural en-
hancements to fix hardware hotspots, potentially with-
out extending the execution time.

� How does the nature of the queries affect the per-
formance and energy profiles? Spatial proximity can
translate to improved locality in the data access pat-
terns of the processor, thus reducing the cache and
memory energy consumption. At the same time,
queries resulting in the selection of several data items
can cause capacity and conflict misses in the cache,
thereby increasing the energy consumption of the
memory hierarchy.

� Traditionally node sizes of the hierarchical index
structure are governed by performance related issues
such as disk access costs, tree spans, etc. With
memory-resident structures, how important a role
does node size play in performance for spatial data?
Are there any additional insights that an energy per-
spective can give to the choice of a good node size?

To explore these issues, this study uses a detailed en-
ergy and performance estimation execution-driven simula-
tor, called SimplePower [27], that is available in the public
domain. Three different storage organizations have been
implemented on this simulator, and they have been used
to evaluate three kinds of spatial queries on four different
datasets. Detailed hardware and software profiles are used
to answer the questions listed above.

The rest of this paper is organized as follows. Section 2
gives a quick overview of previously proposed index struc-
tures that are used in this evaluation. Section 3 explains
the experimental setup and workloads. The results are pre-
sented in Section 4 and their implications are given in Sec-
tion 5. Section 6 summarizes the contributions of this work.

2 Spatial Structures Under Consideration
Numerous spatial data organizations have been proposed
[23, 5] and exploring the energy behavior of all these struc-
tures is well beyond the scope of this paper. Rather, we se-
lect three previously proposed structures - PMR Quadtrees
[9, 10], Packed R-Trees [14], and Buddy Trees [25] - that
have been argued to perform relatively well for a range of
datasets [5]. These structures are also representative exam-
ples from the design space of storage structures for spatial
data. In Quadtrees, the index nodes at the same level have

non-overlapping spatial extents, while R-trees and Buddy-
Trees allow overlaps. Quadtrees are improvements over
spatial partitioning techniques such as Grid Files, while R-
trees are extensions of B-trees for spatial data. Buddy trees
are representative of hashing based schemes using a tree
structured directory. R-trees give more balanced structures
than Quadtrees or Buddy trees.

As for the datasets, we consider line segments in a two
dimensional space in this study. We believe that this does
not significantly impact the main results and contributions
of this work. Line segments represent an important class
of datasets, especially in the road atlas applications for the
mobile devices. Line segments (or polylines) can be used
to represent streets, rivers, etc. Other related studies have
also used line segment datasets [9, 10]. In all the structures,
the line segments are sorted based on the Hilbert-order [7]
of their centroids and kept in an array. The leaf nodes of
the structures have pointers (index into the array) to the ac-
tual data items. As was mentioned in Section 1, we do not
consider dynamic structures in this study, and assume that
all the data items are pre-loaded into the memory-resident
database (and do not change).

We consider three kinds of queries that have been iden-
tified [9, 10] as important operations for line segment
databases:

� Point Queries: In these queries, the user is interested
in finding out all line segments that intersect a given
point. For instance, such an operation could be used
to find out which streets meet at a given intersection.

� Range Queries:These are used to select all line seg-
ments intersecting with a specified rectangular win-
dow. Very often, the user wants to magnify a portion
of the atlas for a closer examination, and this query
can serve such a request.

� Nearest Neighbor Queries: These are proximity
queries where the user is interested in finding the near-
est line segment (street) from a given point (e.g. what
is the closest street to a given landmark, subway sta-
tion, etc.). This is the perpendicular distance to the
line segment if the perpendicular intersects the seg-
ment, and is the distance to one of the end points (clos-
est one) otherwise.

Range and Point queries are typically implemented
using afiltering stepwhere the possible candidates are
first identified using their minimum bounding rectangles
(MBRs). Each index node of the hierarchical spatial struc-
tures represents a rectangular region of the spatial extent
that it covers, and is represented by the MBR of this region.
The filtering step, that traverses the index structure, uses
these MBRs to identify possible candidates. Subsequently,
a refinement stepis needed to perform the actual geometric
operations on each short-listed data item to find the exact
answers to the query. In structures (Quadtrees) that do not
allow overlapping ranges between the index nodes at the
same level, a line segment that spans more than one range

needs to be replicated in all those ranges (we do not con-
sider clipping based approaches that break a segment into
multiple parts for each region that it falls in, and recom-
bine/reconcile them in the refinement step). This does not
need to be done for structures that allow overlapping ranges
such as R-trees. As a result, part of the refinement step for
Quadtrees involves duplicate elimination as well.

