
Update Propagation Strategies for Improving
the Quality of Data on the Web�

Alexandros Labrinidis
Department of Computer Science

University of Maryland, College Park
labrinid@cs.umd.edu

Nick Roussopoulos
Department of Computer Science

University of Maryland, College Park
nick@cs.umd.edu

Abstract

Dynamically generated web pages are ubiquitous
today but their high demand for resources creates
a huge scalability problem at the servers. Tradi-
tional web caching is not able to solve this prob-
lem since it cannot provide any guarantees as to
the freshness of the cached data. A robust solu-
tion to the problem is web materialization, where
pages are cached at the web server and constantly
updated in the background, resulting in fresh data
accesses on cache hits. In this work, we define
Quality of Data metrics to evaluate how fresh the
data served to the users is. We then focus on the
update scheduling problem: given a set of views
that are materialized, find the best order to refresh
them, in the presence of continuous updates, so
that the overall Quality of Data (QoD) is maxi-
mized. We present a QoD-aware Update Schedul-
ing algorithmthat is adaptive and tolerant to surges
in the incoming update stream. We performed ex-
tensive experiments using real traces and synthetic
ones, which show that our algorithm consistently
outperforms FIFO scheduling by up to two orders
of magnitude.

1 Introduction
The World Wide Web has seen tremendous growth in the
years since its inception, accompanied by a big transforma-
tion in its nature, from purely static HTML pages in the

�Prepared through collaborative participation in the Advanced
Telecommunications/Information Distribution Research Program
(ATIRP) Consortium sponsored by the U.S. Army Research Labora-
tory under the Federated Laboratory Program, Cooperative Agreement
DAAL01-96-2-0002.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

early 90s to most web pages having some dynamic con-
tent today. Online services, frequently updated content and
personalization[BBC+98] are the main reasons behind dy-
namically generated web pages. Unfortunately, dynamic
content requires far greater resources from web servers than
static pages do and does not scale.

Although web caching has addressed the scalability
problem for static pages, it cannot be directly applied to
dynamically generated pages, since it does not deal with
continuously changing data and, therefore, cannot provide
any guarantees for the freshness of the cached data. Web
caching also helps in serving user requests fast. This is cer-
tainly important, but only if the data is fresh and correct,
otherwise it may be more harmful than slow or even no
data service. For example, a lightning fast web site with
20 minute delayed stock information is of very little use to
those investors who want to know what the market is doing
right now. A slightly slower site that can display up to the
second stock information would be more valuable.

In general, when evaluating the quality of a web server,
one must evaluate both its Quality of Service (QoS), or how
fast it services user requests, and, its Quality of Data (QoD),
or how “good” the served data are. Goodness of data can
be measured in freshness, accuracy, and other metrics that
need to be defined from the semantics of the application. It
is unfortunate that most web servers do not provide to the
users any means of knowing about the QoD they serve, how
fresh the data is, or the reliability of the sources. It is pru-
dent to include in the business model the QoD guarantees,
especially for those web sites whose sole or primary busi-
ness is serving data.

In [LR99, LR00a] we have showed that materialization
of dynamically generated web pages is a robust solution to
the scalability problem. With materialization, web pages
are cached and constantly kept up to date in the background,
resulting in fresh data accesses on cache hits. We use the
term WebView to refer to the unit of materialization, which
is a page that contains dynamic HTML fragments generated
from a DBMS. Having a WebView materialized can poten-
tially give significantly lower service times, compared to a
virtual (un-materialized) WebView. Although the selection



of WebViews to materialize will have important implica-
tions on both the QoS and QoD, the order by which mate-
rialized WebViews are refreshed plays an even more cru-
cial role in the overall Quality of Data. For example, we
want to update popular WebViews first, since, we expect
that overall they will contribute to higher freshness of the
data served.

In this paper we focus on the update scheduling problem
as it relates to QoD: given a set of WebViews that are mate-
rialized, find the best order to refresh them, so that the over-
all Quality of Data is maximized. Our work is motivated by
materialized WebViews in data & update-intensive web ser-
vers, but it can be applied to any environment that has con-
tinuous online updates. We demonstrate that a FIFO sched-
ule for the WebView updates can have disastrous effects
on QoD. Except for ignoring the popularity of the Web-
Views, a FIFO schedule also ignores the cost to update each
WebView. Scheduling the refresh of “cheaper” WebViews
ahead of “expensive” ones, could also lead to higher QoD.

We performed a workload study on Quote.com, a popu-
lar update-intensive web server with online stock informa-
tion. We found that both access and update workloads are
highly skewed, with a small percentage of the stocks being
responsible for a big percentage of the accesses and the up-
dates. Moreover, we found that access and update patterns
are correlated. The results of this study were used in the re-
lease of the current Quote.com server.

Based on the workload analysis, we developed an adap-
tive QoD-aware update scheduling algorithm (QoDA) that
takes into consideration the popularity and the update cost
of the views. Our algorithm unifies the scheduling of rela-
tion and view updates under one framework, takes advan-
tage of temporal locality in the incoming update stream and
is tolerant to update surges. QoDA also takes into account
the database schema and can support any type of views and
arbitrary view hierarchies.

We implemented an update scheduling simulator and ran
extensive experiments using real traces (from Quote.com
and the NYSE) and synthetic ones. Our experiments clearly
show that QoDA update schedules consistently outperform
FIFO schedules by up to two orders of magnitude. One
of the main advantages of QoDA scheduling is that it can
maintain a high level of QoD, even when the update pro-
cessing capacity is not enough or when there are surges in
the incoming update rate. The most important discriminator
of QoDA over FIFO is the speed of restoring QoD after up-
date surges. QoDA rapidly restores QoD while FIFO does
it slowly and sometimes never recovers.

