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Abstract

This work describes an architecture for integrating
heterogeneous data sources under an XML global
schema, following the local-as-view approach (local
sources’ schemas are described as views over the global
schema). In this context, we focus on the problem of
translating the user’s query against the XML global
schema into a SQL query over the local data sources.

1 Introduction

In recent years, there have been many research projects
focusing on logical data integration; among them we
cite Garlic [10], the Information Manifold [12], Disco
[21], Tsimmis [8], and Yat [1]. The goal of such sys-
tems is to permit the exploitation of several indepen-
dent data sources as if they were a single source, with
a single global schema. A user query is formulated in
terms of the global schema; to execute the query, the
system translates it into subqueries expressed in terms
of the local schemas, sends the subqueries to the local
data sources, retrieves the results, and combines them
into the final result provided to the user. Data inte-
gration systems can be classified according to the way
the schema of the local data sources are related to the
global, unified schema. A first approach is to define the
global schema as a view over the local schemas: such
an approach is called global-as-view (GAV). The oppo-
site approach, known as local-as-view (LAV) consists
of defining the local sources as views over the global
schema.

The tradeoffs between LAV and GAV (as presented
in [11]) are the following. In the GAV approach, trans-
lating the query on the global schema into queries on the
local schemas is a simple process of view unfolding. In
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the case of LAV, the query on the global schema needs
to be reformulated in the terms of the local data sources’
schemas; this process is traditionally known as “rewrit-
ing queries using views” and is a known hard problem
[14, 11]. On the other hand, in a GAV architecture, to
handle modifications in the local data sources set or in
their schemas, the new global schema needs to be re-
designed considering the whole modified set of sources.
In a LAV architecture, a local change to a data source
can be handled locally, by adding, removing or updating
only the view definitions concerning this source; there-
fore, LAV scales much better. Also, if the local data
sources do not have the same data format (e.g., some
are relational while others are XML), it would be diffi-
cult to define the global schema as a view over sources
in different formats; in contrast, using LAV, each source
can be described in isolation, by a view definition mech-
anism appropriate to its format.

Nowadays, the popularity of XML as a data ex-
change format makes it a good candidate for the global
schema in data integration applications. Furthermore,
using an XML-based schema at the interface level allows
to hide the proprietary schemas that the data owners
do not want to disclose, and to adhere to a newly-
established standardized interface without having to
migrate existing data. While XML is an interesting op-
tion for a global schema format, for many application
domains, standardized, domain-specific XML global
schemas have already been established. These stan-
dardized schemas, available as DTDs or XML Schemas,
provide the basis for large-scale integration applica-
tions, for which LAV is preferable.

In this work, we present a methodology for integrat-
ing data sources of diverse formats, including XML and
relational, under an XML global schema, using the LAV
approach. Our approach is implemented in the Agora
data integration system [16]. In Agora, relational and
tree-structured data sources are defined as views over
the global XML schema, by means of an intermediate
virtual, generic, relational schema, closely modeling
the generic structure of an XML document.

This paper is organized as follows. In section 2, we
detail the context of our work, outline our architecture,
and briefly present XQuery, the XML query language



MEep. XML
<medical>
<patient ssNo="123">
<name>"Doe,John”< /name> <dob>"1/1/1960"</dob>
<address>"1, South St., Palm Beach, FL"</address>
< /patient>
<patient SSno="101"><name>"Ale, Mary”< /name>
<dob>"2/6/1970"< /dob>
<address>"2,Pine Rd., Bear Canyon, MN”< /address>
< /patient>
<record><patientSSno>"123"< /patientSSno>
<entry entID="1">
<date>"1/9/90"< /date>
<symptoms>"fatigue, bad sleep”</symptoms>
<diagnosis>< /diagnosis>
<medication>"blood tests”</medication>< /entry>
<entry entID="2” rel previous="1"><date>"10/9/90"</date>
<symptoms>"low blood iron”</symptoms>
<diagnosis>"Anemy”< /diagnosis>
<medication>"Biofer once a day”</medication></entry>
< /record>
</medical>

for $no in distinct(document(“med.xml”)//record/@ssNo)
let $recs:=document(“med.xml”)//record[@patientSSNo=$no]
return <pollutionIncident>$no,

(for $e in $recs

where $e/date > “1/1/91” and

contains($e/diagnosis, “pollution”)

return $e/diagnosis)

< /pollutionIncident >

Figure 1: Sample XML document with medical data
(top) and user query (bottom).

used in Agora [24]. We then describe the query process-
ing steps that are applied to an XQuery query. Section
3 provides normalization rules that make the query eas-
ier to translate on the generic schema, or signal the fact
that the translation is unfeasible, due to the expressive
power mismatch between XQuery and SQL. Section 4
shows how to translate normalized XQuery queries into
SQL queries on the generic schema, and section 5 dis-
cusses the rewriting of the SQL query on the generic
schema into a SQL query on the real data sources. Sec-
tion 6 explains how we can enlarge the translatable sub-
set of XQuery by allowing intermediate XML query re-
sults; related work is discussed in section 7, and we
conclude in section 8.

The XQuery language is still work in progress, and
our query translation methodology is valid with respect
to the syntax and semantics defined as of February 2001.
Advances in the standardization process may slightly
change the semantics of the language; our query trans-
lation method from XQuery to SQL is to be considered
modulo these possible changes.

2 XML data integration methodology
2.1 Problem definition

Our goal is to integrate relational data and DOM-
compliant data sources under a global XML schema.
DOM (Document Object Model) is a generic API that
allows the manipulation of tree-structured documents,
in particular HTML and XML [23]. We designate by
“DOM data source” any source supporting the DOM
interface, regardless of its storage mechanism. Our data
integration methodology must allow for efficient query
processing, in particular by exploiting as much as pos-

sible the query processing capabilities of the local data
sources, be they relational or DOM-compliant.