The Nearest Neighbor query is a little more complicated
to implement for index structures, with different previous
suggestions [9, 21, 22, 20]. For instance, [21] uses a pro-
gressively expanding (in size) range query centered around
the query point till the first data item is found. Another pos-
sibility [9] is to actually go to that region of the index struc-
ture, and examine around this region in the structure instead
of composing the searches as separate range queries. A
more interesting, and perhaps more efficient, approach is
studied in [22] that is the strategy used in this paper. The
search starts at the root node and examines the MBRs of its
children. It orders these MBRs in terms of distances from
the query point, and uses these distances to determine the
recursive search order. In addition, it also uses these dis-
tances to prune the search when noticing that certain MBRs
will definitely contain data items that are closer than those
for the other children. The process is then recursively car-
ried out for the candidate child nodes. This is a general
technique that can be used for any of the considered hierar-
chical spatial access methods. The nearest neighbor query
does not have separate filtering and refinement steps in our
implementation.

Due to space limitations, the reader is referred to [3]
for further detailes on the three index structures and the
implementation of the three queries using these structures.

3 Experimental Setup
3.1 Energy Estimation Framework

Energy consumption is the integral of the power consumed
over operating time. Our energy estimation framework
usesSimplePower, an architectural-level, cycle-accurate
execution-driven energy simulator that is available in the
public domain [27]. The architecture of the simulated sys-
tem includes a single-issue five-stage pipelined integer dat-
apath (instruction fetch (IF), instruction decode/operand
fetch (ID), execution (EXE), memory access (MEM), and
write-back (WB) stages), on-chip instruction (I) and data
(D) caches, that is connected to an external (off-chip) mem-
ory. This architecture is representative of some of the cur-
rent commercial offerings in the PDA domain [27]. The
instruction set architecture is a subset of the instruction
set (the integer part) ofSimpleScalar, which is a suite of
publicly available tools to simulate modern microproces-
sors [4]. All results reported in this paper are obtained us-
ing the parameters given in Table 1.

3.2 Workloads

In our experiments, we use four line segment datasets: (a)
NYCS contains 12355 streets of New York City, taking

Parameter Value
Supply Voltage 3.3 V
Cache Sizes (each of I and D) 8KB
(32 bytes line size) 16KB

32KB
Cache Associativity Direct-Mapped (DM)

2-way, 4-way
Data Cache Hit Latency 1 cycle
Memory Size 8 MB
Memory Access Latency 100 cycles
Per Access Energy 0.048 (8K)
for DM-Caches (nJ) 0.082 (16K)

0.094 (32K)
Per Access Energy for Memory 3.57 nJ
On-Chip Bus Transaction Energy 0.069 nJ
Off-Chip Bus Transaction Energy 6.9 nJ
Per Cycle Clock Energy 0.18 nJ
Technology Parameter 0.35 micron

Table 1: Base configuration parameters used in the experi-
ments.

about 1.14 MB; (b)PAFS contains 16431 streets in Penn-
sylvania Fulton county, taking about 1MB; (c)SVR con-
tains 5848 rivers from the Shenandoah valley, taking 106
KB; and (d) IRR contains 12338 railway tracks of Italy,
taking 468KB. The first three datasets are taken from the
Tiger Dataset [17] while the last is taken from the Digital
Chart of the World [12].

These datasets are also representative of some of the
SDBMS applications on mobile devices. NYCS and PAFS
are typical of road atlas applications for navigation and lo-
cational information, the former is for a city and the latter
for a rural county. SVR is a dataset that could be useful for
hikers/environmentalists on the trails. Finally, IRR is from
a different database and would be useful to find the nearest
railway track, finding the identity of a station on a track,
etc., with the queries that we are considering.

On these datasets, we use the results from 100 runs for
each of the three kinds of queries (Point, Range and Near-
est Neighbor). Each run uses a different set of query pa-
rameters. For the Point queries, we randomly pick one of
the end points of line segments in the dataset to compose
the query. For the Nearest Neighbor queries, we randomly
place the point in the spatial extent in each of the runs. For
the Range query, the size (between 0.01% and 1% of the
spatial extent), aspect ratio (0.25 to 4) and location of the
query windows is chosen randomly from the distribution of
the dataset itself (i.e. a denser region is likely to have more
query windows). The results presented are the sum total
over all 100 runs.