In the next section we summarize the results from a
workload study that we recently performed on Quote.com.
In Section 3 we define the QoD metrics, and in Section 4 we
present the QoD-aware update scheduling algorithm. Sec-
tion 5 contains the experiments we performed using real and
synthetic trace data. Section 6 briefly presents the related
work. We conclude in Section 7.

2 A Workload Study of a Web Server with
Continuous Updates

We recently performed a workload study on Quote.com
[LR00b], one of the most popular stock quote servers. We
focused our study on the stock information pages of about
9000 stocks and used the server log traces from Quote.com
to explore the access workload. We then correlated these
logs with the Trade and Quote Database from the New
York Stock Exchange (NYSE), which contains all the stock
“ticks” (buy or sell activity), i.e. the update logs.

Accesses Updates
number of % of total number of
symbols requests symbols

1 15% 10
2 25% 25

10 40% 81 (0.9%)
25 50% 153 (1.7%)
70 (0.8%) 60% 287 (3.1%)

190 (2.1%) 70% 529 (5.7%)
442 (4.8%) 80% 963 (10.6%)

1081 (11.8%) 90% 1833 (20.0%)

Table 1: Number of symbols vs total request load

We found that, as is the case with static web pages
[BCF+99], the access request workload of dynamically
generated pages is highly skewed: a small percentage of the
web pages is responsible for a big percentage of the overall
request load (Table 1). For example, the 25 most popular
stock symbols generate over 50% of the total request load
for Quote.com. The update workload is also highlyskewed,
although not as much as the access workload. For exam-
ple, the ten most update-intensive stocks receive 15% of the
updates (Table 1). The highly skewed access and update
workloads mandate the use of popularity when measuring
the QoD for the accessed data and also when scheduling the
updates.

We looked at the access rates for the Quote.com web
server and the update rates from the NYSE trace. In addi-
tion to the big, but predictable, variations at the beginningor
end of each day’s session, there is significant variance in the
access and update rates during market hours. WebView Ma-
terialization inherently deals with access surges. However,
for update surges, it is the update scheduling algorithm that
must tolerate them and rapidly adapt to the incoming update
rates. For example, the NYSE workload had update rates
of up to 696 updates per second. Furthermore, since access
rate variations can lead to increased load in the system, the
update scheduling algorithm must also tolerate decreased
server capacity. In general, we need an adaptive algorithm
that will react rapidly to changes in the update workloads
and system conditions.

We found that sudden increases in the incoming update
rate, or update surges, are frequent in the update workload.
We modeled “sudden” to be within a ten-second sliding
window, during which we compute the maximum positive
update rate difference and report it as a percentage increase.



0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450 500

F
re

qu
en

cy

Size of Update Surge (percentage)

Figure 1: Surges in Update Rate for April 4, 2000

Therefore a 200% percentage increase would correspond to
a three-fold update surge. We measured the intensity and
the frequency of update surges in the NYSE workload and
plot them in Figure 1. Clearly, the peak of the curve is
around the 100% mark, which suggests that two-foldupdate
surges are the most common. However, there are also a lot
of cases with higher update surges, up to 500% or six-fold.

Finally, we found that both the update stream exhibits
temporal locality: recently updated views are more likely to
be updated again. This suggests that the update scheduling
algorithm must exploit it and attempt to “merge” consecu-
tive updates to the same WebView.

3 Quality of Data for Materialized Views

In this section we present a probabilistic model for mea-
suring the Quality of cached data that are derived from a
DBMS. We assume a web server architecture similar to that
of Figure 2. The web server is the front-end for serving user
requests. All requests that require dynamically generated
data from the DBMS are intercepted by the asynchronous
cache and are only forwarded to the DBMS if the data is
not cached. Unlike traditional caches in which cached data
is invalidated on updates, in the asynchronous cache data
elements are materialized [LR00a] and constantly being re-
freshed in the background. A separate module, the update
scheduler is responsible for scheduling the DBMS updates
and the refresh of the data in the asynchronous cache. Up-
dates must be performed online and our goal is to serve con-
tent with as high QoD as possible to the users. The system
architecture in Figure 2 implies that the updates arrive at the
back-end and that the requests at the web server are read-
only. In general, this is not a requirement for our work and
we do allow updates to originate at the web server, provided
that there are no consistency issues and the updates still go
through the update scheduling module before being applied
to the DBMS.

Althoughour work is motivated by database-backed web
servers and materialized WebViews, it applies to any sys-
tem that supports online updates. For the rest of the paper,
we will use the more general term views instead of Web-
Views. We assume a database schema with N relations,
r1, r2, : : :, rN and M views, v1, v2, : : :, vM . Views are

DBMS

relation
updates

accesses

cache
async

web 
server

update
scheduler

Figure 2: System Architecture

derived from relations or from other, previously derived
views. There is no restriction on the types of views or
their complexity. We distinguish two types of views: vir-
tual, which are generated on demand from relations or other
views, and materialized, which are precomputed, stored in
the asynchronous cache and refreshed asynchronously. All
user requests are expressed as view accesses, whereas all in-
coming updates are applied to relations only and schedule
view refreshes. Finally, we assume that incoming relation
updates must be performed in the order received, whereas
materialized view refreshes can be performed in any order.