The query language that our mediator supports is
XQuery, the standard XML query language being elab-
orated by the W3C [24]. The XQuery data model views
an XML document as a labeled tree with references; its
type system follows that of XSchema. Besides value and
node types, the data model considers only ordered lists;
a significant general feature of the algebra is the auto-
matic list flattening - lists of lists are always unnested
[22]. XQuery has static and dynamic semantics, ac-
cording to the way typechecking is performed; for the
purpose of this paper, we always consider dynamic se-
mantics.

XQuery is centered on the notion of ezpression;
starting from constants and variables, expressions can
be nested and combined, using arithmetic, logical and
list operators, navigation primitives, function calls,
higher order operators like sort, conditional expres-
sions, element constructors etc. For navigating in a
document, XQuery uses path expressions, whose syn-
tax is borrowed from the abbreviated syntax of XPath.
The evaluation of a path expression on an XML doc-
ument returns a list of information items, whose order
is dictated by the order of elements within the docu-
ment (also called document order). XQuery provides a
range predicate whose meaning is also based on order:
Efrange n to p] evaluates the expression F, yielding a
list, and selects from this list the sublist of the n-th to
p-th items. The precise semantics of path expressions is
still under discussion; in this paper, we consider a snap-
shot of the semantics for simple path expressions, as it
was in February 2001. Since the semantics of arithmetic
and boolean operators is also being currently discussed,
in this paper we interpret them following simple SQL
semantics.

A powerful feature of XQuery is the presence of
FLWR expressions (for-let-where-return). The for-let
clause makes variables iterate over the result of an ex-
pression or binds variables to arbitrary expressions, the
where clause allows specifying restrictions on the vari-
ables, and the return clause can construct new XML
elements as output of the query. In general, an XQuery
query consists of an optional list of namespaces defini-
tions, followed by a list of function definitions, followed
by a single expression.

2.2 Motivating example

Our sample data sources are inspired from the domain
of health care. Figure 1 shows the data presented to the
user under the form of a single XML document, contain-
ing both administrative information about patients in
the patient elements, and medical files that physicians
keep on patients, represented by record elements. The
global schema consists of this document’s DTD. Data
is actually stored in two local sources: administrative
information is stored in a relational format as a table
Patient(name:string, dob:Date, SSno: integer, address:



string), while record elements with medical data are
stored as such in a separate XML file.

The user query that we consider is shown at the bot-
tom of figure 1. In this query, $no iterates over all ssNo
attributes of record elements, and $recs is successively
bound to the list of records whose ssNo attribute value
is equal to that of $no. For each value of $no, a new
pollutionIncident element is created, containing only
those records in $recs which are less than 10 years old
and whose diagnosis contains the word “pollution”.

2.3 Data integration methodology

In the Agora integration system, we adopt the following
solution to the issues presented in section 2.1. For effi-
ciency, query optimization and most of query execution
are carried on according to the relational model and al-
gebra. Agora is built on top of the LeSelect relational
data integration engine [13]. LeSelect has a distributed
peer-to-peer architecture; relational data sources are
published on a LeSelect mediator by registering them
with a data wrapper connected to the mediator. An
user query is formulated in SQL, and it is optimized and
executed in a distributed manner, involving the wrap-
pers of all data sources in the query, and possibly their
corresponding mediators.

To enable LeSelect’s execution engine and optimizer
to process DOM data sources, Agora provides a way of
exploiting such sources as a collection of tables. The
DOM interface provides a set of API calls for accessing
the content of a document; a special wrapper designed
for DOM-compliant data sources exports to the media-
tor one virtual table for each such API call. A complete
scan of a virtual table exported by the DOM wrapper is
generally not possible, since some input parameters are
required for each DOM call. In our system, such restric-
tions are modeled by binding patterns, and the DOM
wrapper is capable of processing SQL subqueries with
binding patterns on the virtual tables that it exports.
To handle restricted access tables, LeSelect’s optimiza-
tion algorithm follows a variant of dynamic program-
ming enhanced with binding patterns [7].

To execute XQuery queries via LeSelect’s relational
engine, we devised a query translation methodology
that proceeds in three steps, shown in figure 2. First,
the query is normalized, applying equivalent transfor-
mations that bring it to a syntactical form which can
be directly translated to SQL, if this is possible. The
normalized query is translated into a SQL query on
a generic, virtual, relational schema. This schema, de-
tailed in section 4, is used only as an intermediate layer;
it is never materialized as such, and is invisible to the
system’s users. This first translation step is completely
independent of the relation between the virtual XML
global schema and the real data sources; it only gets
the query across the language gap. Finally, the SQL
query on the generic schema is rewritten into a SQL
query on the real data sources. In this relational query
rewriting step, we use the definitions of the data sources
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Figure 2: General architecture of the Agora data inte-
gration system.
as views over the virtual generic schema.

Not all features of XQuery can be translated to SQL;
there are two distinct sources of difficulties. First, some
of the language’s features do not have SQL equivalents
due to a semantic mismatch between the two mod-
els; such features are identified (and the translation
fails) during the normalization phase. Second, for those
XQuery queries that could be brought to a SQL form
on the virtual generic schema, relational query rewrit-
ing might fail, because state-of-the-art query rewriting
algorithms for SQL semantics do not handle well ar-
bitrary levels of nesting, grouping etc. We stress the
fact that these difficulties are not due to our transla-
tion methodology; we merely separated the language-
dependent translation step, transforming an XQuery
query into SQL on the generic schema, from the rewrit-
ing step reformulating the query in terms of relevant
data sources. This separation allows us to provide inde-
pendent solutions for the two steps, and to distinguish
among the two sources of difficulties.