The code sizes for the implementation of the index
structures and the storage sizes of the index structures (not
including the space taken by the dataset) are given in Ta-
ble 2 for the chosen fan-outs (see Section 4.1). As far as
the code size is concerned, the Quadtree code is a little
larger because of the duplicate elimination code that is ab-
sent in the other two (the code for building the structures
is not included in these sizes). Despite these minor differ-
ences, the code size is not very different across these struc-

Index Code Size NYCS PAFS SVR IRR
Quadtree 39KB 150KB 183KB 59KB 133KB

R-tree 35KB 285KB 378KB 135KB 285KB
Buddy-Tree 38KB 670KB 989KB 344KB 732KB

Table 2: Code Size and Storage Overheads for the Index Structures

tures. R-tree incurs more storage overheads than Quadtree
because of its more balanced nature. Despite the packed R-
tree algorithm that is used, some nodes could still be under-
utilized. The property of the Buddy-Tree which keeps in-
dex nodes that are not entirely packed to capacity (could be
much sparser than R-tree nodes), results in a much poorer
space utilization compared to the other two structures.

As was mentioned earlier, we do not study the building
costs for the structure since we are examining a static situ-
ation without dynamic insertions (and the storage structure
is downloaded from a server on to the mobile device simi-
lar to how it is done in [16]). The chosen dataset sizes and
their index overheads are also similar to some of the pocket
atlas datasets (e.g., the New York City map that is avail-
able in the public domain for PocketStreets [16] running
on Windows CE takes 865KB).

3.3 Metrics

We examine both the energy behavior as well as the perfor-
mance profile for each execution. This helps us understand
the trade-offs between the two if any.

For the energy behavior, we profile the consumption
(in joules) by each of the hardware components - proces-
sor datapath, I-cache, D-cache, Memory, Buses (between
cache and memory), and clock network. For the perfor-
mance profile, we give the breakdown of the cycles spent
by the processor performing useful work, and also when
stalling on I-cache and D-cache misses.

These profiles are given for each of the query execu-
tions on each dataset using the different index structures.
Though explicitly not shown here, we have also sepa-
rated the profiles for the Filtering and Refinement steps
[3]. From the hardware perspective, the impact of different
cache organizations on energy and performance behavior is
also studied.

Energy consumption, execution cycles and the product
of these two (denoted as Energy*Delay) are the key met-
rics that are used for comparison. Energy*Delay helps us
capture the relative trade-offs of how much energy savings
can be obtained with one alternative over another without
significantly degrading performance (or vice versa). We
also study energy/cycles values capturing the average en-
ergy per unit time (power), which is important for packag-
ing and thermal considerations in [3].

Many of the results and trends are common across the
datasets. As a result,the graphs show the behavior av-
eraged over all the datasets. Whenever there is a dataset
influence, the effects are explicitly mentioned in the dis-
cussion.

4 Experimental Results
4.1 Impact of Fan-Out

One of the important considerations for each index struc-
ture is the fan-out issue. For R-tree and Buddy-Tree, this
corresponds to the number of (MBR, ptr) pairs at all lev-
els of the hierarchical structure, with each such entry tak-
ing 20 bytes. In the Quadtree, the fan-out of the internal
nodes is fixed at 4 entries (taking 80 bytes totally) as per
the definition of the structure, and the only choice is for
the number of pointers to maintain at the leaf level for the
lines falling within this bucket (as suggested in [9]). Apart
from the nature of the dataset itself, several factors gov-
ern the choice of a fanout. In a disk-based storage struc-
ture, the disk access times have a large influence on the
choice of the fan-out, and it will be interesting to see how
memory resident datasets affect this issue. We have varied
the fan-out of the different structures, and collected both
performance and energy profiles for the different datasets.
The graphs are explicitly given in [3] and we briefly sum-
marize the results here. As fan-out increases, the depth of
the tree decreases, thereby improving performance initially.
On the other hand, the number of paths to be searched
and the number of comparisons at each index node may
increase, which worsens performance (in terms of CPU cy-
cles). With these two contrasting factors, the best fan-out
that we observe is at 16 for the R-trees, which yields a node
size of 320 bytes. We also observed a similar behavior for
the fan-out of the leaf nodes of the Quadtree, where the
ideal leaf node size again turned out to be 320 bytes (80
pointers). A fan-out of 16 was observed to give the best
performance for the Buddy-Tree as well. These observa-
tions hold across cache sizes and associativities.

Another interesting observation is that the fan-out has
a similar effect on energy consumption as performance,
suggesting that using one of these metrics to optimize the
fan-out may suffice in practice for the overall energy*delay
savings. It should be noted that each query can demand
a different fan-out, and it is difficult to predetermine this
value unless we have a good idea of the workload imposed
on these structures. Since range queries are usually much
more prevalent, we have chosen a fanout for each structure
that is optimized for the range queries, and use this ideal
fanout for all our experiments (regardless of the query).