3.1 Data Freshness

The incoming update stream contains relation updates
which modify one or more tuples. The update schedule lists
the order in which the relation updates along with materi-
alized view refreshes are to be performed. A valid update
schedule in our framework must have the following three
properties: (1) relation updates or view refreshes cannot
overlap, (2) all relation updates must be performed in the
order of arrival, and, (3) stale materialized views must be
refreshed.

When an update to a relation is received, the relation and
all views that are derived from it become stale. Database
objects remain stale until an updated version of them is
ready to be served to the user. Note that we start counting
staleness at the earliest possible point to bring the QoD stal-
eness metric as close as possible to the time of the originat-
ing source of the update. We illustrate this definition with
the following example.

Assume a database with one relation r and two views:
vv which is virtual and vm which is materialized. Also as-
sume that at time t1 an update for relation r arrives (Fig-
ure 3). Relation r will become up to date after it is updated.
If the update on r starts at time t2 and is completed at time
t3, then relation r will have been stale from time t1 until
t3. Virtual view vv will become fresh after its parent rela-
tions/views are updated (r in this example). Since relation
r was updated at time t3, view vv inherits its staleness from
r, and thus will have been stale from time t1 until t3. Fi-
nally, materialized view vm will become up to date after it
is refreshed. If the refresh of vm starts at time t4 and is com-
pleted at time t5, then view vm will have been stale from
time t1 until t5. Clearly, the total time that relation r and
views vv & vm are stale will be minimized if there is no
“wait” time, i.e. when t1 = t2 and t3 = t4.



t 1 t 2 t 3 4t t 5

time

r vm

r
INCOMING UPDATE STREAM

SCHEDULE
UPDATE

&

m

r

v

are stale
vv

is stale

Figure 3: Staleness Example

A database object di is considered to be fresh, when it
is not stale. We define the freshness function for object di,
bfresh(di)

t, as following:

bfresh(di)
t
=

�
0; if object di is stale at time t
1; if di is not stale at time t (1)

The definition implies a boolean treatment of staleness:
data objects are marked as stale because of at least one un-
applied update. In other words, if multiple consecutive rela-
tion updates render a materialized view vm stale, view vm
will be fresh only after the last refresh is performed, even
if we refresh vm multiple times. This may penalize mate-
rialized views affected by frequently-updated relations, but
also gives the opportunity to perform other relation updates
or view refreshes instead.

If we want to measure the freshness of a database object
di over an entire observation time period T = [ti; tj], we
have that

bfresh(di)
T
= bfresh(di)

[ti;tj ] =
1

T
�

Z tj

ti

bfresh(di)
t (2)

This definition is equivalent to computing the percentage
of time during the observation period that the database ob-
ject di is stale. Since we are mostly interested in continuous
update streams, T is expected to be a sliding time window
which ends at the current point of time.

So far the definitions of freshness for database objects
did not consider accesses to them. In order to measure the
quality of the accessed data, we need a “normalized” met-
ric that will account for the probability of accessing a fresh
version of a view.

Definition 1 We define the Freshness Probability for a
view v, pfresh(v), as the probability of accessing a fresh ver-
sion of view v during the observation interval T .

If we assume a uniform probabilityof accessing view v dur-
ing the observation interval, then the probability of access-
ing a fresh version ofv is equal to the percentage of time that
the view is fresh, or the freshness as was defined in Eq. 2.
In other words,

pfresh(v) = bfresh(v)
T
=

1

T
�

Z tj

ti

bfresh(di)
t (3)

The higher the values for pfresh(v) the higher the quality of
the accessed data.

3.2 Overall QoD based on Freshness

Although the freshness probability for a given view vi,
pfresh(vi), is an accurate QoD metric for that view, we need
to be able to aggregate QoD over the entire database. In
other words we want to estimate the probability that a
database access returns fresh data, which we will denote
as pfresh(db).

In order to calculate the aggregate QoD over the en-
tire database, pfresh(db), we could just add the freshness
probabilities for all views. However, since views are ac-
cessed with different frequencies and web workloads ex-
hibit highly skewed access patterns (Section 2), we must
take into account the access frequency of each view when
aggregating QoD over the entire database. We want the
overall QoD to be influenced more by the freshness prob-
abilities of popular views than those of unpopular views.

Let us assume that fa(vi) is the access frequency of view
vi, expressing the ratio of vi requests over the total number
of requests. We have that

P
vi
fa(vi) = 1. We compute the

overall QoD as the weighted sum of the freshness probabil-
ities of all views, as follows:

pfresh(db) =
X
vi2V

fa(vi)� pfresh(vi) (4)

This definition implies that 0 � pfresh(db) � 1. We as-
sociate QoD with freshness, so the higher the value of
pfresh(db) the better the overall QoD.

4 Update Scheduling
Given a database schema, the set of views that are mate-
rialized and an incoming relation update stream, the Up-
date Scheduling Problem consists of determining the up-
date schedule which maximizes the overall Quality of Data
(QoD). We assume a database with n relations, r1, r2, : : :,
rn and m views, v1, v2, : : :, vm. We use a directed acyclic
graph, the View Dependency Graph, to represent derivation
paths for the views. Views can be of arbitrary complexity,
including SPJ-views, aggregation views, etc. The nodes of
the view dependency graph correspond to either relations
or views, and are marked to distinguishbetween virtual and
materialized views. Nodes that have zero in-degree corre-
spond to relations. An edge from node a to node b exists
only if node b is derived directly from node a. No other
views can be derived from virtual views. Finally, we as-
sume that for each relation we know the cost to update it
and for each materialized view the cost to refresh it. We do
not actually need the real update costs for relations and ma-
terialized views, but rather the relative update costs.