If the rewriting step succeeds, we obtain a SQL query
referring to well-identified local data sources, either re-
lational or DOM-compliant. Tuples resulting from the
relational execution of this query are treated by a tag-
ger module, that structures them into the desired XML
format of the result. This structure information is pro-
duced during the translation step and is passed directly
from the translator to the tagger under the form of a
tagging template, as shown in figure 2. The tagger’s
functioning is inspired by work done in [20].

3 XQuery normalization

In this section we use the following notations. Lower
case letter like x,y, z correspond to individual XQuery
query variables, while capital letters like E, R,C de-
note XQuery expressions. We denote simple path ex-
pressions by PFE, and element constructor expressions
by EC. For brevity, we some times write a single for
clause “for @ in E” instead of “for z; in Ej, x5 in
Es(x1), ... Ty in Ep(21,...%,—1)7; in this case, E is
an expression of arity n, and @ are consecutively bound



to each tuple of values that result from E’s evaluation.
Using these notations, the classes of translatable queries
can be informally described as follows:

e simple path expressions, starting with a document
node or with an implicit context node, consisting
of steps of the following kinds: child, descendent,
attribute, and dereferencing, and eventually inter-
spersed predicates.

e element constructors whose tags and data are ei-
ther constants or come from simple path expres-
sions as described above, or from translatable
FLWR expressions;

e translatable FLWR expressions of the form for @
in E where C(@) return R(®), where: E denotes
a n-uple of simple path expressions, C(7) is a logi-
cal expression constructed with simple path expres-
sions depending on @ and usual operators; R(7)
is a list of simple path expressions depending on
', or a translatable element constructor;

e arithmetical and logical expressions on scalar
types.

3.1 Normalization rules

In this section, we provide several equivalence rules to
simplify the user’s query and bring it to one of the trans-
latable forms, when possible.

Let clauses are treated as temporary variable defi-
nitions. During normalization, they are eliminated as
shown in rule NR;: the expression binding the variable
y is substituted to all its occurrences. Non-recursive
function definitions are eliminated; calls to such func-
tions are replaced with the body of the function, apply-
ing the proper substitutions.

NR; for @ in E; for 7 in E1,
let Yy = E2 (?) _Z> in E3(T,E2(?))
for 7 in E3(@ , y) = where C(7, E2(7T), %)
where C(7,y, 7) return R(7, E2(7T), )

return R(7,y, Z)
function f(7Z){

return E(7) } =
Q

Qlf + E]

In XQuery, FLWR, expressions can be used as build-
ing blocks for more complex expressions. Rule NRs
unnests expressions of the form E; (FLW R), in the case
when expression E; distributes over list concatenation,
e.g. Ey is a child path step (illustrated under the rule).
This rule is a consequence of the automatic list flat-
tening feature of the XQuery algebra. Rule NR» does
not hold if F; is, for example, a range operator, or an
aggregate function.

NR- FEi(for @ in Ea, for @ in Eo,
where C(7) =  where C(7)
return E3(7T)) return E1(E3(7T))
(for 7 in B> for @ in Eo
where C(7) return =  where C(Z) return
E1(E3(®))/nameTest E3(7)/nameTest

for x in document(“records.xml”)//entry
where x/date="1/9/90"
return
(for y in documents(“patient.xml”)//records
where y/@ssNo=x/SSno return y)
=
for x in document(“records.xml”)//entry,
z in (for y in documents(“patient.xml”)//records
where y/@ssNo=x/SSno
return y)
where x/date="1/9/90" return z

Figure 3: Example of unnesting return clauses.

Element constructors nested within path expressions
have the general form PE(EC(Z)), where T repre-
sent variables that may have been bound outside this
expression. If PE consists of path steps without the
range predicate, the path steps can be composed with
the element constructor and the expression rewritten,
so that the element constructor disappears. Rule NR3
shows how to push such steps into element construc-
tors, when E(7) evaluates to a list of XML elements;
the comma represents list concatenation. If the element
constructed by the expression EC(7) has text children,
they are erased by the translation. A simple similar rule
holds for attribute steps.

NRs (<tag> if tag = nameTest

E(7T) =  then (<tag>FE(7T)</tag>,
</tag>)//nameTest E(®)//nameTest)
else E(7)//nameTest
(<tag> for y in E(7)
E(®) =  where name(y)= nameTest
< /tag>)/nameTest return y

Rule NR4 unnests FLWR expressions nested within
the for clause of an outer FLWR expressions.

NR; for @ in Ei, y in (for Z in E2(7T)
where C1(@, Z) return Es(7, 7))
where Ca2(7, y) return E4( 7T, y)

for @ in E1,7>1n Eo(7)
where C1 (? 7) and Cz(? E';;(T> 7))
return E4 (7, E3(T, 7))

Rule NR5 unnests FLWR expressions nested in the
return clause of another FLWR expression. This rule is
valid because of the implicit list flattening of the alge-
bra; such a rule would not hold in OQL.

NR5 for T in E1
where C1(7)
return =
(for ¥ in Eo(7)
where Ca2 (7, ?)
return E3(@, 7))

for @ in Eq,

z in (for ¥ in E»(z)
where C2(7, 7)
return E3(7Z, 7))

where C1(7)
return 2

Rule NRg unnests complex expressions built on top
of conditional expressions. NRg(a) is meant for cases
when F is constructed only with simple path expression
steps, element constructors, or arbitrary function calls.