4.2 Results for Point Queries

Figure 1 shows the performance, energy and energy*delay
profiles for the point queries with the different schemes av-
eraged over the four datasets. Examining the execution cy-
cles graph, we see that Quadtree has a higher processor
cycle count compared to R-tree. Since the Quadtree does

 QuadTree RTree BuddyTree
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

 C
yc

le
s

 CPU Cycles
 I−Miss Cycles
 D−Miss Cycles

 QuadTree RTree BuddyTree
0

0.002

0.004

0.006

0.008

0.01

0.012

 E
n

e
rg

y
 (

J
)

 Datapath
 I−Cache
 D−Cache
 Memory
 Bus
 Clock

QuadTree RTree BuddyTree
0

10000

20000

30000

35000

E
n

e
rg

y
 *

 D
e

la
y

(a) Average Cycles (b) Average Energy (c) Average Energy * Delay

Figure 1: Comparison of Index Structures for Point Queries. The nine bars from left
to right for an index correspond to cache configurations (cache size, cache associativity) of
(8K,DM),(8K,2way),(8K,4way),(16K,DM),(16K,2way),(16K,4way),(32K,DM),(32K,2way),(32K,4way).

not allow overlaps (and a point query does not have a high
probability of falling in more than one bucket), the filtering
step on the Quadtree to find the candidate leaves is rela-
tively fast. However, the refinement step for Quadtree is
much more time consuming, placing the sum of these two
steps slightly in favor of the R-tree. It should be noted
that the overhead for Quadtree in the refinement step is
mainly due to the larger number data items (even though
the leaf nodes in the two structures have the same size -
320 bytes, this corresponds to 80 data items in the Quadtree
which stores only pointers and to 16 data items in the R-tree
which stores pointers and MBRs) that the Quadtree has to
deal with in the refinement step. The reason we chose the
80 data items fanout in our implementation was because
it gives good performance for range queries (as mentioned
earlier). Though the graphs are not explicitly shown, we
would like to point out that a 16 data item fanout (same as
the R-tree leaf node), does indeed give better performance
for point queries with Quadtrees, cutting down the over-
head of the refinement step, thus making the Quadtree per-
formance similar (or even slightly better in some cases) to
the R-tree. Between the R-tree and Buddy-Tree, we find
the latter giving better performance. This is mainly due to
the splitting criteria for a node, where the Buddy-Tree par-
titions based on spatial locations while the packed R-tree
just uses Hilbert order groupings.

We find that Quadtree has better data locality than R-
tree, which can be explained with the higher internal node
fanout and overlapping buckets in the latter. With overlap-
ping buckets, R-tree may entail searching more paths even
with a point query (while the Quadtree is more focussed).
Since the fanout of the internal nodes is higher, there is
more scope for eviction of data items from the cache that
may be needed again. The Buddy-Tree locality falls be-
tween these two.

It is difficult to comment on the I-cache locality behavior
of the different codes without clearly understanding where
the called procedures fall within the code segment and how
they reference each other (for conflicts). In general, we find
that 8K caches direct-mapped caches are not a good idea

for the I-cache (which is true in later queries as well). Most
of the penalties are reduced with a 16K 2-way I-cache.

From the energy perspective, we find that the datapath
(and the resulting clock) contribution to the overall energy
consumption is quite a significant portion reflecting the im-
portance of the CPU cycles spent in instruction execution
in the performance graphs. At the same time, there is a sig-
nificant portion that is expended in the other system com-
ponents (caches, memory and buses) as well. Overall, the
differences between the three indexes in terms of energy
consumption reflect the same observations that were made
between them from the performance perspective. As a re-
sult, for this set of experiments the energy and performance
results go hand-in-hand to a large extent. The only excep-
tion to note is the I-cache and D-cache energy consump-
tion changes as we change the cache configuration. With
improved (larger size or better associativity), the miss rate
is expected to go down, but at the same time energy cost
incurred per access goes up. These two factors can help us
decide on a good energy-delay conscious cache configura-
tion (captured by the energy*delay values in Figure 1(c)).
With 16K and 32K (I and D) caches, most of the locality
in instruction and data references is captured well by these
configurations, and the energy increase with associativity
is more significant. As a result, with these cache sizes, it
would be better to have a direct-map structure from the en-
ergy*delay perspective (see Figure 1(c)). With 8K I and D
caches, we find that the performance penalties due to con-
flict misses are quite severe, preferring a higher associativ-
ity from the energy*delay perspective. For the Quadtree
(especially due to its high I-cache misses), an associativity
of 4 is needed, while R-tree and Buddy-Tree give the best
energy*delay for a direct-mapped cache.