The incoming update stream contains relation updates
that trigger materialized view refreshes. The definition of
valid update schedules on page 3 implies that we can (1)
delay relation updates, as long as we perform all of them
and in the order received, (2) postpone materialized view



refreshes and not necessarily perform them immediately af-
ter they were triggered, and (3) reorder materialized view
refreshes.

v5

v7

r1

v8

r2

v6

v1 v v v2 3 4

Figure 4: View Dependency Graph for the Motivating Ex-
ample

4.1 Motivating Example

Let us assume a database with two relations r1, r2 and eight
views v1, : : :, v8. Views v1 through v6 are materialized,
whereas views v7 and v8 are virtual. Figure 4 displays the
view dependency graph for this example. Table 2 has the
access frequencies for this example (which follow the Zipf
distribution) and the cost to update each relation or materi-
alized view. For simplicity, we will assume that all update
and refresh operations take one time unit except for views
v2 and v3. Finally in this example, we only have two up-
dates, one for r1 that arrives at time 0, and one for r2 that
arrives at time 3.

object fa() cost type

r1 0 1 relation
r2 0 1 relation

v1 0.12 1 mat. view
v2 0.37 2 mat. view
v3 0.19 3 mat. view
v4 0.09 1 mat. view
v5 0.07 1 mat. view
v6 0.06 1 mat. view
v7 0.05 - virtual view
v8 0.05 - virtual view

Table 2: Access Frequencies

Under a FIFO update propagation schedule, we should
perform the refresh of all the affected views right after
the update to the parent relation is completed. When we
have multiple derivation paths for one view, we must avoid
scheduling unnecessary refreshes. For example, once we
receive an update for r2, we would rather use schedule r2
v3 v4 v5, instead of r2 v3 v5 v4 v5, thus avoiding refreshing
v5 twice. Our implementation of the FIFO update schedule
avoids unnecessary refreshes, by performing a breadth-first
traversal of the view dependency graph to compute the re-
fresh order.

Figure 5 has the FIFO update schedule for the motivating
example. If we calculate the overall QoD for this schedule

r1 v1 v2 v3 v5 v6 v3 v4 v5 v6r2

receive
update
for r1

0 1 2 3 4 5 6 7 8 9 10

receive
update
for r2

11

time

14 15 1612 13

Figure 5: Motivating Example - FIFO Update Schedule

(T = 16), we have pfresh(db) = 0.513125. We also consider
a variation of the FIFO schedule, where we refresh the most
popular views first, which we refer to as FIFO Popularity-
Aware Schedule. The overall QoD for this schedule, is
pfresh(db) = 0.49875, slightly worse than the simple FIFO
Schedule. In other words, there are cases when blindly re-
freshing the most popular views first will not lead to higher
QoD.

r1 v2 v1 r2 v4 v3 v5 v6

receive
update
for r1

0 1 2 3 4 5 6 7 8 9 10

receive
update
for r2

11

time

14 15 1612 13

Figure 6: Motivating Example - Optimal Update Schedule

Finally, we consider the optimal off-line update sched-
ule for this example. Assuming that we have the entire in-
coming update stream in advance, we compute the optimal
update schedule by enumerating all possible schedules and
finding the one with the highest QoD. Figure 6 has the op-
timal off-line update schedule for the motivating example.
The overall QoD for this schedule (T = 16, same as in
the FIFO schedules), is pfresh(db) = 0.679375, a 32.4% im-
provement over the FIFO Schedule.

We see that even with a simple two-update example,
there is a lot of room for improvement over the FIFO refresh
schedule (more than a 32% QoD gain). As we will demon-
strate in the experiments, the scheduling of the updates has
a dramatic impact on the overall QoD.

4.2 Visualizing Quality of Data

We use a two-dimensionalplot of view staleness to illustrate
the difference in the overall Quality of Data among the vari-
ous refresh schedules. On the X-axis we list all views in the
order they appear in the update schedule, spacing them pro-
portionally to their frequency of access (relations have zero
frequency of access). On the Y-axis we report the amount of
time that each view was stale before it was refreshed (Fig-
ure 7). The dark-shaded area for each view (the box with
the diagonal) corresponds to staleness because of the cost
to refresh or generate the view, whereas the light-shaded
area underneath corresponds to view staleness because of
scheduling delay. The smaller the overall shaded area is, the
less staleness we have and therefore the higher the overall
QoD is.

Figure 7a is the QoD visualization of the FIFO sched-
ule (Figure 5) for the motivating example. Figure 7b is the
QoD visualizationof the optimal update schedule (Figure 6)
for the same example and illustrates a smaller shaded area
compared to that of Figure 7a, which agrees with the QoD
calculation for the two cases that was performed earlier.



5

14

15

16

13

12

11

10

9

8

7

6

3

2

1

4

v3

v6

v5

v3

T
im

e

r1

v2

v1

v4

r2

v6

v5

5

14

15

16

13

12

11

10

9

8

7

6

3

2

1

4

r1

T
im

e

r2

v2

v1

v4

v3

v5

v6

θ

(a) FIFO Schedule (b) Optimal

Figure 7: Staleness Visualization for a) the FIFO Update
Schedule and b) the Optimal Update Schedule

By observing the QoD visualization of the optimal up-
date schedule (Figure 7b) we see that the views are sched-
uled by increasing slope, where slope is the angle � be-
tween the diagonal of the dark-shaded box for each view
and the X-axis. If for each view vi, we define the rank
R(vi) =

fa(vi)

c(vi)
, where fa(vi) is the frequency of vi accesses

and c(vi) is the time required to refresh view vi, then the
optimal update schedule refreshes the views in decreasing
rank order (since slope is proportional to 1

rank ). This is in-
tuitive because in order to minimize the shaded areas in the
staleness plot and thus get better QoD, we should choose
to schedule for refreshment views that are either popular or
cheap to refresh. We examine this idea in detail in the next
section.