NRs (a) E(Gf C(z) then E1(z) else E2(x))

=
if C(z) then E(FE1(z)) else E(Ea(zx))

NRs (b) for @ in F1, y in (if C1(7) then E5(7) else E3(7T))

where Co2(7, y) return E4(7,y)
=

for @ in Eq, y in E5(7)
where C1(Z) and C2(7T, y) return E4(T,y)
U

for @ in E1, y in E3(7)
where —=C1(Z) and Co(7, y) return E4( 7T, y)

NRg(b) shows how to eliminate conditional expres-
sions directly nested within a for clause; note that this
rule modifies the order of the result, therefore it can
be applied only if the order of the result is not impor-
tant. For brevity, we omit the rules unnesting condi-
tional expressions within where or return clauses, and
conditional expressions; we refer the reader to [15].

Rule NR; performs a simple syntactic transforma-
tion: if FEy is a predicate restricting the result of Ey’s
evaluation, the path predicate notation can be replaced
with a where clause in a FLWR, expression, since the
test has existential semantics in both cases. As an ap-
plication, path predicates in the for clause of a FLWR
expression can be moved to the where clause; we de-
noted by /PFE the final part of the simple path expres-
sion z iterates over.
NR~

for z in E1

where Es(x)

return

for yin Ey,z in y/PE
where C(z) and E2(y)
return R(z)

Eq [EQ] =

for z in E1[E2]/PE
where C(z) =
return R(z)

Untranslatable features of XQuery

Various features of XQuery are difficult or impossible
to translate to SQL, no matter what relational schema
is used for the target query, because the inner logic of
these language features is incompatible with the seman-
tics of SQL. Examples of XQuery expressions that pose
difficulties are: scalar constant expressions, run-time
access to an element’s type (instanceOf, type switch,
cast, treat), non-linear recursion, heterogeneous type
unions, and identity-based operations.

Document order-preserving operators and the range
predicate deserve a special discussion. A first thing to
note is that the order of the result in a simple XQuery
expression, without nesting, may come only from some
document or data order, perhaps from a cross-product
of such orders. It is possible to capture the result or-
der of such a simple expression by an SQL query, but
this query involves aggregation and its rewriting is not
trivial [15]. Thus, even if the document order is within
the expressive power of SQL, operators related to or-
der make query translation cumbersome or may even
make it fail. Second, note that in XQuery, order can ap-
pear at any level of nesting within a complex expression,
while in SQL this is only possible at top-level: therefore,
correctly translating a nested order-conscious XQuery
query by a single SQL query is impossible. To execute
such queries by a relational framework, one needs to
make several passes, materializing intermediate XML

Document(docID, docURIID, rootElemID)
URI(urilD, uriValID)

ProcInstr(pilD, piValllD, piVal2ID)
QName(qNamelD, gqnPrefixID, gqnLocallD)
Attribute(attrID, attrElID, attrNamelD, attrValID)
Element(elID, elQNamelD, elTypelD)
NameSpace(nsID, nsValID, nsURIID)
Comment(commID, commValID)

Value(valID, value)

Child(parentID, childID, childValID, childIndex)
TransClosure(parentID,childID)

Figure 4: Virtual generic relational schema represent-
ing information from an XML document.

results and running a sequence of XQuery queries, as
we show in section 6.

4 Translating normalized XQuery into
SQL

Queries within the normalized subset of XQuery are
transformed in SQL queries on the real data sources in
two steps: first, they are translated into SQL queries
on the virtual generic schema in figure 4, then, by a re-
lational query rewriting step, they become SQL queries
on the local data sources schema. In this section, we
detail the translation step, which does not yet take into
consideration the schemas of the local sources.

4.1 Virtual generic schema as support for
translation

The simple generic, virtual, relational schema that we
use is shown in figure 4; in each table, primary keys
are in bold characters. This schema is constructed as
a fully normalized relational version of the hierarchical
structure of an XML document; foreign keys represent
the relationships between different entities within a doc-
ument. The last table, TransClosure, is redundant; it
represents the transitive closure of the parent-child re-
lationship modeled by the Child table. This table is
useful for translating recursive XML path expressions,
as described in section 4.2, and for rewriting the result-
ing queries, as shown in section 5.3; we stress the fact
that it is virtual, i.e. it does not need to be materialized
or maintained.

Using the virtual generic schema has several advan-
tages. First, it connects the relational (and other) data
sources and the XML global schema. This schema rep-
resents a middle ground for query translation: it is
a minimal lossless schema with respect to the infor-
mation contained in an XML document. Since this
generic schema does not lose any of an XML document’s
information content, XQuery constructs that cannot
be translated to it cannot be translated to any rela-
tional schema, simply because their semantics cannot
be adapted to the semantics of SQL. At the same time,
it is a middle ground for view definitions: data sources
described as views over this generic relational schema
are in fact defined in terms of the global XML schema,
thus following the LAV technique.

To handle the translation of XQuery constructs re-
ferring to a document order, we assume that among



elements belonging to the same document, the ellD vir-
tual field in the virtual schema reflects this order. To
actually return query results in correct document order,
all data sources must provide the correspondent of an
order-reflecting element ID.

4.2 Translating simple path expressions

Let us denote by T(E) = (S(E),F(E),W(E)) the
translation function that, for a given expression E, com-
putes the select, from and where parts of the corre-
sponding SQL query.

Rule TR; translates simple path expressions denot-
ing a document root. E may be either a string con-
stant, or a more complex XQuery expression, whose
SQL translation is a row subquery returning one string:

TR;1 T(document(E))=
from Document d, URI u, Value v
where d.docURIID=u.uriIlD and u.uriValld=v.valID and
v.value=T(E)

The following rules show how to translate path ex-
pressions, given the translation of the path shorter by
one step. TRy shows how to add a final “child” step to
the SQL translation of an expression; again, there are
two slightly different cases, according to the name test
being a constant or resulting from a complex expres-
sion. We show the rule for the most general case; if Fj
is a constant, simply replace T'(E>) with the constant.
Since the path expression is correctly typed, we know
that S(E;) must be an element ID, and that T'(E»)
must return a single row with one string column.