Despite the depiction of lower cycles, energy and en-
ergy*delay for R-tree over Quadtree in Figure 1, we would
like to reiterate that these differences are mainly due to the
differences in the chosen fanouts. We believe that these two
structures are more or less comparable in terms of these
metrics if we fine-tune the fan-out values at the leaf level
for the Quadtree to suit this query. In terms of all these

metrics, we find that Buddy-Tree delivers the best results
for point queries.

4.3 Results for Range Queries

Figure 2 shows the performance, energy and energy*delay
profiles for the range queries with different schemes av-
eraged over the four datasets. Rather than repeat all the
observations that are similar to those for the point query,
we would like to point out the differences. The first notice-
able difference is that the Quadtree performs much worse
than the R-tree and Buddy-Tree in terms of both perfor-
mance and energy (despite having chosen a fan-out that
gives the best performance for the Quadtree). Compared
to the point query, range queries have higher likelihood of
covering spatial extents of more than one leaf node. As
a result, the searches are not that focussed any more on a
Quadtree, and more than one path may need to be searched.
Second, since the region boundaries of a Quadtree’s index
nodes are pre-determined and are not adapted to a dataset’s
vagaries, there is the scope for traversing more paths in a
Quadtree compared to the R-tree. Finally, non-overlapping
boundaries of index nodes can result in a data item being
replicated, and duplication elimination is time-consuming
for the Quad-tree. In the filtering step, all candidates are
inserted into a list. The refinement step for the Quadtree
first sorts this list to remove duplicates, and then performs
an item-by-item comparison.

In general, we find that range queries are more processor
intensive than point queries, with a smaller fraction of the
time spent stalling on cache misses for both index struc-
tures. The significance of the refinement step which has
good locality (due to sequentially searching a list for exact
matches) in the overall performance picture is the main rea-
son for this behavior (reader is referred to [3] for detailed
profiles on filtering and refinement steps).

We find that performance is the main factor governing
these schemes when we examine them from the energy and
energy-delay perspectives. Higher number of instruction
executions imply a larger datapath energy and clock energy.
At the same time, each instruction fetch references the I-
cache, incurring an energy cost (even when it is a hit).

In the point queries, we could see both performance and
energy impact of cache configurations playing significant
roles when determining a good operating point in both R-
trees and Quadtrees. In the range queries, we find that the
energy*delay metric obeys the performance (cycles) trend
in nearly all cases (except for the Buddy-Tree with 8K 4-
way caches). Both R-trees and Buddy-Trees do a good job
for this query along all three perspectives - performance,
energy, and energy-delay, with Buddy-Trees having a slight
edge.

4.4 Results for Nearest Neighbor Queries

Figure 3 shows the performance, energy, and energy*delay
profiles for the nearest neighbor queries with the differ-
ent schemes averaged over the four datasets. This query
presents an entirely different picture from what we have

observed in the previous two queries. Compared to the pre-
vious two, the results show that cache misses dominate the
execution time, and processor cycles are a much smaller
fraction in many of the datapoints. In the first place, there is
no separate refinement step for this query, with data items
examined closely when they are first encountered. Even
with the earlier queries we pointed out that misses are more
significant in the filtering step (tree traversals) than in the
refinement step. Further, the working set sizes for imple-
menting the nearest neighbor algorithm are higher than for
point/range queries. Specifically, when traversing a sub-
tree, closest distances need to be calculated for all children
and they need to be sorted and pruned, before recursively
traversing them. Point/Range queries can examine chil-
dren one at a time, moving to the next after traversing the
subtree under the previous child. These operations make
the nearest neighbor query much more dependent on miss
penalties. The number of D-misses is closely related to the
number of children (fanout of internal nodes), which also
explains why R-tree has higher D-cache misses compared
to Quadtree and Buddy-Tree. The I-misses show a reverse
behavior with R-trees having better code locality (except
for the 8K DM case) than Quad-trees. Since R-tree has
a larger fanout and lower depth, the sorting/pruning oper-
ations and overheads are amortized over a larger number
of children at a time, while the Quadtree and Buddy-Tree
may keep switching between traversal and pruning more
often. Overall, from the performance viewpoint, we find
that R-tree does the best except for the 8K DM cache. Of
the other two, the Quadtree outperforms the Buddy-Tree in
many cases.

While there was not a noticeable difference in the rela-
tive performance of the schemes across the datasets for the
previous two queries, we would like to mention that there
is a difference between the datasets for this query with the
Buddy-Tree structure (there was not a significant effect on
the other two indexes). In datasets that are much more clus-
tered (NYCS and IRR), the Buddy-Tree incurred more pro-
cessor cycles than the others since it does not do as good a
job as the R-tree (or even the Quadtree) in balancing the hi-
erarchical structure to reduce the number of levels. For the
other two datasets, its performance becomes comparable to
the R-tree.