4.3 QoD-Aware Update Scheduling Algorithm

In this section we present the QoD-Aware update schedul-
ing algorithm, QoDA (pronounced koda). QoDA unifies
the scheduling of relation updates and view refreshes under
one framework. We saw in the previous section that in the
optimal update schedule views were refreshed by order of
rank R(vi) =

fa(vi)

c(vi)
. This idea cannot be applied directly in

our framework for two reasons. First of all, we have a view
derivation hierarchy which forces precedence constraints.
Secondly, we need to be able to also schedule relation up-
dates in the same way, although fa(ri) = 0, for all ri, since
relations are not accessed directly in our framework.

In order to estimate the rank for a relation or a view, we
consider its popularity along with the popularities of all the
views that are derived from it, either directly or indirectly.
With this approach we can assign popularityestimates to re-
lations even though they are not accessed directly.

Definition 2 The Popularity Weight of a relation or view
si, pop(si), is defined as the sum of the access frequencies
of si and all of its descendants.

We have that:

pop(si) = fa(si) +
X

vj2desc(si)

fa(vj) (5)

where desc(si) is the set of descendants of si in the view
dependency graph. Note that if more than one path exist
from si to a view vj , only one instance of vj is inserted in
desc(si). If si is a relation, then fa(si) = 0, whereas when
si is a virtual view, desc(si) = ;. The popularity weight
calculation is similar to that for the LAP Schema [Rou82].
The main difference is that we use a generic view depen-
dency graph which does not differentiate over the type of
operation that generates each view (e.g. select, join, union,
etc) as is the case for LAP Schemas.

The intuition behind the QoD-Aware update scheduling
algorithm is that in order to improve QoD, we schedule to
update the relation or materialized view that will have the
biggest negative impact on QoD, if it is not updated. The
impact of delaying the refresh of a relation or view is the
modified rank value, as follows: impact(d) = pop(d)

c(d)
. This

implies that between two objects with the same popularity
values, QoDA will select the one with the smallest refresh
cost, since it will have the biggest impact value. By select-
ing the database object with the smallest refresh cost, we
will be able to “squeeze” in more refresh operations and
thus improve the overall QoD.

Dirty Counting

We want to enforce a topological sort order on the view re-
fresh schedule, based on the view dependency graph. In
other words we want to guarantee that a materialized view
will only be refreshed after all of its parent views or rela-
tions that were stale have been updated. Consider for exam-
ple the view dependency graph of Figure 4. Regardless of
the view popularities, it makes no sense to refresh v5 before
v3, since v5 will be recomputed from an old version of v3
and therefore will remain stale. To implement this idea we
instrument all views with dirty counters, which correspond
to the number of stale ancestors each view has. Views are
allowed to be refreshed only when their dirty counters reach
zero.

QoD-aware Update Scheduling algorithm
(1) candset = ;

(2) schedule = ;

(3) while (candset != ; and 9 incoming updates)
(4) foreach ri in (incoming updates)
(5) candset.append(ri)
(6) select d from candset with max impact(d)
(7) schedule.append(d)
(8) candset.remove(d)

Figure 8: Pseudo-code for the QoDA Algorithm

QoDA Algorithm

In Figure 8 we present the pseudo-code for the QoDA algo-
rithm, which schedules relation updates and view refreshes
in order to maximize QoD. The algorithm maintains a set
of stale database objects, the Candidates Set (candset), and
at each step it selects the object with the maximum impact



value (which will have the biggest negative effect on QoD
if not scheduled). In order to use dirty counters, the impact
value of an object d is calculated using the following for-
mula:

impact(d) =

(
pop(d)
c(d)

; if dirty counter for d = 0

0; if dirty counter for d 6= 0
(6)

When an object is appended to the Candidates Set, (Fig-
ure 8, line 5), all of its descendants are appended to the Can-
didates Set, and their dirty counters are updated. Note, that
if a node already exists in candset it is not appended, i.e.
we allow no duplicates. On the other hand, when an ob-
ject is removed from the Candidates Set (Figure 8, line 8),
the dirty counters of its descendants are decremented. The
algorithm terminates when the candidate set is empty and
there are no more incoming updates. Note that the imple-
mentation of the QoDA update scheduling algorithm can be
very fast, adding very little overhead to the system, since it
has no time-dependent computation.