TR2 T(E:1/E2) = select e.ellD
from F(E;), Child ¢, Element e, Qname q, Value v
where W (FE1) and c.parentID=S(F1) and
c.childID=e.elID and e.elQNamelD=q.qNamelD and
q.qnValID=v.valID and v.value=T(E>)

We move on to translate the expressions whose final
step is a “descendent” step, denoted by “//”. Note the
use of the TransClosure table to express arbitrary depth
nesting.

TR3 T(E1//E2) = select e.elID from F(Eq),
TransClosure tc, Element e, QName q, Value v
where W(E1) and S(E1)=tc.parentID and
tc.childID=e.elID and e.elQNameID=q.qNamelD and
g.gnLocallD=v.valID and v.value=T(E3)

Rule TR4 shows how to translate a final “attribute”
step; this rule also has two variants, depending on
whether the attribute name is a string constant or re-
sults from a different expression.

TRs T(E1/QattName) = select a.attrID
from F(E1), Attribute a, Value v
where W(FE;) and a.attrEIID=S(FE;) and
a.attrNamelD=v.valIlD and v.value=T(attName)

Rule TR; translates a dereferencing step. Note that
in the SQL translation, the query translator has in-
serted the name of the ID attribute in the target el-
ement, id, although it was not supplied in the original

XQuery expression; this information is taken from the
DTD of the document being queried. We only show the
case when the attribute name is a constant; if it results
from a more complex expression, the corresponding sub-
query would replace attName in the translation.

TR5 T(E1/QattName — elName) =
select e.elID
from F(E1), Attribute al, Value v1, Value v2,
Element e, QName q, Value v3, Attribute a2
Value v4, Value v5
where W(FE;) and al.attrEIID=S(E1) and
al.attrNameID=v1.valID and
vl.value=attName and al.attrVallD=v2.vallD and
e.elQNamelD=q.qNamelD and
q-qnLocallD=v3.vallD and v3.value=elName and
a2.attrElID=e.ellD and a2.attrNamelD=v4.vallD and
v4.value=id and a2.attrVallD=v5.vallD and
v2.value=vb.value

In general, the results of path expressions should
come in document order; SQL queries, however, do not
guarantee result order, unless an explicit ORDER BY
clause is added. Since we require element IDs to reflect
document order, to correctly order the translation re-
sults, one only needs to add, for example, to T(E; /E»),
“order by S(E;), e.elID”. Even if T'(E;) was already
sorted on S(E), after the extra joins the ordering needs
to be re-established.

4.3 Translating FLWR expressions

Recall that in a FLWR expression, the for clause pro-
duces tuples of bindings for the variables in the query,
the where clause poses conditions that discard some of
these tuples, and the return clause uses the tuples of
bindings that satisfy the selection conditions to con-
struct the result, either under the form of complex
structured XML elements or as tuples of flat values.
Rule TRg translates a simple FLWR expression,
whose for and where clauses contain only simple path
expressions, and that returns all the variables bound in
for-where. Figure 5 shows a translation example.

TRG T(fOl‘ 1 in El, T2 in Ez(ml), v
Tp in Ep(z1,...Tn—1
where C(z1,...2,) return zy, ..
select S(E1),S(E2)...S(E,)
from F(Ey),...F(E,
where W(F;) and ... and W(E,) and
exists T(C(z1,...2n))

LTn) =

To respect the semantics of XQuery, the evalu-
ation of such a path expression should result into
(z1,%2,...,%5) tuples sorted in the lexicographic or-
der derived from the order in each F;. From a database
point of view, ignoring the order would result in more
efficient execution plans. If the order of tuples is im-
portant, a final sort by x1 asc, ..., x, asc is added.

To explain the translation of queries returning newly
constructed XML elements, we first show how to trans-
late a single element constructor. An element construc-
tor appearing in an XQuery query may depend on vari-
ables that have been previously bound in the query. To
correctly structure and order the information needed in
order to build an XML element, we borrow the sorted
outer union approach presented in [20]. Translation



T(for $x; in
document(“records.xml”) //entry,
$x2 in $x;/date

where $x2="1/9/90"

return $x1, $x2) =

select el.elID, e2.elID

v4.value="1/9/90"

from Document d, URI u, Value v1, TransClosure tc, Element el, QName ql, Value v2,
Child c1, Element e2, QName g2, Value v3, Child c¢2, Value v4

where d.docURIID=u.uriIlD and u.uriValID=v1.valID and vl.value="records.xml” and
d.rootElemID=tc.parentID and tc.childID=el.elID and el.elQNameID=ql.qNameID and
ql.qnLocallD=v2.valID and v2.value="entry” and cl.parentID=el.elID and
cl.childID=e2.elID and e2.elQNameIlD=q2.qnLocalID and q2.qnLocallD=v3.valID and
v3.value="date” and e2.elID=c2.parentID and c2.childVallD=v4.valID and

Figure 5: Translation example of a simple FLWR, expression.

rule TR7 can be applied, with the following notations.
Let Ep be the part of the query providing bindings for
the query variables @ = zi,...,z, (in the case of
FLWR expressions, the for-where clauses); tuples re-
sulting from T'(Ep) contain bindings for the variables
in 2. We denote the tag of the outermost result ele-
ment by E; (7). Let FEs,...,Fs be the expressions
providing names for the element’s attributes, while
Es, ..., Eop 1 provide attribute values. Let Hy, ..., H;
be the expressions corresponding to the result element’s
children. Finally, let Gy, ..., G, be the elementary ex-
pressions (no element constructor) appearing in the E;s
and H;s that really depend on the bound variables 7';
each GG; provides values to be used as attribute or ele-
ment names, attribute values, or character data. The
first union term contains the translation of the for-
where clause, padded with nulls; this term contains only
the variable bindings, and is labeled 0. Each of the next
[ terms retrieves the information corresponding to one
of the G4, ..., G, path expressions.