The most interesting observation with this query (com-
pare Figures 3(a) and (b)) is thatbetter performance
does not necessarily imply better energy(except in 8K
DM). R-tree takes fewer cycles to service the query, while
Quadtree takes lower energy (with Buddy-Tree energy
falling in between). The reason for this behavior can be ex-
plained as follows. R-tree incurs much lower CPU cycles
than the Quadtree, but incurs higher cache misses. Miss
penalties (which require crossing pin boundaries and bus
to get to main memory) translate to much more overheads
in terms of energy (off-chip energy) compared to perfor-
mance. While the additional miss cycles are not significant
enough to put R-tree overall cycles higher than Quadtree,
the miss energy (in D-cache, Bus and memory) overhead

 QuadTree RTree BuddyTree
0

1

2

3

4

5

6

7

8

9
x 10

7

 C
yc

le
s

 CPU Cycles
 I−Miss Cycles
 D−Miss Cycles

 QuadTree RTree BuddyTree
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 E
n

e
rg

y
 (

J
)

 Datapath
 I−Cache
 D−Cache
 Memory
 Bus
 Clock

QuadTree RTree BuddyTree
0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

E
n

e
rg

y
 *

 D
e

la
y

(a) Average Cycles (b) Average Energy (c) Average Energy * Delay

Figure 2: Comparison of Index Structures for Range Queries. The nine bars from left
to right for an index correspond to cache configurations (cache size, cache associativity) of
(8K,DM),(8K,2way),(8K,4way),(16K,DM),(16K,2way),(16K,4way),(32K,DM),(32K,2way),(32K,4way).

 QuadTree RTree BuddyTree
0

0.5

1

1.5

2

2.5
x 10

7

 C
yc

le
s

 CPU Cycles
 I−Miss Cycles
 D−Miss Cycles

 QuadTree RTree BuddyTree
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 E
n

e
rg

y
 (

J
)

 Datapath
 I−Cache
 D−Cache
 Memory
 Bus
 Clock

QuadTree RTree BuddyTree
0

5e+05

1e+06

E
n

e
rg

y
 *

 D
e

la
y

(a) Average Cycles (b) Average Energy (c) Average Energy * Delay

Figure 3: Comparison of Index Structures for Nearest Neighbor Queries. The nine bars from
left to right for an index correspond to cache configurations (cache size, cache associativity) of
(8K,DM),(8K,2way),(8K,4way),(16K,DM),(16K,2way),(16K,4way),(32K,DM),(32K,2way),(32K,4way).

compensates for any savings in the lower datapath energy
(e.g. compare the datapath, D-cache, bus and memory en-
ergy components for the R-tree with that for the Quadtree
for the 32K 2-way caches). The Buddy-Tree energy falls
between that for R-tree and Quadtree in most cases.

A consequence of the differences between the energy
and performance behavior for this query is the interesting
observation in the resulting energy*delay metric shown in
Figure 3(c). This captures the facets of whether the im-
provement in performance warrants the additional energy
that is expended. The results show thateven though R-tree
is better in terms of performance, Quadtree (which is better
in terms of energy consumption) may be a better alternative
from the energy*delay perspective(i.e. the performance
benefits for the R-tree come at a much higher energy cost
that it may not be as attractive in energy-constrained envi-
ronments) in most of the better cache configurations. The
energy*delay of Buddy-Tree falls in between these two in
many cases.

5 Discussion

Despite the relatively small size of the datasets (to fit in
the main memory or resource-constrained devices) it is im-
perative to provide an index-based spatial access method to
answer the three considered queries. Performance penal-
ties of brute-force approaches, that do not use an index,
are so significant (despite not incurring storage overheads
needed to maintain index structures), and have a direct con-
sequence on energy costs as well (the reader is referred to
[3] for detailed results comparing brute force approaches to
index-based access methods). If storage space overhead is a
major concern for the resource-constrained environments,
Quadtree is a better alternative than the other two struc-
tures. Of the other two, the packed R-tree makes better
utilization of the space taken by its index nodes.