Example

In order to illustrate the way QoDA works, we will go
through its execution on the motivating example (Sec-
tion 4.1). The schema for this example is in Figure 4, and
the update costs are listed in Table 2. The first update, on
r1, arrives on time t = 0, whereas the second update, on r2,
arrives on time t = 3. With the arrival of the first update,
the following data objects are inserted in the candidates set:
r1 (0), v1 (1), v2 (1), v3 (1), v5 (2), v6 (3), v7 (1), where
the numbers in parentheses are the dirty counters for each
view. Since only relation r1 has a zero dirty counter, it has
the highest impact value and thus is scheduled to be updated
first. After relation r1 is updated, all the dirty counters of
all its descendants are decreased by one. v2 has the highest
impact value from the remaining views, so it is scheduled
next. At time t = 3, the update on relation r2 arrives, so
r2, v4, v8 are added to the candidate set. The candidate set
now has the following items: r2 (0), v4 (1), v5 (3), v1 (0), v3
(1), v6 (4), v8 (1). With the arrival of the update on r2, only
r2 and v1 have zero dirty counters and since impact(r2) >
impact(v1), r2 is scheduled to be updated next. The process
of updating the dirty counters and picking the element with
the highest impact value is repeated until the candidate set
is depleted.

r1 v2 v3 v5 v6r2 v4 v1

receive
update
for r1

0 1 2 3 4 5 6 7 8 9 10

receive
update
for r2

11

time

14 15 1612 13

Figure 9: Motivating Example - QoDA Refresh Schedule

Figure 9 has the QoDA update schedule for the motivat-
ing example of Section 4.1. The QoD metric for this sched-
ule, is pfresh(db) = 0.673125. This is a 31.2% improvement
over the best FIFO schedule (Figure 5) and corresponds to
99% of the QoD for the off-line optimal schedule (Figure 6).

5 Experiments
We implemented a high-level update scheduling simulator
which takes as input the database relations, the materialized
and virtual views, the access frequencies for the views, the
update cost for the relations, the refresh cost for the views
and the incoming update stream. The simulator generates
the update schedule under the specified algorithm (FIFO or
QoDA) and also reports the Quality of Data at each time in-
stant of the simulation. The simulator’s internal clock ran at
the milli-second level, but we report our findings rounded
up to seconds.

An important parameter in the simulator is the update
processing speed which is the number of updates per second
that the simulated system can process. Note that this speed
implicitly measures the hardware and software capacity to
process updates and respond to queries. In other words, an
increase in the access request rate is expected to decrease
the update processing speed. When the update processing
speed is more than the incoming update rate, we have ex-
tra update capacity in the system. For example, if we have
1000 updates/sec for the update processing speed and the
incoming update rate is 800 updates/sec, then we have ex-
tra update capacity of 20%.

Due to space limitations we only present two experi-
ments, the rest can be found in [LR01].

5.1 Experiments with Real Workloads

We used the web logs from the Quote.com server as our ac-
cess workload and a 10-minute interval of the Trade and
Quote Database from NYSE as our update workload. We
assumed a database schema where all stock information is
stored in one table, and each stock has four materialized
views (simple projections and selections on the stock sym-
bol), which have the same refresh cost. The access frequen-
cies were derived from the Quote.com traces. The updates
correspond to any buy or sell activity on the stock symbol
(which would render the views stale). It should be noted
that the NYSE update workload is very intensive (average
incoming update rate of 652 updates/second), which dic-
tates an efficient update scheduling algorithm. Also there
is great variability in the update rates with values between
40% and 160% of the average rate.

In our experiments we measure the QoD and how it
varies during the simulation under the FIFO and QoDA up-
date scheduling algorithms. When the update processing
speed of the server is equal to the average incoming update
rate, the QoDA schedule consistently gives better QoD over
the FIFO schedule, about 6% on average. Furthermore, the
QoD under the QoDA schedule is almost constant, whereas
in the FIFO schedule the QoD is fluctuating.

In Figure 10 we plot the QoD under the FIFO and QoDA
update scheduling algorithms when the processing speed is
less than the average incoming update rate. There are two
reasons for something like that to happen: (a) because of
a surge in the update rate, or (b) because of an increase in
the access rate that would increase the load at the server
and thus decrease the effective update processing speed. In



0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Q
ua

lit
y 

of
 D

at
a

Time (seconds)

FIFO
QoDA

Figure 10: Real workload experiment: update processing
speed is 70% of the average incoming update rate

the case where the update processing speed is 70% of the
average incoming update rate (Figure 10), the QoD for the
QoDA schedule (top line) is on average 3.6 times better than
the QoD for the FIFO schedule (bottom line). At this rate,
FIFO does not recover and its QoD continuously deterio-
rates.

In Table 3 we list the overall QoD for the real work-
load experiment for both the FIFO and QoDA update sched-
ules when the update processing speeds ranges from 300
updates/sec (or 46% of the average incoming update rate)
to 1200 updates/sec (or 185% of the average incoming up-
date rate). The first row of the table is the update processing
speed in updates/second for each experiment, and the sec-
ond row lists what percentage of the average incoming up-
date rate the processing speed corresponds to. We clearly
see that the QoDA schedule consistently outperforms the
FIFO schedule, even when the processing speed is more
than the average incoming update rate. Moreover, the QoD
under the QoDA schedule remains high, even at low up-
date processing speeds. For example, when the update pro-
cessing speed is at 46% of the average incoming update
rate, the QoD under QoDA is 0.82. For the same case, the
FIFO schedule gives a 0.13 QoD, which is six times worse
than the QoDA schedule. A 0.13 QoD means that an esti-
mated 87% of the accesses will be served with stale data. In
general, under medium update processing speeds the FIFO
schedule gives really poor QoD.

5.2 Tolerance to Update Surges

Tolerance to surges in the update rate is crucial for any up-
date scheduling algorithm. Users should not have to suffer
poor QoD if there is a surge in the update volume. As we
saw in the workload study (Section 2), update surges occur
often in the incoming update stream. Furthermore, the ef-
fects created by update surges can also be created indirectly,
by surges in the incoming access rate, which increase the
overall load at the server and decrease the update process-
ing speed of the system.