TR~ T(< E, (_.7?) Ez(?) = Es(?) PN
EzkH () = Eop41(@) >

H; (@)
</E1(z)>)=

with T'(Eg) as BoundVars

(select bv.*, 0 as label, null as g1, ..
from BoundVars bv

select bv.*, 1 as label, S(G1) as g1, .-
from BoundVars bv, F(G1)

where W(G1)

U...

select bv.*, I + 1 as label, null as g1, . .
from BoundVars bv, F(G;)

where W(G)))

order by bv.*, label

., null as g;

., null as g;

., S(Gh) as g

As a by-product of the translation from normalized
XQuery to SQL, a tagging template is constructed, to
inform the tagger module how to structure data from
the sorted tuples into an XML result. As an example,
consider the normalized query in figure 6, and its corre-
sponding tagging template. Running this query on our
medical database yields one binding for the variables
z1,%2,k = 0 (no attributes in the returned element),
j = 2, Hy is the element constructor with tag personal,
H, is the element constructor with tag medical; | = 3,
G1 is 811 /name, G2 is $11 /address, G3 is 31z /entry.

We briefly explain the construction of the tagging
template, during the translation of a complex FLWR
expression. First, we translate the simplified FLWR ex-
pression having the same for and where clauses as the
complex expression, and returning only the bound vari-
ables: this yields the subquery T'(Ep) in rule TR (an

for $x; in document(“med.xml”)//tuple,
$x2 in document(“med.xml”)//record
where $x1/@SSno=xs/patientSSno
return <medFile>
<personal><patName> $x; /name </>
<patAddress> $x1/address </></>
<medical> $x2/entry </medical>
</medFile>
<template disc="label”>
<elem tag="medFile”>
<elem tag="personal’>
<elem tag="patName”>
<directContent col="g1"/>
</elem>
<elem tag="patAddress”>
<directContent col="g2"/>
</elem>
< /elem>
</elem>< /template>
< /template>

Figure 6: Sample query and its tagging template.
example for T'(Ep) is the SQL query in figure 5). Next,
the structure of the returned element is copied into the
tagging template as follows. Constants appearing in the
result are copied as such in the template. Every G; in
the result yields: a new union term to the sorted union
query, joining the result of the for-where block and the
translation of G;; and an elem entry in the template.
This amounts to multiple outer joins between the bound
variables and the expressions retrieving components of
the result that depend on these variables.

Each block of the sorted union query will be rewrit-
ten and handed to the execution engine. The result
metadata (column number, types and names) stay the
same in the queries over the virtual and real schemas;
therefore, the column information contained in the tag-
ging template can be used by the tagger to structure
the result. For every tuple labeled 0, the tagger starts a
new element; then, by following the label field, it decides
where to fill in the value from the non-null g; column.
The tagger runs in linear time and constant space [20].

5 Relational query rewriting

Until now, we have shown how to normalize XQuery
queries, and how to translate them into SQL over the
virtual schema, when the translation is possible. During
normalization and translation, the local data sources
are ignored, and all transformations are performed on
the user query. This section describes the relational
query rewriting phase, in which we finally connect the
query to the data sources; the query is rewritten using
the descriptions of local data sources as views over the
generic relational schema.

We illustrate the rewriting process on the database
shown in section 2.2: the data presented at the



global level is contained in the MEp. XML document,
one local data source stores patient information in a
Patient(name,dob,SSno,address) table, while medical
records are stored as such in an XML document.

5.1 View definitions for relational sources

Figure 7 shows the view definition for the Patient ta-
ble. This view relates the information in the table to
data items from the MED.XML document. The first
three tables in the from clause, and the first three pred-
icates in the where, give the name of the document.
The next few joins represent the information that the
root element of the document, el, has a patient tag,
while the joins in line 8 of the view retrieve its tuple
children. For each tuple element (e2 in the query), the
SSno attribute of the element provides the SSno field
in the Patient table (v5.value is the actual value to be
found in the element). Lines 10-11, 12-13 and 14-15
have the same structure; they describe the name, dob
and respectively address children of the tuple elements.
Each of these three children (e3, e4 and e5) contains a
value corresponding to a field in the Patient table’s tu-
ples; these values, v5, v7 and v9, appear in the project
list. Besides the actual attribute values, this view also
exports element IDs of all elements in the view defini-
tion; we have already discussed the need for IDs in real
data collections in section 4.1.

5.2 View definitions for DOM sources

Agora is capable of processing both relational and
DOM-compliant data sources. For example, to exploit
a data source stored as an XML file, the DOM wrap-
per constructs a DOM representation of the file by in-
voking a parser. API calls on the resulting DOM tree
can be used to access its content. For example, the
call z.getDescendents(“someTag”), where z is a node in
the DOM tree (corresponding to an XML element) re-
turns the list of z’s descendents labeled someTag. This
call is modeled as a three-attribute relation Descen-
dent(ancestor, descendent, tag); from the query
engine’s point of view, the DOM wrapper manages sev-
eral tables, one per possible DOM API call. There is
one subtlety regarding these tables: they have access
restrictions, in the sense that their content cannot be
scanned. The full extent of the Descendent table, for
example, cannot be obtained: the only way to obtain
tuples from this table is to supply a value for the an-
cestor field. In Agora, we model such restrictions by
binding patterns [7].