Between the three index structures, we find no clear win-
ner across all queries and criteria that have been studied.
Table 3 summarizes some of the observations that have
been made in the earlier sections. It ranks the schemes
(from 1 to 3) based on their relative merits for the per-
formance, energy, and energy-delay criteria, and a list of

Cycles Energy Energy*Delay
Point Query 1. Buddy-Tree 1. Buddy-Tree 1. Buddy-Tree

2. R-tree,Quadtree 2. R-tree,Quadtree 2. R-tree,QuadTree
Range Query 1. Buddy-Tree,R-tree 1. Buddy-Tree,R-tree 1. Buddy-Tree,R-tree

2. Quadtree 2. Quadtree 2. Quadtree
Nearest Neighbor 1. R-tree 1. Quadtree 1. Quadtree

2. Quadtree 2. Buddy-Tree 2. Buddy-Tree
3. Buddy-Tree 3. R-tree 3. R-tree

Table 3: Comparison of Index Structures for different queries and criteria using the results of 2-way 16K cache configura-
tion. (1) denotes the best and (3) denotes the worst for each entry in this table

observations follow:

� For the point queries, we find the Buddy-Tree giv-
ing better performance while incurring a lower energy
cost. Consequently, it has the lowest energy*delay
values of the three. Between the other two, the dif-
ferences are not very prominent, especially if we can
tune their fan-outs for this query.

� With range queries, both R-trees and Buddy-Trees
are giving good performance, energy savings and en-
ergy*delay values. Quadtree is worse than these with
queries needing to process more data for refinement.

� While performance largely dictates energy costs for
the point and range queries, this study has shown that
these criteria do not always go hand-in-hand. There
could be circumstances when a scheme giving the best
performance can incur the highest energy cost. This
was observed with the nearest neighbor query where
R-tree was giving the best performance but incurs the
highest energy. Quadtrees turn out to be better from
the energy or energy*delay perspective for this query.

� The results show that index-based query executions
on spatial databases exercise the memory system con-
siderably. A similar result has been noted recently in
[1] where misses have been found to constitute around
40% of the execution time for memory-resident rela-
tional databases. The energy perspective shows that
it is not only important to optimize miss behavior
(by lowering number of misses, or by reducing en-
ergy consumption during misses), it is crucial to opti-
mize energy consumption of hits as well (or even re-
duce the number of memory references). Energy con-
sumption of caches plays an even more dominant role
than its performance impact. While improving the
caches (in terms of size and associativity) can reduce
the miss behavior, the access costs increase. Conse-
quently, we find that 16K 2-way associative caches are
a good compromise between performance and energy
for these workloads. Architectural techniques to re-
duce cache energy consumption and their benefit on
these workloads is studied in [3].

These observations can help a designer customize a
SDBMS for a given target resource-constrained environ-
ment, fine-tune the implementation to dynamically adapt
for changing energy and performance criteria, and to even
provide guidelines on incorporating architectural enhance-

ments that can help meet energy-performance criteria in a
more effective manner.

In addition to energy, power dissipation is another im-
portant consideration to keep the packaging and cooling
costs low. The reader is referred to [3] for some exploratory
issues with respect to power dissipation which show that
datasets can have as much as an impact on power dissipa-
tion as the index structure itself.

6 Concluding Remarks

The growth in mobile computing has made mobile
databases one of the most prominent segments of embed-
ded database market [18, 19]. The market for embedded
databases is expected to grow about 12% annually to 705
million dollars in 2003. Many of these applications are
targeted for automotive and handheld devices which are
likely to hold, access and process spatial data. With the
resource-constraints imposed on these embedded environ-
ments, energy and limited memory designs, take center-
stage together with performance. This paper has presented
the first in-depth examination of memory-resident spatial
access methods for three index structure (Quadtrees, R-
trees and Buddy-Trees) from the energy, performance and
energy-delay perspectives. By doing so, this paper has
identified the key issues affecting both energy and perfor-
mance, at the algorithmic and architectural levels. It has
taught us several important lessons including the fact that
optimizing performance does not necessarily optimize en-
ergy and could in fact aggravate power dissipation. Since
the target environments may have different (storage) capac-
ities, processing power, and resource-constraints, the re-
sults from this work can help to select and tailor the spa-
tial access methods for designing mobile applications op-
erating in diverse conditions. This exploration can in turn
provide insight on new problems for research on embedded
and spatial databases, accelerating their deployment on nu-
merous mobile devices.

Acknowledgements

This research has been supported in part by sev-
eral NSF grants: CCR-9988164,CCR-9900701,CCR-
0097998, DMI-0075572, Career Award MIP-9701475,
NSF grants CCR-0093082,CCR-0093085,CCR-0073419,
CCR-0082064, 9705128, 9617308, and equipment grant
EIA-9818327.

References
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.

Wood. DBMSs On a Modern Processor: Where Does
Time Go? InProceedings of Very Large Databases
Conference, 1999.