We created a synthetic database of 1000 relations with
20 materialized views each (i.e. we had a total of 20,000

views). The view refresh cost was uniform, the frequency
of access followed the Zipf distribution and the average in-
coming update rate was 1050 updates/second. The incom-
ing update stream was 120 seconds long and consisted of
three parts. The first 20 seconds had a “regular” incoming
update rate, the next 10 seconds had a “surge” during which
the incoming update rate jumped to five times that of the
regular update rate, and, finally, the remaining 90 seconds
also had the same “regular” update rate as the first part.

Figure 11 has the results from a two-fold, five-fold and
ten-fold update surge with a 20% extra update processing
capacity for both FIFO scheduling (Figure 11a) and QoDA
scheduling (Figure 11b). QoDA outperforms FIFO, espe-
cially under high update surges, since it is able to identify
the views to refresh so that the QoD is maximized. For ex-
ample, for the ten-fold surge, the QoDA schedule manages
to recover in approximately the same time as in the five-fold
surge. On the other hand, the FIFO schedule never recovers
from the ten-fold surge and, after the surge, the QoD drops
to unusable levels (less than 0.04) and remains practically
fixed. In this case, the QoD for the QoDA schedule is about
two orders of magnitude higher than the QoD for the FIFO
schedule.

Note the shape of the QoD curves for QoDA after the
update surges (Figure 11b). This is attributed to the fact
that the QoDA update schedule refreshes first the views that
will have the greatest impact on the QoD, therefore the rate
of improvement on the QoD decreases during the recov-
ery from the update surge. In practice, the limiting factor
to how quickly the QoDA schedule recovers from update
surges is the amount of relation updates that have to be per-
formed (and cannot be postponed like materialized view re-
freshes).

Unfortunately, we cannot compare QoDA with the off-
line optimal update scheduling algorithm (as we did for
the motivating example), because the off-line optimal al-
gorithm would require enumerating all the possible update
schedules, which is infeasible for more than 15-20 updates.

6 Related Work

The update scheduling problem is to some extent similar to
the problem of scheduling tasks on a single machine in or-
der to minimize the weighted completion time under prece-
dence constraints [CM99], which has been proven to be NP-
hard for the general case [Law78]. In the update schedul-
ing problem the objective is to maximize QoD, which can
be translated to minimizing the weighted staleness for all
views. There are, however, a lot of differences between
the two problems. First of all, the update scheduling prob-
lem has multiple classes of “tasks”: updates for relations,
materialized views, and virtual views, as opposed to one
type for the weighted completion time problem. Relation
updates must be scheduled in the order of arrival which is
not the case for any of the tasks in the weighted comple-
tion time problem, and also, their staleness is not measured
in the overall QoD metric. Furthermore, we have the op-
tion of postponingmaterialized view refreshes in the update



processing speed (upd/sec) 300 400 450 550 600 650 750 1200
% of average incoming rate 46% 61% 70% 85% 92% 100% 115% 185%

QoD for FIFO schedule 0.135 0.199 0.268 0.892 0.913 0.921 0.932 0.957
QoD for QoDA schedule 0.821 0.935 0.963 0.975 0.977 0.978 0.981 0.988

Table 3: Average QoD for real workloads under various update processing speeds

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

Q
ua

lit
y 

of
 D

at
a

Time (seconds)

2x-fold surge
5x-fold surge

10x-fold surge

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

Q
ua

lit
y 

of
 D

at
a

Time (seconds)

2x-fold surge
5x-fold surge

10x-fold surge

(a) FIFO schedule (b) QoDA schedule

Figure 11: Effect of update surges on scheduling algorithms with 20% extra update processing capacity

scheduling case, whereas in the weighted completion time
problem all tasks must be performed. Also, although vir-
tual views do not have to be refreshed, they are “counted”
when reporting staleness. Finally, for the update scheduling
problem we must have an online algorithm, whereas most
approximationalgorithms for the weighted completion time
problem are off-line.

[PSM98, YV00, OLW01] deal with consistency is-
sues for update propagation in the context of replicated
databases. [AGMK95] and [AKGM96] deal with the
scheduling of updates in the context of real-time databases,
where update operations have to compete with transaction
processes that have soft deadlines. [AGMK95] consid-
ers the scheduling of updates only and suggests algorithms
to improve transaction timeliness without sacrificing data
timeliness. [AKGM96] focuses on recomputation strate-
gies: how and when to perform refreshes of derived data
in order to reduce cost without sacrificing data timeliness.
They propose delaying recomputations slightly (forced de-
lay), so that several related source updates can be combined
in a single step. However they do not provide the means to
determine the forced delay interval. Moreover, they do not
consider view derivation hierarchies, differences in update
costs or allow for the ability to reorder view refreshes and
tolerate update surges like we do.

[CGM00] deal with the issue of when to poll remote
sources in order to update local copies and improve the
database freshness. They provide synchronization policies
which are mostly suited for web crawlers. However, their
freshness metric is not popularity-aware. With the highly
skewed access patterns on web servers (as we saw in Sec-
tion 2, even one page can correspond to as much as 17% of

the entire web server traffic), we must weigh the freshness
of each page accordingly when reporting the overall fresh-
ness.

The update scheduling problem is somewhat similar to
data broadcast scheduling. [SRB96] adapt the broadcast
content based on the “misses” using a temperature-based
model. [AF99] schedule data items for broadcast based on
the product of the number of requests for an item times
the amount of wait time since it was first requested. An
important difference between update scheduling and data
broadcast scheduling is that update scheduling must han-
dle precedence constraints (as a result of a view computa-
tion hierarchy) and non-uniform view refresh costs which
are not considered in data broadcast scheduling algorithms.