The virtual tables exported by the DOM wrapper
are described as views over the virtual generic relational
schema, just like the tables from relational data sources.
Here is the view definition corresponding to the De-
scendent table :

select tc.ancestor as anc, tc.descendent as desc, v.value as tag

from TransClosure tc, Element e, QName q, Value v

where tc.desc=e.elID and e.elQNameID=q.qNamelD and
qnLocallD=v.vallD

for z in document(“med.xml”) /medical /patient,

y in document(“med.xml”)//patientSSno, z in z/name
where z/@SSno=y
return 2

select e3.ellD as $z

from Document d1, URI ul, Value v1, Element el, QName ql,
Value v2, Child cl, Element e2, QName g2, Value v3,
Attribute al, Value v4, Value v5, Child ¢2, Element e3,
QName g3, Value v6, TransClosure tcl, Element e4,
QName g4, Value v7, Child ¢3, Value v8

where d1.docURIID=ul.urilD and ul.uriVallD=v1l.valID and
vl.value="med.xml” and d1l.rootElemId=el.elID and
el.elQNamelD=ql.qNamelID and gql.qnLocallD=v2.vallD
and v2.value="medical” and cl.parentID=el.elID and
cl.childID=e2.elID and e2.elQamelD=q2.qNamelID and
q2.qnLocallD=v3.valID and v3.value="patient” and
al.attrElID=e2.elID and a2.attrNamelD=v4.valID and
v4.value="SSno” and al.attrValID=v5.valID and
c2.parentID=e2.elID and c2.childID=e3.elID and
e3.elQNamelD=q3.qNamelD and gq3.qnLocallD=v6.valID
and v6.value="“name“ and dl.rootElemId=tc2.parentID
and tc2.childID=e4.elID and e4.elQameIlD=q4.qNamelID
and g4.qnLocallD=v7.valuelD and
v7.value="patientSSno” and c3.parentID=e3.elID and
c3.childVallD=v8.valID and v5.value=v8.value

Figure 8: XQuery query and its SQL translation.
5.3 Rewriting algorithm

Given the translated query and the view definitions, a
query rewriting algorithm searching for maximally con-
tained rewritings [14] is used to produce a query to be
sent to the data sources. In a large-scale data inte-
gration application, such an algorithm is appropriate,
since there is no guarantee that all qualifying data is
available. In a different scenario, where one or a few
relational sources are integrated under an XML global
schema, a rewriting algorithm searching for equivalent
query rewriting can be used, as we did in [16]. It is
known that the problem of rewriting a query using a set
of views is NV P-hard, whether equivalent or maximally-
contained rewritings are desired [14]. This complexity
is the price to pay for the advantages of the LAV ap-
proach; however, recent work done in [17] for maximally
contained rewritings and in [9] for equivalent rewritings
presents efficient implementations that scale up well for
large queries.

As an example, consider the rewriting of the query
in figure 8, shown together with its translation on the
generic schema. For each patientSSno element, the
query returns the names of patients with a matching
SSno attribute; on the sample document in figure 1,
this query would return “Doe, John”. The record ele-
ments of the MED.XML file are stored as such in an
XML document, managed by a DOM wrapper as de-
scribed above; thus, the query joins information from a
relational table and from a native XML document. Here
is the rewritten SQL query resulting from our example:

select p.name as z

from REL:Patient p, Dom:Document d, Dom: Descendent desc
Dowm: Descendent desc

where d.docName=“med.xml“ and d.docRoot=desc.ancestor
and desc.descendent=n.node and desc.tag=“SSno*

The relational query rewriting algorithm uses the
view definition for the Patient table from figure 7, and
the set of view definitions corresponding to the virtual



select v7.value as name, v9.value as dob, v5.value as SSno, vll.value as address, 1
el.elID as el, e2.elID as e2, e3.elID as e3, ed.ellD as e4, e5.elID as e5, e6.elID as e6 2
from Document d1, URI ul, Value v1, Element el, QName ql, Value v2, Child c1, Element €2, QName q2, Value v3, 3
Attribute al, Value v4, Value v5, Child c¢2, Element €3, QName q3, Value v6, Child ¢3, Value v7, Child c4 4
Element e4, QName q4, Value v8, Child ¢5, Value v9, Child c6, Element €5, QName g5, Value v10, Child ¢7, Value v11 5
where d1.docURIID=ul.urilD and ul.uriValID=v1.valID and vl.value="patient.xml” and dl.rootElemID=el.elID and 6
el.elQNamelD=ql.qNameID and ql.gnLocallD=v2.valID and v2.value="patient” and cl.parentID=el.elID and 7
cl.childID=e2.elID and e2.elQNamelD=q2.qNamelD and q2.qnLocalID=v3.valID and v3.value="tuple” and 8
al.attrElID=e2.elID and al.attrNamelD=v4.valID and v4.value="SSno” and al.attrVallD=v5.vallD and 9
c2.parentID=e2.elID and c2.childID=e3.ellD and e3.elQNamelD=q3.qNamelD and gq3.qnLocallD=v6.vallD and 10
v6.value="name” and c3.parentID=e3.elID and c¢3.childValID=v7.valID and 11
c4.parentID=e2.elID and c4.childID=e4.elID and e4.elQNamelD=q4.qNamelD and q4.qnLocallD=v8.valID and 12
v8.value="dob” and c5.parentID=e4.elID and c5.childVallID=v9.valID and 13
c6.parentID=e2.elID and c6.childID=e5.elID and e5.elQNameIlD=q5.qNamelID and g5.qnLocallD=v10.vallD and 14
v10.value="address” and c7.parentID=e5.elID and c7.childVallD=v11.vallD 15

Figure 7: View definition for the Patient table .

tables exported by the DOM wrapper. In the rewritten
query, tables corresponding to local data sources are
prefixed with the name of the wrapper managing them:
REL for a relational wrapper, and DoM for the wrapper
holding the XML document.