[2] R. Alonso and H. F. Korth. Database System Issues
in Nomadic Computing. InProceedings of the ACM-
SIGMOD Conference, pages 388–392, 1993.

[3] N. An, A. Sivasubramaniam, N. Vijaykrishnan,
M. Kandemir, M. J. Irwin, and S. Gurumurthi. An-
alyzing Energy Behavior of Spatial Access Methods
for Memory-Resident Data. Technical Report CSE-
00-023, Dept. of Computer Science and Engineering,
The Pennsylvania State University, November 2000.

[4] D. Burger and T. Austin. The simplescalar tool set,
version 2.0. Technical report, Computer Sciences De-
partment, University of Wisconsin, June 1997.

[5] V. Gaede and O. Gunther. Multidimensional Access
Methods. ACM Computing Surveys, 30(2):170–230,
June 1998.

[6] GEOPlace.Com. Mobile Tech-
nology Takes GIS to the Field.
http://www.geoplace.com/gw/2000/0600/0600IND.ASP.

[7] J. G. Griffiths. An Algorithm for Displaying a Class
of Space-filling Curves .Software - Practice and Ex-
perience (SPE), 16(5):403–411, 1986.

[8] A. Guttman. R-trees: a dynamic index structure
for spatial searching. InProceedings of the ACM-
SIGMOD Conference, pages 47–57, 1984.

[9] E. G. Hoel and H. Samet. Efficient Processing of Spa-
tial Queries in Line Segment Databases. InProceed-
ings of the 2nd Symposium on Advances in Spatial
Databases(SSD), pages 237–256, 1991.

[10] E. G. Hoel and H. Samet. A Qualitative Compari-
son Study of Data Structures for Large Line Segment
Databases. InProceedings of the ACM SIGMOD,
pages 205–214, 1992.

[11] T. Imielinski, S. Viswanathan, and B. R. Badrinath.
Energy Efficient Indexing on Air. InProceedings of
the ACM Conference on Management of Data (SIG-
MOD), pages 25–36, 1994.

[12] Environmental Systems Research In-
stitute. Digital Chart of the World.
http://www.maproom.psu.edu/dcw/.

[13] M.J. Irwin, M. Kandemir, N. Vijaykrishnan, and
A. Sivasubramaniam. A holistic approach to system
level energy optimization. InProceedings of the In-
ternational Workshop on Power and Timing Model-
ing, Optimization, and Simulation, September 2000.

[14] I. Kamel and C. Faloutsos. On Packing R-trees.
In Proceedings of the ACM CIKM, pages 490–499,
Washington, DC, 1993.

[15] T. Lehman and M. J. Carey. Query Processing in
Main Memory Database Management Systems. In
Proceedings of the 1998 ACM-SIGMOD Conference,
pages 239–250, 1998.

[16] Microsoft. Microsoft Pocket Streets.
http://www.microsoft.com/mobile/downloads/streets.asp.

[17] U. S. Bureau of the Cen-
sus. TIGER/Line(R) 1995 Data.
http://www.esri.com/data/online/tiger/index.html.

[18] M. A. Olson. Selecting and Implementing an Em-
bedded Database System.Computer, 33(9):27–34,
September 2000.

[19] S. Ortiz. Embedded Databases Come out of Hiding.
Computer, 33(3):16–19, March 2000.

[20] A. Papadopoulos and Y. Manolopoulos. Performance
of Nearest Neighbor Queries in R-Trees. InProceed-
ings of Intl. Conference on Database Theory, pages
394–408, 1997.

[21] J. M. Patel. Efficient Database Support for Spatial
Applications. PhD thesis, University of Wisconsin-
Madison, 1998.

[22] N. Roussopoulos et al. Nearest Neighbor Queries.
In Proceedings of the ACM SIGMOD, pages 71–79,
1995.

[23] H. Samet.The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1989.

[24] B. Seeger. Performance Comparison of Segment Ac-
cess Methods Implemented on Top of the Buddy-
Tree. In Proceedings of the Second International
Symposium on Advances in Spatial Databases, pages
227–296, 1991.

[25] B. Seeger and H-P. Kriegel. The Buddy-Tree: An
Efficient and Robust Access Method for Spatial Data
Base Systems. InProceedings of the VLDB, pages
590–601, 1990.

[26] S. Shekhar, S. Chawla, S. Ravada, et al. Spatial
Databases - Accomplishments and Research Needs.
IEEE Transactions on Knowledge and Data Engi-
neering, 11(1):45–55, 1999.

[27] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. Kim,
and W. Ye. An energy estimation framework with
integrated hardware-software optimizations. InPro-
ceedings of the International Symposium on Com-
puter Architecture, 2000.