7 Conclusions

We studied the workload of a commercial update-intensive
web server and found highly skewed access & update pat-
terns, as well as frequent surges in the update load. Inspired
by this study, we have developed a framework for measur-
ing Quality of Data in web server caches, which is based
on freshness. We focused on the update scheduling prob-
lem: ordering the relation and materialized view updates to
maximize QoD. We introduced QoDA, a QoD-Aware up-
date scheduling algorithm that unifies the scheduling of re-
lation updates and materialized view refreshes under one
framework.

We compared QoDA update scheduling to FIFO
scheduling through extensive experiments on real and
synthetic workloads. QoDA schedules consistently ex-
hibited higher QoD than FIFO schedules by up to two



orders of magnitude. Especially for update surges, FIFO
schedules degenerate to unusable QoD levels, whereas
QoDA schedules quickly recover and maintain high QoD.

Update surges are a fact of life and in panic situa-
tions they exceed any server capacity. Brute-force solu-
tions of increasing hardware and software capacity to tol-
erate surges are not financially sound. Instead, we envision
QoDA acting as an “update surge protector” for guarantee-
ing high Quality of Data under rapidly changing load con-
ditions, in the same way that caching of static web pages is
used to guarantee high QoS under access surges.

Acknowledgments

We would like to thank Damianos Karakos, Yannis Sisma-
nis, Manuel Rodriguez and the anonymous reviewers for
their helpful comments.

References
[AF99] Demet Aksoy and Michael Franklin. “RxW:

A Scheduling Approach for Large-Scale On-
Demand Data Broadcast”. IEEE/ACM Trans-
actions on Networking, 7(6), December 1999.

[AGMK95] Brad Adelberg, Hector Garcia-Molina, and
Ben Kao. “Applying Update Streams in a Soft
Real-Time Database System”. In Proc. of the
ACM SIGMOD Conference, pages 245–256,
San Jose, California, June 1995.

[AKGM96] Brad Adelberg, Ben Kao, and Hector Garcia-
Molina. “Database Support for Efficiently
Maintaining Derived Data”. In Proc. of the
5th International Conference on Extending
Database Technology (EDBT’96), Avignon,
France, March 1996.

[BBC+98] Phil Bernstein, Michael Brodie, Stefano Ceri,
David DeWitt, Mike Franklin, Hector Garcia-
Molina, Jim Gray, Jerry Held, Joe Hellerstein,
H. V. Jagadish, Michael Lesk, Dave Maier,
Jeff Naughton, Hamid Pirahesh, Mike Stone-
braker, and Jeff Ullman. “The Asilomar
Report on Database Research”. SIGMOD
Record, 27(4), December 1998.

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham
Phillips, and Scott Shenker. “Web Caching
and Zipf-like Distributions: Evidence and Im-
plications”. In Proc. of IEEE INFOCOM’99,
New York, USA, March 1999.

[CGM00] Junghoo Cho and Hector Garcia-Molina.
”Synchronizing a database to improve
freshness”. In Proc. of the ACM SIGMOD
Conference, Dallas, Texas, USA, May 2000.

[CM99] Chandra Chekuri and Rajeev Motwani.
“Precedence Constrained Scheduling to Min-
imize Weighted Completion Time on a Single

Machine”. Discrete Applied Mathematics,
98(1-2), October 1999.

[Law78] E. L. Lawler. “Sequencing jobs to minimize
total weighted completion time”. Annals of
Discrete Mathematics, 2:75–90, 1978.

[LR99] Alexandros Labrinidis and Nick Roussopou-
los. “On the Materialization of WebViews”. In
Proc. of the ACM SIGMOD Workshop on the
Web and Databases (WebDB’99), Philadel-
phia, USA, June 1999.

[LR00a] Alexandros Labrinidis and Nick Roussopou-
los. “WebView Materialization”. In Proc. of
the ACM SIGMOD Conference, Dallas, Texas,
USA, May 2000.

[LR00b] Alexandros Labrinidis and Nick Roussopou-
los. “Workload Study of a Popular Web Server
with Dynamic Content”. Technical Report
submitted to Quote.com, June 2000.

[LR01] Alexandros Labrinidis and Nick Roussopou-
los. “Update Propagation Strategies for Im-
proving the Quality of Data on the Web”.
Technical report, Institute for Systems Re-
search, June 2001.

[OLW01] Chris Olston, Boon Thau Loo, and Jennifer
Widom. “Adaptive Precision Setting for
Cached Approximate Values”. In Proc. of the
ACM SIGMOD Conference, Santa Barbara,
California, USA, May 2001.

[PSM98] Esther Pacitti, Eric Simon, and Rubens N.
Melo. “Improving Data Freshness in Lazy
Master Schemes”. In Proc. of the 18th In-
ternational Conference on Distributed Com-
putingSystems, Amsterdam, The Netherlands,
May 1998.

[Rou82] Nick Roussopoulos. “The Logical Access
Path Schema of a Database”. IEEE Transac-
tions on Software Engineering, 8(6):563–573,
November 1982.

[SRB96] Konstantinos Stathatos, Nick Roussopoulos,
and John S. Baras. “Adaptive Data Broadcast-
ing Using Air–Cache”. In First International
Workshop on Satellite-based Information Ser-
vices, Rye, New York, November 1996.

[YV00] Haifeng Yu and Amin Vahdat. “Design
and Evaluation of a Continuous Consistency
Model for Replicated Services”. In Proc. of
the Fourth Symposium on Operating Systems
Design and Implementation, October 2000.