In this example, the query fragment correspond-
ing to the document(“med.xml”) /medical/patient path
expression (no // step) has been rewritten using
the view for the Patient table, that describes the
same path; for the fragment corresponding to docu-
ment(“med.xzml”)//patientSSno, a view definition us-
ing the TransClosure table has been identified. These
are simple cases in which the query and the view cor-
respond syntactically (either both use a recursive de-
scent step or none of them uses it). However, syn-
tactic correspondence is not required in order to use
a view to answer a query; the SQL query rewriter en-
capsulates several types of semantic information. As a
simple example, the rewriter is aware that a view de-
fined with a Element-Child-Element join is contained in
a query having a Element-TransClosure-Element join,
simply because children are a subset of descendents.
For more complex view-query combinations, the DTD
of the global document is used to decide whether the
view is a subset of the query or not. For example, if the
query is document(“med.zml”) /medical/records/SSno,
a view defined as document(“med.zml”)//S5Sno can be
used only if the DTD implies that all SSno elements are
on the path appearing in the query. In the absence of
a DTD, the view cannot be used.

6 Translating queries with intermedi-
ate XML results

In this section, we explain how Agora’s capacity to
query native XML documents is used for translating
queries necessitating the materialization of intermedi-
ate XML results.

Consider the normalized query in figure 9, and its
representation as an operator tree. In this tree, PE;
corresponds to document(“med.zml”)//patient, PE5 is
$p/name, and PE3 is $p/address; note that the bind-
ings of $p from PE; need to be passed to PE3;. By
examining a node, it can be decided whether (a) this
expression cannot be executed by a relational process-
ing system, and it is not a problem of intermediate XML

for $p in document(“medical.xml“)//patient

where $p/name=“Doe, John“

return  closestHospitals($p/address, “hospitals.xml“)
//hospital[range 1 to 3]

//hospita
ange 1 toJ3]

XML|result

"Doe, John" ater|alization

closestHospital

"hospitals.xml" PE3

Figure 9: Query necessitating intermediate XML re-
sults materialization.

results; in this case, the whole query is untranslatable;
(b) this node does not necessitate materialization of its
inputs; or (c) this node does necessitate the material-
ization of one or more of its inputs; in this case, XML
materialization nodes are inserted in the query tree be-
tween the current node and its appropriate descendents.
In this example, there is one such materialization node,
as input to the range operator.

At this point, the input query is partitioned into
two subqueries. (@1 extracts the patient and passes the
proper binding for $§p as input to the function, which re-
sults in an XML document. This document is assigned
to a DOM wrapper described in section 5.2, as a spe-
cial temporary data source, given a new name, and pro-
vided as input to ()2. Next, the subqueries are sorted
in the order dictated by the data sources they pro-
duce/consume; @1, then @2, are translated into SQL
queries on the generic schema, rewritten and executed.
The fact that one input is a temporary document does
not hinder @)2’s rewriting, since the DOM wrapper pub-
lishes generic view definitions, in which the XML doc-
ument name is a simple attribute and can be selected
on.

7 Related work

Projects like Garlic [10], Disco [21], Tsimmis [8] and
Yat [2] all adopt the GAV approach, and therefore
do not compare directly to our system. The Informa-
tion Manifold [12] is the single data integration system
with a LAV architecture; however, the local and global
schemas are relational.



SilkRoute [5, 4] and XPERANTO [20, 19] focus on
exporting relational databases under an XML interface.
Since the mapping is done from tuples to XML, these
projects adopt the GAV approach; also, they can only
integrate relational data sources. In a work developed
in parallel with ours, a translation methodology from
XQuery to SQL is provided, in order to query XML
views of relational data [19]. In contrast, our integra-
tion approach can handle diverse data sources, not only
relational. The study in [5] investigates efficient ways of
materializing a large XML document from the data con-
tained in an RDBMS. In this context, a single sorted
outer union SQL query may be suboptimal, and the
authors describe a search space of several smaller SQL
queries. We used the sorted outer union approach for
several reasons. First, we expect that in a data integra-
tion setting, most queries return moderate-size results.
Also, the search done in [5] is based on a RDBMS’s
optimizer’s cost estimates for a given SQL query; in a
centralized context, these estimates are easy to obtain.
However, in a data integration context, it is difficult to
get precise and comparable estimates from wrappers.

Work done in [3, 18, 6] investigated ways of storing
XML documents in tables. Our approach can handle all
the mappings they produce, since the relational storage
is defined as materialized views over the XML docu-
ments. In [3], “lossy” mappings (that do not store all
data in a document) are forbidden, while we allow any
mapping; also, the query language they use does not
construct new XML structure, while XQuery does.

8 Conclusion

We have presented a methodology for integrating re-
lational and tree-structured data sources, in particular
XML documents, under a single XML global schema;
our work is the first solution to this problem using
the LAV approach, which is preferable for large-scale
data integration applications. We isolated the syntac-
tical translation step (from the users’ XML query into
a SQL query on a generic schema) from the semantic
step, which identifies the relevant data sources to an-
swer the query. Our approach is implemented into the
Agora research prototype, and we measured reasonable
performances for the relational (equivalent) rewriting
algorithm: less than 1 sec. for a query over 25 ta-
bles, 3 documents, using 10 views (all Agora is imple-
mented in Java, we used JDK 1.3 on a Pentium 233,
running RedHat Linux 6.2) [16]. In the future, we plan
to study, in a relational-only integration context (all
data sources stored into RDBMSs), the translation of
XQuery queries with updates (to be standardized soon)
into SQL queries over the local sources.
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